
Evaluation of Human Error Abstraction Training for 
Professional Software Developers

Cameron Booth, Kent State University
Dr. Gursimran Walia, North Dakota State University

Introduction

Study Design

Goals

Results Discussion

References

Acknowledgements

❖ Develop Human Error Abstraction Training

❖ Evaluate participants ability to perform the most 
basic error abstraction (Planning vs. Execution 
errors)

❖ Improve training for error abstraction

1 Anu, V., Walia, G., & Bradshaw, G. (2017, March). Incorporating Human Error Education 
into Software Engineering Courses via Error-based Inspections. In Proceedings 
of the 2017 ACM SIGCSE Technical Symposium on Computer Science 
Education (pp. 39-44). ACM

2 Doggett, A. M. (2004). A statistical comparison of three root cause analysis tools. Journal 
of Industrial Technology, 20(2), 2-9.

3 Reason, J. (1990). Human error. Cambridge university press.

❖ Material based on work supported by NSF DUE 1560142 and DUE 1852045. Any 
opinions, findings, conclusions, or recommendations expressed in this material are 
those of the authors and do not necessarily reflect the views of NSF.

❖ Thank you to the CiDER REU Faculty and Cohort!

❖ Pre-test performance though correlated, can not be 
used to predict their performance on post-test

❖ While subjects exhibited 58% accuracy (lower than 
expected) during the error abstraction, they rated 
the training instrument effective (Mean = 5.769, Std. 
Dev = 0.815) 

❖ Planning errors were harder to identify when 
compared to the execution errors especially during 
retrospective analysis (after-the-fact)

❖ The highest frequency of suggestions to improve the 
training were to increase the number of examples in 
the training 

❖ Participants also highly rated their understanding of 
human errors (Mean = 5.731, Std. Dev = 0.827)

❖ The accuracy between error types was 55% for 
planning errors; 64% for execution errors. This result 
is similar to findings in psychology literature3

❖ This study is an exploratory one, and further 
research should be done to explore different 
tangents of training that may have and effect

❖ We plan to add more examples and practice faults in 
the training video, as well as evaluate improvements 
in future studies

Average subject performance on post-test was 58%, with a 
Standard Deviation of 11%

Students’ performance on 
Pre-test is Positively 
Correlated (Coefficient of 
0.201) with their 
performance during the 
post-test (p = 0.162). 

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
o

st
-T

e
st

 S
co

re
 (

%
)

Pre-Test Score (%)

POST-TEST VS PRE-TEST SCORES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

E
rr

o
r 

A
b

st
ra

ct
io

n
 A

cc
u

ra
cy

 (
%

)
Subject

SUBJECT PERFORMANCE ON POST-TEST

Human Error Software 
Faults

Software 
Failures

Participants
26 Graduate-Level Computer Science 
Students from North Dakota State 
University

Distribution of time to 
repair software defects

Requirements

82%

Design

13%

Other

4%
Code

1%

4 = Neutral

How would you rate the instructions provided in the error abstraction training video?

How would you rate the practice questions during the error abstraction training?

How would you rate your ability to abstract errors from software faults?

How would you rate your understanding of human errors?

How would rate your abstracted human errors in terms of actual problems that happen 
during the software development?

Training Survey Responses
Note: All Responses are in 
a 7-point Likert Scale


