

TRANSPORT PROCESSES IN BIOLOGICAL & ENVIRONMENTAL SYSTEMS (ABEN 444/644) COURSE SYLLABUS

BASIC INFORMATION

Number of credits: 3 Meeting place and time: MWF 12:00-12:50 p.m. @ Ladd 114 Term and year: Spring 2024 Instructor's name: Zhulu Lin Office location: Ladd 104C Office hours: Monday and Thursday 1:00-2:00 p.m. or by appointment Contact information: Zhulu.Lin@ndsu.edu/231-7118

BULLETIN DESCRIPTION

Topics covered include modes and equations of energy and mass transport processes, transport properties of biomaterials and porous media, formulations of and solutions to energy and mass transfer problems, and engineering design considerations.

PREREQUISITES

Before taking this course, students should have already completed the following courses:

- MATH 266 Introduction to Differential Equations
- CE 309 Fluid Mechanics or ME 352 Fluid Dynamics, and
- ABEN 263 Biomaterials Processing

ABEN EDUCATIONAL OBJECTIVES AND ABET STUDENT OUTCOMES

Educational Objective 1: Graduates are expected to have established themselves as practicing engineers who, within a few years of graduation, successfully address emerging engineering challenges in the design or evaluation of machine systems, processing systems, and natural resources and environmental systems affecting the production of food, feed, and other biobased products. This objective addresses the following ABET student outcomes:

- ABET-(1): an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- ABET-(2): An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

COURSE OBJECTIVES

After completing this course, students should be able to

- 1. Understand the principles of energy and mass transport processes as they are applied in a biological or environmental context. [ABET–(1)]
- 2. Define problems, governing equations, and boundary conditions, and to solve these problems in biological and environmental systems. [ABET– (1)]
- 3. Design a heat or mass transfer process to produce solutions that meet specified needs in biological and environmental systems. [ABET- (2)]
- 4. (Graduate students only) Analyze real-world heat or mass transfer processes in biological, environmental, or agricultural systems.

REQUIRED STUDENT RESOURCES

Required textbook: Datta, A.K. (2017) Heat and Mass Transfer: A Biological Context (2nd Edition), CRC Press, Boca Raton, FL. Or Datta, A.K. (2002). Biological and Bioenvironmental Heat and Mass Transfer. New York: Marcel Dekker (NDSU Library Call #: R856.D375 2002) **Other Resources:** A regularly checked e-mail account, data storage devices, and a calculator are required.

COURSE SCHEDULE/OUTLINE/CALENDAR OF EVENTS

Wk	Day	Date	Topics	Readings	HW	Tests			
1	W	1/10	Course introduction & pre-test						
	F	1/12	Equilibrium, energy conservation, and	Chapter 1					
		1/12	temperature in environment	Onapter i					
	М	1/15	MLK Jr. Day (no class, office closed)						
	W/	1/17	Modes of heat transfer	Chapter 2					
		1/1/	(Conduction, convection, & radiation)	onupter 2					
2			Equation and boundary conditions of heat						
	-		transfer						
	F	1/19	(Derivation of heat transfer governing	Chapter 3	HW1				
			equation and three types of boundary						
			conditions)						
	<u>M</u>	1/22							
			Conduction heat transfer: steady-state (SS)						
3	W	W	w	W	1/24	(1-D SS heat transfer applications:	Chapter 4		
5		1/ 2 1	insulation materials, R-values, fins, bio-	Simp to 1					
			heat transfer)						
	F	1/26							
	M	1/29							
4	W	1/31							
	F	2/2			HW2				
			Conduction heat transfer: unsteady-state						
	М	М 2/5	a / -	(USS)	~ -				
			2/5	(1-D USS heat transfer applications:	Chapter 5				
5					incubation, food sterilization, burial depths				
		2/7	of water mains in soils)						
		2/1							
		2/9							
6	M	2/12			I INVO				
	W	2/14			HW3				
	F	2/16	Exam I			Exam			
	М	2/19	Presidents' Day (no class, office closed)						
	W			Convection heat transfer					
		W 2/21	(Calculations of convective coefficient in	Chapter 6					
			different flow regimes and geometries,	1					
	Г	2/22	Wind Chill)						
	Г	2/23			1				

