Conceptual understanding and context: Free energy

Introduction:

- > Context: Question with a biology background assigned in a chemistry classroom.
- \succ Students need prompting to apply context; applications are not seen without guidance^{1,2}. > Students spit back vocabulary and statements verbatim from classes, lectures, notes, and textbooks with no application to context¹.
- Students believe they are making deep connections, but connections are actually shallow and superficial².
- > Science classes teach topics that are alike, but are taught in many different ways. This includes different graphs, terms, and definitions.
- > Students are expected to make connections between disciplines, yet very few classes make an effort to make connections clear for the students.
- > Hypothesis: Students will use context less as they work through worksheet and only when prompted by the question, but will be successful in using the context to guide their answer.

Research Questions:

- 1. When presented with a different discipline context-based question, to what extent do students use both disciplines as they answer the question?
- 2. To what extent do they use both disciplines *successfully*?

WAYNESBURG

Methods:

- > Data was collected in a general chemistry (II) spring semester class.
- > 137 students in groups of 3-4 students (37 groups) to complete a free energy worksheet.
- > Students had just covered the chapter "entropy, free energy, and equilibrium".
- > Students were not taught any information on cellular respiration.
- > Two sources of data:
 - Audio transcripts
 - Written worksheets

Free Energy Worksheet:

Free energy change of a reaction is important in the study of metabolism, because they can tell us whether reactions can supply energy for cellular work. Cellular respiration is represented by the following equation: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$, $\Delta G = -2,870$ kJ/mol.

- a. What is the importance of cellular respiration (a1)? What is the other product of the reaction not included in the equation (a2)?
- How does the entropy of your reactants compare to that of your products? b.
- Do you expect the reaction to be endothermic or exothermic? Why?
- d. Draw an energy level diagram to illustrate your choice in c above.
- e. Using $\Delta G = \Delta H T \Delta S$, prove whether the process is spontaneous or non-spontaneous with reasoning from your understanding of cellular respiration.
- Which species is oxidized in the reaction?

Data Analysis:

5 levels of analysis:

Analyzed as correct or incorrect for each question.

Assessment of conceptual understanding.

Analyzed integration of two content areas – biology and chemistry, as well as transition.

Language fluency (graphs or audio conversations).

Interactions within groups (taking turns, helping each other, arriving at a consensus).

References:

1. Broman, K., & Parchmann, I. (2014). Students' application of chemical concepts when solving chemistry problems in different contexts. Chem. Educ. Res. Pract., 516-529.

Acknowledgements:

National Science Foundation (NSF) for funding the REU program at NDSU

Kristen Wilson¹ and James Nyachwaya² ¹Department of Chemistry; Waynesburg University, Waynesburg, PA

2. Bellocchi, A., King, D. T., & Ritchie, S. M. (2016). Context-based assessment: creating opportunities for resonance between classroom fields and societal fields. International Journal of Science Education, 1-40.

	Implications:
	If students do not have strong grasp of a concept in one discipline, they will stru applying it in a different context.
	It is important for instructors to model integration of ideas across disciplines. Students need opportunities to practice fluency in discipline specific academic la
	Future Research:
1.	Do students actively shift between two disciplines when thinking about a conce be approached differently?
2. 3.	How would students solve a context problem that does not fit neatly into speci To what extent do instructors in given disciplines integrate other disciplines into teaching?

