Understanding of Non-Cartesian Coordinates: Resource Activation in Cylindrical and Spherical Coordinates

## Alden Bradley ${ }^{1}$, Brian Farlow ${ }^{2}$, Warren Christensen ${ }^{2}$

${ }^{1}$ Humboldt State University ${ }^{2}$ North Dakota State University

## Introduction:

As part of a larger effort to develop a more precise mathematical curriculum for upper division physics, we studied physicists at different level's thought processes on different coordinate systems. Prior research posits that students have significant difficulty working both numerically and visually with non-Cartesian coordinate systems, especially the notion that the spatial directions of variables changes depending on time and position. We report findings from one-on-one interviews designed to facilitate subject thought in this area.

## Research Questions:

1. How does upper division physics students' understanding of coordinate system influence their ability to conceptualize and solve physics problems?
2. How does the understanding upper-division physics students have of cylindrical coordinates compare to their understanding of spherical coordinates?

## Methods:

- Developed questions in physical and non-physical contexts involving unit vectors based on previously identified student difficulties
- Think-aloud interviews conducted where students solved questions on a board while being asked additional follow-up questions to further explore reasoning
- Recruited 3 volunteers for interviews: one upper-level physics undergraduate, one $1^{\text {st }}$ year graduate physics student, and one tenured physics professor
- Interviews were video recorded and lasted 45-70 minutes


## Theoretical Framework:

We analyzed these interviews from a Resources Framework (Hammer et al). In the work of Sayre \& Wittman, resources are described as small reusable pieces of thought that make up concepts and arguments. Resources are unconscious cognitive units that students "activate" when framing a problem or concept in a certain way. The way a student frames a problem affects what resources might be activated.

## References

- Hinichss, Brant E."Wirting Position Vectors in 3 .d SSace: A Student Difificulty With Sonerical Unit vectors in

Intermeiare Exal. In In Al Conference Proceedings, 1289:173-76, Al Publishing, 2010 . doi:10.1063/1. 3515190 .
S.vve, Eleanor .,., and Michael C. Wittmann. "Plasticity of Intermediate Mechanics Students' Coordinate

 Lesearch bate. Accessed dulv, 2016.


## Student thinking in cylindrical and spherical coordinates:

Activation of Unit Vector Resources

*David mentions that he is unsure of the magnitude of the $\hat{\theta}$ and $\hat{\phi}$ vectors and that they might be zero.

As explained by Hinrichs, the most likely explanation for these responses is "pattern-matching", i.e. mapping coordinate values onto unit vectors, which works only in Cartesian coordinates. This is further reinforced by the work of Farlow (2016). During the Interview with Kris, he repeatedly said that the angle must be "swept out" from the $x$-axis, which is a conflation of coordinate resources to vector component resources and possible evidence of improper transfer from Cartesian coordinates.

| Works: | $(x, y, z)=x \hat{x}+y \hat{y}+z \hat{z}$ |
| :--- | :--- |
| Do not | $(s, \theta, z) \neq s \hat{s}+\theta \hat{\theta}+z \hat{z}$ |
| work: | $(r, \theta, \phi) \neq r \hat{r}+\theta \hat{\theta}+\phi \hat{\phi}$ |

Connections Between Potential Resources


Kris (Graduate student)

- More durable resources
- Connections are reinforced but not yet concrete


David (Undergraduate student) - Still building connections between resources

- Some resources not yet fully developed


Steve (Physics Faculty)

- Resources are robust throughout interview
- Connections between resources are explicit


## Conclusions:

- Interview subjects had a tendency to utilize Cartesian resources when solving problems in non-Cartesian coordinates - Subjects' resources for Cartesian coordinates were more solid and easily accessible than non-Cartesian coordinate resources
- Subjects transfer Cartesian resources to cylindrical coordinates as has been documented previously with spherical coordinates


## Future Work:

- Further development of math and physics problems that emphasize use of non-Cartesian unit vectors and quantity vectors
- Further explore the use of a Resources and Framing Theoretical Frameworks to our data
- Develop instructional materials to encourage appropriate resource activation