	Μ	2/26				
	W	2/28				
8	F	3/1	Heat transfer with change of phase (Freezing process of water and biomaterials, evaporations)	Chapter 7	Design	
9	Μ	3/4				
	W	3/6	Spring Break			
	F	3/8				
	Μ	3/11				
10	W	3/13				
	F	3/15				
11	М	3/18	Radiative heat transfer (Electromagnetic spectrum and photosynthesis, thermal radiation)	Chapter 8		
	W	3/20			HW4	
	F	3/22				
12	М	3/25	Equilibrium, mass conservation, and kinetics (Psychrometric chart, food preservation, half-life of pesticides in environment)	Chapter 9		
	W	3/27	Modes of mass transfer (Molecular and capillary diffusion, dispersion, convection, and flow through porous media)	Chapter 10		
	F	3/29	Recess (no class, offices closed)			
	М	4/1	Recess (no class, offices open)			
13	W	4/3	······			
	F	4/5	Exam 2			Exam
14	М	4/8				
	W	4/10				
	F	4/12	Equations and boundary conditions of mass transfer (Derivation of mass transfer governing equation and three types of boundary conditions)	Chapter 11		
15	М	4/15	Diffusion mass transfer: steady-state (1-D SS mass transfer applications: contaminant and oxygen transfer through biofilms)	Chapter 12		
	W	4/17			HW5	
	F	4/19	Diffusion mass transfer: unsteady-state (1-D USS mass transfer applications: wood drying, food preservation, oxygen diffusion in silage and composting piles)	Chapter 13		
16	Μ	4/22				
10	W	4/24				

	F	4/26	Convection mass transfer (1-D convective mass transfer applications: pollutant discharge/spills into surface waters and soils, mulching, calculations of convective mass transfer coefficients)	Chapter 14		
	Μ	4/29			HW6	
17	W	5/1				
	F	5/3	Graduate student term paper presentation			
18	Th	5/9	Exam 3 (3:30 p.m 5:30 p.m.)			Exam

* Except for examination dates (https://www.ndsu.edu/registrar), the above course schedule is subject to change.

ATTENDANCE POLICY

In accordance with NDSU Policy 333 (<u>http://www.ndsu.edu/fileadmin/policy/333.pdf</u>), class participation is expected at all regularly scheduled class and lab times as they are critical to every student's success in this course. Students are expected to attend every class and remain in class for the duration of the session. Although students are expected to participate in the course in person, when needed occasionally students may request the instructor to record the lecture and review it at a different time. If you are unable to attend class at the regularly scheduled time due to health issues, contact the instructor prior to the class meeting time for alternate arrangements, including recordings of class sessions and accommodations needed for assignments.

EVALUATION PROCEDURES AND GRADING CRITERIA

Assignment Policy: Due dates for homework, design project and term paper will be given with the assignments. Late assignments will be accepted with a 10% penalty per NDSU class day. Assignments must be submitted in hardcopy before 4 p.m. to be credited to the day it is received. Late assignments will not be accepted after solutions are posted/handed out/discussed or after 3 NDSU class days from the date they are due.

You are encouraged to work together with others for your homework and lab assignments because that will help you learn. You are also encouraged to contact the instructor for assistance during office hours or by appointment. Although students are encouraged to work together and assist one another with assignments, all work submitted should be created by that individual. If it is apparent that work has simply been copied from other's work, all students involved will receive zero point for that assignment.

Exam Policy: Missed exams will receive zero points unless missed for a valid justification *and* the instructor is notified prior to the date and time of the exam. Valid justification is a statement indicating illness, obituary notice (death in family or loved one), or co-curricular activities. For such justified reasons, a make-up exam may be given at a mutually acceptable time or the weight of the missed mid-term exam will be shifted to the final exam. Extracurricular activities, weddings, vacations, hunting and fishing trips, work, dentist's appointments, and undocumented car-related incidents are examples of unjustifiable reasons for missing the scheduled dates and times for exams. The instructor reserves the right to determine whether the excuse is legitimate or not.

Grading Policy: All students (undergraduate and graduate) will have to complete the following five categories of work in this course: homework assignments, quizzes, two midterm exams, one process design project, and one final exam.

Graduate students will be required to write a term paper in addition to the above course work. The term paper should cover a transport phenomenon and its solution. Each such paper will be subject to approval from the instructor to ensure appropriate scope and content. A detailed guideline on how to complete the term paper will be provided separately. The requirements for term papers include a written report and an in-class oral presentation.

The possible points which can be earned for all work categories are listed in the table below. Each student's final letter grade in the course will be determined by the percentage of the total earned points over the total possible points using the following grading scale: $A \ge 90\%$, $80\% \le B < 90\%$, $70\% \le C < 80\%$, $60\% \le D < 70\%$, F < 60%.

