
CCAST User Guide 
Version: 2019.01. Last updated: 01/22/2019 

1. Introduction, Context, and Qualifications 

The Center for Computationally Assisted Science and Technology (CCAST; pronounced "c-cast") provides 

high-performance computing (HPC) resources, training, and consulting to NDSU faculty, students, and 

staff and their collaborators. We use Linux primarily. The basic level of services is free of charge to 

NDSU researchers and their external collaborators. Additional services are available for a fee.  

For more information, see www.ccast.ndsu.edu. 

1.1 Acknowledging CCAST 

Users are required to use the following statement (or a close variant) to acknowledge CCAST in all 

research outputs that have used CCAST resources: "This work made use of computing resources at the 

Center for Computationally Assisted Science and Technology (CCAST), North Dakota State University." 

1.2 Reporting requirements 

Users, usually through their Principal Investigators (PIs) or group leaders, will be requested to report any 

research output and activities that have been enabled by the use of CCAST resources. Reporting items 

often include publications, presentations, grant applications, patents, theses, etc.  

1.3 CCAST usage policies 

Users are required to carefully read and comply with CCAST Usage Policies. A full copy of the Usage 

Policies can be found on the CCAST website: https://www.ccast.ndsu.edu/users/ccast-usage-policies  

1.4 How you can get help? 

Please read this User Guide carefully and check the CCAST website before contacting us. If you still 

cannot find answers to your questions, send an e-mail to support@ccast.ndsu.edu. In the e-mail, describe 

the issues, clearly state your questions, and provide a copy of the error messages and PBS job scripts, the 

IDs of your failed jobs, and any other info that may help debug the issues. Please do not directly contact 

CCAST individual staff for technical support as this bypasses our tracking system to avoid dropped calls. 

1.5 About this document 

This document will be updated often. A PDF copy of the latest version of the CCAST User Guide can 

always be found in the following directory on Thunder cluster: /gpfs1/projects/ccastest/training/tutorials 

2. Getting Started 

2.1 Applying for an account 

To be able to use CCAST’s "Thunder"–an HPC cluster–you need to have an account with us. Please 

apply for a CCAST account if you have not already done so. Check out user eligibility requirements on 

the CCAST website and fill out an online form: https://www.ccast.ndsu.edu/users/account-application/  

2.2 Connecting to the Thunder cluster 

From a Windows computer: PuTTY, a free SSH and telnet client, should be used. Download (from here: 

https://www.putty.org) and install it, then double-click to open the application. In the "Host Name (or IP 

address)" field, enter the hostname: thunder.ccast.ndsu.edu Select (or leave) 22 for "Port" and SSH for 

"Connection type". Click "Open", you will be asked to enter your username and password. 

http://www.ccast.ndsu.edu/
https://www.ccast.ndsu.edu/users/ccast-usage-policies
mailto:support@ccast.ndsu.edu
https://www.ccast.ndsu.edu/users/account-application/
https://www.putty.org/


NDSU Center for Computationally Assisted Science and Technology 

CCAST User Guide v.2019.01                                                                                                                                                                                                             2 

From a Mac/Linux computer: Open a terminal and then execute the following line to access Thunder: ssh 

thunder.ccast.ndsu.edu -l username You will be prompted to enter your username and password.        

2.3 Transferring files 

Between a Windows computer and Thunder: WinSCP client should be used. Download for free (from 

here: https://winscp.net) and install it, then open the application. In the "WinSCP Login" window, enter 

the hostname thunder.ccast.ndsu.edu as well as your username and password, then click on "Login".  

Once logged in, you will see a screen with two panels: the left shows files on your computer and the right 

shows your files on Thunder (usually your home directory, but you can double-click on the address bar 

and change the location). You can then easily drag and drop files between your computer and Thunder. 

Between a Mac/Linux computer and Thunder: To transfer files from Thunder to your computer:  

scp [[username@hostname]:[source-file]] [[destination]].  

Example: scp username@thunder.ccast.ndsu.edu:/gpfs1/home/username/myfile.txt /home/mycomputer/myfile.txt 

To transfer files from your computer to Thunder: 

scp [[source-file]] [[username@hostname]:[destination]] 

Example: scp myfile.txt username@thunder.ccast.ndsu.edu:/gpfs1/home/username  

2.4 Learning Unix/Linux and HPC 

Users are strongly recommended to attend Advanced Research Computing Training sessions, offered by 

CCAST every semester, as well as CCAST User Group Meetings and other special local training events. 

