Student Understanding of Vectors and Coordinate Systems Beyond Cartesian Coordinates in Upper Division Physics Courses

Marlene Vega ${ }^{1}$ and Warren Christensen ${ }^{2}$

Introduction

Understanding of Electricity \& Magnetism in the upper-division requires an extensive integration of calculus concepts with abstract physics concepts. The ability to incorporate the use of vectors in several different coordinate systems is an essential skill in an E\&M course since is used extensively. This study aims to understand how students think about coordinate systems and vectors in non-cartesian coordinate systems.

Research Questions

-What are the difficulties that student have when transitioning into using non-cartesian coordinate systems? - What are the common
misconceptions that students have about vectors and coordinates systems and how does that impact their learning of upper-division physics content, such as Electricity and Magnetism?

Question 1

Consider the motion of a particle in a plane as shown, as it spirals inward toward the origin (circling the drain, perhaps?). For each motion, answer the question given.
For the locations show, draw an arrow in the box to indicate the directions of the following polar coordinate vectors:
Point $\mathrm{A}:$
Point $\mathrm{B}:$
\square

Results

Question 3
Start with the position vector \vec{r} in plane polar coordinates. Determine the radial and tangential (theta) components of velocity in terms of r and θ and derivatives thereof.

Differentiating	$\begin{array}{c}\text { Did not afferentiate } r / \text { or } e_{r} \\ \text { Variables }\end{array}$
$\begin{array}{c}\text { Forgetting variables/symbols or not } \\ \text { in terms of specified variables }\end{array}$	

Did not apply Chain rule/o
Velocity Vector: Incorrect solutions that began with incorrect
$\begin{array}{|c|c|c|}\hline \text { ANSWER } & \text { position vectors } \\ \text { TYPE }\end{array} \quad$ DESCRIPTION $\left.\quad \begin{array}{c}\text { NUMBER } \\ \text { OF }\end{array}\right]$

Future Work

- This work raises questions about how students understand vectors in spherical coordinates and what difficulties they may have that might impact their ability to learn physics We have generated questions that will attempt to probe student understanding of spherical coordinates that we plan to use to collect both student written and interview data