	Points			
Work category	Undergraduate students	Graduate students		
Homework (6)	150	150		
Class participation & quizzes (5)	50	50		
Mid-term exams (2)	200	200		
Process design project (1)	50	50		
Final (Exam 3)	150	150		
Term paper (1)	N/A	100		
Total	600	700		

Graduate Student Term Paper:

Progress	Due Date	Points	Requirements	
			1. At least two references	
Topic selection	Jan 29 (M)	10	2. Minimum half-page write-up, including title,	
			outline, and references	
			1. No less than 2 pages	
Proposal	Feb 26 (M)	10	2. Include an introduction, proposed methods,	
			preliminary results, and references	
Draft report	Apr 15 (M)	30	See requirements for the draft/final written report	
Oral presentation	May 3 (F)	10	See requirements for oral presentation	
Final Report	May 10 (F)	40	See requirement for the draft/final written report	

AMERICAN DISABILITIES ACT FOR STUDENTS WITH SPECIAL NEEDS STATEMENT

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the <u>Center for</u> <u>Accessibility and Disability Services (www.ndsu.edu/disabilityservices)</u> as soon as possible.

FAMILY EDUCATIONAL RIGHTS AND PRIVACY (FERPA) STATEMENT

Your personally identifiable information and educational records as they relate to this course are subject to FERPA.

APPROVED ACADEMIC HONESTY STATEMENT

The academic community is operated on the basis of honesty, integrity, and fair play. <u>NDSU Policy</u> <u>335: Code of Academic Responsibility and Conduct</u> applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the <u>Office of Registration and Records</u>. Informational resources about academic honesty for students and instructional staff members can be found at <u>www.ndsu.edu/academichonesty</u>.

VETERANS AND MILITARY PERSONNEL

Veterans or military personnel with special circumstances or who are activated are encouraged to notify the instructor as early as possible.

ADDITIONAL RESOURCES FOR STUDENTS

As a member of the NDSU community, resources are available for you should you need help in dealing with adverse reactions to things happening in the world today. A variety of resources are listed below. For students on campus and remotely (telehealth):

- Counseling Services: 701-231-7671; https://www.ndsu.edu/counseling/
- Disability Services: 701-231-8463; https://www.ndsu.edu/disabilityservices/
- Student Health Service: 701-231-7331; https://www.ndsu.edu/studenthealthservice/
- Dean of Students Office: 701-231-7701; https://www.ndsu.edu/deanofstudents/

In a crisis or emergency situation:

- Call University Police: 701-231-8998
- Call 9-1-1
- Go to a Hospital Emergency Room
- Go to Prairie St. Johns for a Needs Assessment: 701-476-7216 (510 4th St. S.)
- Call the FirstLink Help Line: 1-800-273- TALK (8255) or 2-1-1
- Call Rape and Abuse Crisis Center: 701-293-7273

IMPORTANT DATES

Jan 1	Mon	HOLIDAY — New Year's Day (offices closed)
Jan 8	Mon	Classes begin at 4:00 p.m.
Jan 9	Tue	First full day of classes
Jan 15	Mon	HOLIDAY — Martin Luther King, Jr. Day (no classes, offices closed)
Jan 16	Tue	Last day to be added to Campus Connection Wait Lists
Jan 18	Thu	Last day to Add classes via Campus Connection
Jan 18	Thu	Last day for no-record Drop of classes @ 100% refund
Jan 18	Thu	Last day to Withdraw to Zero Credits @ 100% refund
Jan 24	Wed	Payments due for NDSU account balances
Jan 29	Mon	Last day to submit requests to Audit, Pass/Fail
Feb 19	Mon	HOLIDAY — Presidents' Day (no classes, offices closed)
Feb 19	Mon	Last day to Withdraw to Zero Credits @ 75% refund
Mar 4-8	M-F	Spring Break Week (no classes, offices open)
Mar 15	Fri	Late fee applied to unpaid account balances (11:59 p.m.)
Mar 21	Thu	Last day to Withdraw to Zero Credits @ 50% refund
Mar 29-Apr 1	F-M	HOLIDAY Spring Recess

ABEN 444/644 Spring 2024

Apr 5	Fri	Last day to Drop classes with 'W' record*
Apr 5	Fri	Last day to Withdraw to Zero Credits for Spring
Apr 15	Mon	Late fees applied to unpaid account balances (11:59 p.m.)
Apr 29-May 3	M-F	Dead Week
May 6-10	M-F	Final Examinations
May 11	Sat	Commencement ceremony

SYLLABI ON WEB PAGES The course syllabus is available on Blackboard and ABEN Department webpages.