Specialized training for individual researchers/research groups is also available. Contact us for more info.   

There are also lots of free training materials out there on the Internet. We recommend the following: 

+ Unix/Linux Tutorial for Beginners: http://www.ee.surrey.ac.uk/Teaching/Unix/ 

+ HPC Training Materials at LLNL: https://hpc.llnl.gov/training/tutorials  

See also the attached CCAST Reference Card for a list of the most useful Linux commands and tricks. 

Tutorials for certain applications on Thunder can be found in /gpfs1/projects/ccastest/training/tutorials 

3. Research Computing Resources 

3.1 Hardware 

CCAST’s Thunder has over 100 nodes (>3,000 cores); most have 20 cores (63GB RAM) or 44 cores 

(100GB RAM) per node. There are also 3 big-memory (1TB RAM) nodes and 2 GPU nodes (12 cards).  

To check which nodes are currently free or partially free on Thunder, execute the command: freenodes 

The information will help you make the right choice when you request computing resources for your jobs. 

3.2 Software 

There are many software programs installed on Thunder. Most are available to all CCAST users; some, 

e.g., ANSYS, Gaussian, VASP, etc., available only to those who have valid licenses and other authorized 

users. Software are usually organized as modules; to check available modules, execute: module avail  

You can also install software for yourself. Contact us at support@ccast.ndsu.edu if you need help. 

3.3 Storage space 

Once logged in, you are in your home directory (/gpfs1/home/username). /home data is backed up to tape,  

https://winscp.net/
http://www.ee.surrey.ac.uk/Teaching/Unix/
https://hpc.llnl.gov/training/tutorials


NDSU Center for Computationally Assisted Science and Technology 

CCAST User Guide v.2019.01                                                                                                                                                                                                             3 

so it is a reliable data storage area. Do not use your home directory for data or job input/output. Running 

jobs out of /home is not permitted as it affects the interactive use and other important jobs on the system. 

Each research group usually has a projects directory; the full path is /gpfs1/projects/PI-username, where 

PI-username is the username of the Principal Investigator (PI). This area has a larger storage space and is 

backed nightly to tape. All researchers working under the PI can store and share data in this project space. 

Each regular user has a scratch directory (/gpfs1/scratch/username). It is designed as a place for working 

directories for jobs. Please submit your jobs from this directory. Note that scratch data is NOT backed up, 

and CCAST reserves the right to delete files as necessary (a 60-day maximum is the current target). 

More storage space (beyond the basic level) is available for a fee. Contact CCAST if you have questions.    

3.4 Compute Condominium 

Researchers can purchase condo nodes using equipment purchase funds from their grants or other available 

funds. These PI-owned compute nodes are attached to CCAST’s Thunder cluster to take advantage of the 

existing infrastructure. Contact CCAST if you have questions regarding the condominium model. 

4. Running Jobs 

Once you logged in to CCAST's Thunder, you are on one of its login nodes. Login nodes have limited 

resources and are intended only for basic tasks such as transferring data, managing files, compiling 

software, editing scripts, and checking on or managing jobs. DO NOT run your jobs on the login nodes!  

Jobs must be submitted to a queue system, which is monitored by a job scheduler, using a job script. The 

job scheduler currently used on the Thunder cluster is PBS Professional (PBS Pro). The scheduler handles 

job submission requests and assigns jobs to specific compute nodes available at the time.  

To be able to run your jobs and run them efficiently, you need to have some basic knowledge of the 

application you are using. This includes whether the application is serial (i.e., runs on only one core) or 

parallel (i.e., can run on multiple cores). If it is parallel, what is the underlying parallel programming 

model: shared-memory (e.g., using OpenMP, Pthreads, etc.), distributed-memory (e.g., using MPI), or 

hybrid? You need such information to determine how you would like to request resources for your jobs. 

4.1 Sample input files and job scripts 

If you are new to running jobs on the Thunder cluster or if it has been a while since the last time you ran 

an application, it is highly recommended that you first run some sample jobs we provide before running 

your own jobs. On Thunder, users can copy sample input files and job scripts for various applications 

from /gpfs1/projects/ccastest/training/examples More job examples for more applications will be added 

as they become available. Please check this directory frequently for the latest version of the job scripts. 

A job script (also referred to as a "PBS job script") to run a serial job is given below as an example: 

#!/bin/bash 

#PBS -q default 

#PBS -N test 

#PBS -l select=1:ncpus=1 

#PBS -l walltime=08:00:00 

#PBS -W group_list=x-ccast-prj-prjname 

cd $PBS_O_WORKDIR 

./my-serial-program 

Note: You need to replace prjname with the actual project group name of your PI. If you do not know 

your PI's prjname, on Thunder, execute the command id and look for the group name x-ccast-prj-... 



NDSU Center for Computationally Assisted Science and Technology 

CCAST User Guide v.2019.01                                                                                                                                                                                                             4 

A PBS job script is simply a text file in your working directory. The easiest way to create the file is to 

copy an appropriate sample PBS job script from /gpfs1/projects/ccastest/training/examples on Thunder 

and then modify it as needed using some text editor such as nano (for novice Linux users), emacs, or 

vi (for more experienced users). See also the PBS Pro Cheat Sheet attached to this CCAST User Guide. 

4.2 Queue policies on Thunder 

Different types of queues are given below. Users can also find info about the queues by executing qstat -q  

Route Queue Execution Queue Walltime (hours) Authorized Group 

default 

def-short 24 

All users 

def-medium 72 

def-long 168 

def-devel 8 

preemptible -- 

bigmem 
bm-short 24 

bm-long 168 

condo01, condo02, etc. -- Condo owners 

If a route queue is given in the job script (e.g., default), the job will automatically be assigned to an 

appropriate execution queue based on the requested walltime (e.g., def-short in the earlier example).   

4.3 Launching and monitoring jobs  

After preparing a suitable job script (with the filename job.pbs, for instance), see Sec. 4.1, you can submit 

the job by typing: qsub job.pbs. This will assign your job to the queue. Depending on the available 

resources, it may or may not start immediately. To check the status of your job(s), type: qstat -u $USER. 

If you want to kill the job, use the command qdel <jobid>, where <jobid> is the ID of the job you want 

to kill. For more useful PBS Pro commands and options, see the attached PBS Pro Cheat Sheet.     

4.4 How to get your work done faster? 

If you use software packages developed by others, be mindful of the parameters used in your input files. 

A small tuning of the parameters can significantly improve computational efficiency. If you write and run 

your own code, see if it can be optimized to make it run faster or parallelize it if it is not yet parallel. 

When running parallel jobs, a question arises: How many cores/nodes should you request for the jobs? 

Note: the requested resources in the sample PBS job scripts we provide are not optimized for your jobs! 

Also note that, if you want to get your jobs done faster, simply adding a lot more cores/nodes is rarely the 

answer! You should do some scaling tests to identify the optimal number of cores/nodes for your jobs.  

When you have many similar parallel jobs, we recommend that you run a first few jobs with different 

numbers of cores/nodes. By looking the computing time needed to finish the jobs vs. the number of cores/ 

nodes, you'll have a pretty good idea of how many cores/nodes you should choose for the remaining jobs. 

Contact CCAST for help with improving your job efficiency and speeding up your research process.      

5. Utilization Monitoring 

We use XDMoD for data collection and monitoring of HPC resource utilization. The tool allows CCAST 

staff, PIs, and users to view data about their CCAST usage. It includes metrics like total CPU hours, 

number of jobs submitted, average walltime per job, and much more. Information is updated daily for all 

jobs completed at the time of update. The link to this service is https://xdmod.ccast.ndsu.edu     

https://xdmod.ccast.ndsu.edu/


 

CCAST Reference Card 
https://www.ccast.ndsu.edu  

support@ccast.ndsu.edu 

 

Logging In  

 

ssh secure shell  

options include:  

-X enables X11 forwarding 

example:  

ssh user@thunder.ccast.ndsu.edu  

 

Transferring Files  

 

scp secure copy  

options include:  

-r recursively copy entire directories  

examples:  

scp myfile.txt user@hostname:/gpfs1/home/user  

scp -r user@hostname:/gpfs1/home/user/mydir .  

  

winscp scp/sftp GUI for windows     

 

Checking Resources  

 

freenodes   list currently free/partially free compute nodes  

  

Configuring Shell Environment  

 

module interface to modules package  

options include:  

avail list all available modulefiles  

load load modulefile into shell environment  

unload remove modulefile from shell environment  

list list loaded modulefiles 

display  display the modulefile information 

purge    unload all previously loaded modulefiles 

examples:  

module avail 

module display intel 

module load intel 

module list 

 

Using the Queuing System  

 

qsub submit job to queuing system 

example: 

qsub jobscript  

 

qstat show status of batch jobs  

options include:  

-u $USER     show only user's jobs 

-n         list nodes allocated to a job 

 

qdel delete batch job with given job ID 

example:  

qdel 123456  

 

Useful Linux Commands  

  
File/Directory Basics  

 

ls list directory contents  

examples:  

ls -ltr long listing, most recently modified last  

ls -h file sizes in readable format e.g. 1K, 21G  

 

pwd print working directory  

 

echo       display a line of text 

examples: 

echo $HOME        display user’s home directory 

echo $PATH         display user’s search path  

  

cd change current directory 

examples: 

cd .. change to directory above 

cd /path/to/dir        change to directory given in path 

cd $HOME            change to user's home directory 

cd $SCRATCH     change to user's scratch directory  

 

cp copy files and directories 

examples:  

cp file1 file2 create a copy of file1 called file2  

cp -r dir1 dir2 recursively copy dir1  

  

mv move (rename) files and directories  

examples: 

mv file1 file2      rename file1 as file2  

mv dir1 /new/path    move dir1 to a new location 

rm remove files or directories 

examples: 

rm -i file1 prompt before deleting file1 

rm -rf dir1 recursively & forcefully remove dir1 

  

mkdir make directories 

 

rmdir remove empty directories 

 

ln make links between files and directories 

example:  

ln -s /path/to/dir1 ./dir1 symbolically link to dir1 

 
Viewing & Manipulating Text Files 

 

head output the first part of files 

example: 

head  -7 file.txt view first 7 lines of file.txt 

 

tail output the last part of files 

example: 

tail -7 file.txt view last 7 lines of file.txt 

 

cat concatenate files and print to stdout   

example:  

cat file1.txt >> file2.txt append file2.txt to file1.txt    

 

wc file.txt print line, word and byte counts 

 

diff file1.txt file2.txt compare files, line by line 

 

cut print selected parts from each line of files 

example: 

cut -d',' -f1,2 file.csv   print first two columns of file.csv  

 

paste merge lines of files 

example: 

paste file1.txt file2.txt  concatenate each line of file1.txt  

                                      and file2.txt, in turn, and print 

 

sort sort lines of files 

examples:  

sort -d file1.txt    print contents of file1.txt in  

                            dictionary order 

sort -nr file1.txt  print contents in reversed (descending)  

                            numerical order 

https://www.ccast.ndsu.edu/
https://www.bris.ac.uk/acrc
mailto:support@ccast.ndsu.edu


Adapted from "BlueCrystal Reference Card", University of Bristol: https://www.bris.ac.uk/acrc 

uniq report or omit repeated lines 

example: 

uniq file1.txt      print only unique lines of file1.txt 

 

sed stream editor for filtering and transforming 

examples:  

sed 's/cat/bat/g' file1.txt  replace all instances of 'cat' in  

                                         file1.txt with 'bat' 

sed 's/*ed//g' file1.txt      replace all words in file1.txt  

                                 ending with 'ed' with the empty string 

 

awk pattern scanning and processing language  

example:  

awk '{print $2}' file1.txt print second column of file1.txt 

 

nano text editor (for novice Linux users) 

 

emacs    text editor 

 

vi text editor (highly recommended) 

 

Redirection and Pipelines  

 

> redirect stdout  

example:  

cat file1 file2 > file1-and-2 

 

< redirect stdin 

 

>> redirect stdout and append  

example: 

cat file1-and-2 file3 >> file-1-and-2-and-3  

 

| pipe stdout from one cmd to stdin of another  

example: 

head -7 file1 | tail -1 view 7th line of file1  

 

Viewing Other Files  

 

od dump files in octal and other (e.g. binary) formats 

 

nm list symbols from object (& library) files 

example: 

nm mylib.a | less view symbols in mylib.a, 1 page at a time 

ldd report shared library dependencies  

example: 

ldd myprog.exe view myprog.exe's dependencies 

 

File Properties 

 

file determine file type 

 

touch change file timestamps 

example: 

touch file1   updates access and modification times of  

                     file1 to the present time 

 

chmod change file mode bits 

example:  

chmod a+r file.txt       allow all to read file.txt  

 

chown change file owner and group 

 

md5sum   compute/check MD5 message digest 

 

du estimate file space usage 

example: 

du -sh . summarize (in readable format) total usage of  

               file-tree rooted in current dir  

 

df report file system disk space usage  

example:  

df -h . report usage (including available space) for file  

              system holding current dir 

 

Searching for Things 

 

grep print lines matching a pattern 

examples:  

grep -n 'foo' file.txt  print all lines (prefixing the line  

                                  number) containing 'foo' in file.txt  

grep -i 'foo' *    print all lines containing 'foo' (case  

                                insensitive) from all files in current  

 

find search for files in a directory hierarchy 

examples: 

find . -name test       find all test files in current    

                                  and sub-directories 

find /home -name *.dat   find all .dat files in /home  

                                          and its sub-directories 

find . -name test -exec rm {} \; find and delete all test  

                                files in current and sub-directories 

 

which locate a command  

example:  

which gcc report location of gcc compiler 

  

whoami print effective userid 

 

man an interface on on-line reference manuals 

 

info read Info documents.  

 

? wildcard: matches a single character  

 

* wildcard: matches any sequence of characters 

 

Compressing and Combining  

 

tar archiving utility 

example: 

tar -zcvf archive.tar.gz file1 dir1 dir2   archive file1,  

             dir1, and dir2 into a single file and compress it   

tar -xzf archive.tar.gz unpack compressed archive  

  

gzip compress files  

example:  

gzip file.txt compress file.txt  

 

gunzip expand files 

 

Process Management  

 

top display Linux tasks 

 

kill send a signal to a process.  

 

fg place a job in the foreground  

 

bg place a job in the background 

 

 



For a more comprehensive reference, see PBS Professional 14.2 User’s Guide 
https://www.pbsworks.com/pdfs/PBSUserGuide14.2.pdf 

PBS Pro Cheat Sheet 

 User Commands  Job Submission Options (qsub)  

qsub  submit a job  -P project_name  specifying a project name  

qsub -I  submit an interactive job  -q destination  specifying queue and/or server  

qsub -IX  submit an interactive job with X forwarding  -r value  marking a job as rerunnable or not  

qstat <jobid>  job status  -W depend = list  specifying job dependencies  

qstat -q  print queue information  -W stagein=list stageout=list  input/output file staging  

qhold <jobid>  hold a job  -W sandbox=<value>  staging and execution directory: user's home vs. job-specific   

qrls <jobid>  release a job  -a date_time  deferring execution  

pbsnodes -a  print node information  -c interval  specifying job checkpoint interval  

qstat -B  cluster status  -e path  specifying path for output and error files  

qdel  delete a job   -h   holding a job (delaying execution)  

qalter  alter a PBS job  -J X-Y[:Z}  defining job array  

tracejob <jobid>  print log information about a job  -j join  merging output and error files  

qselect  select PBS batch jobs  -k keep  retaining output and error files on execution host  

  -l resource_list  requesting job resources  

  -M user_list  setting email recipient list  

  -m MailOptions  specifying email notification  

  -N name  specifying a job name  

 Job Monitoring -o path  specifying path for output and error files  

qstat -x   job history  -p priority  setting a job's priority  

qstat -f <jobid>  job status with all information    Environment Variables  

qstat -ans  job status with comments and vnode info  PBS_JOBID  job identifier given by PBS when the job is submitted, created upon execution  

 Deleting Jobs  PBS_JOBNAME  job name given by user, created upon execution.  

qdel <jobid>  kill a job  PBS_NODEFILE  the filename containing a list of vnodes assigned to the job  

qdel -Wforce <jobid>  force kill a job  PBS_O_WORKDIR  
absolute path to directory where qsub is run, value taken from user’s submission 

environment.  

 Requesting Job Resources   TMPDIR  pathname of job’s scratch directory  

-l select=2:ncpus=4   request 2 nodes with 4 cores each   NCPUS  number of threads, defaulting to number of CPUs, on the vnode  

-l select=1:ncpus=4:mem=1gb      1 node with 4 cores and 1GB RAM   OMP_NUM_THREADS  number of threads, defaulting to number of CPUs, on the vnode  

-l walltime=01:00:00       request for 1 hour total wall time  PBS_ARRAY_ID  identifier for job arrays, consists of sequence number 

-l cput=00:30:00              request for 30 minutes CPU time  PBS_ARRAY_INDEX  index number of subjob in job array 

-l place=pack:exclhost    request node to be exclusively allocated  

                                        to the job  
PBS_JOBDIR  pathname of job’s staging and execution directory on the primary execution host  

 

https://www.pbsworks.com/pdfs/PBSUserGuide14.2.pdf

