Collaboration in Research

Blaine Farrell

Goal

Finding the impact of collaboration on an author's rank, what drives an increase in an entity's rank, and the differences in impact between each field of study.

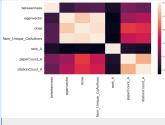
Background

- > Social Network Analysis:
- Nodes each individual research author
- Edges (Ties) co-author relations between researchers
- Importance of Structure similar to covalent bonds in Chemistry
- Academic Social Network
- Networks for academic entities
- > Scholarly Big Data:
- Large amount of data pertaining to academia

Measurements

- ➤ Paper Author Number number of authors in a paper
- > Between the number of shortest paths between nodes that pass through a node
- > Eigenvector measure of influence of a node
- Closeness sum of the length of the shortest paths between the node and all other nodes in the graph
- Number of Unique Co-Authors number of coauthors that an author has worked with
- > Entity Rank probability of an entity being important

Paper Analysis

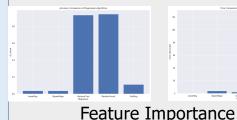

rank_P	1	-0.28	-0.16	0.29	-0.18	-0.22	-0.26		1.)
referenceCount_P	-0.28	1		-0.13		0.15	0.12	-	0.
dtationCount_P	-0.16	0.11	1					ŀ	0.
rank_A	0.29		-0.065	1	-0.23	-0.14	-0.19	ŀ	0.
paperCount_A	-0.18			-0.23	1	0.54		-	0.
dtationCount_A	-0.22				0.54	1		-	0.
Paper_Auth_Num	-0.26				0.084	0.11	1	ŀ	-0
	۵,	Δ.	Δ.	⋖.	4	4	E	_	
	ank_P	onut	atationCount_P	ank_A	paperCount_A	oliationCount_A	ž,		
		0	Qi o		0	Ou Ou	M.		
		referenceCount_P	data		Ē.	ottati	Paper_Auth_Num		

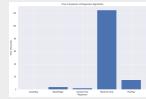
Paper Rank Correlations

rank_P	-0.260685
referenceCount_P	0.123457
citationCount_P	0.041057
rank_A	-0.186841
paperCount_A	0.083905
citationCount_A	0.112847

Field of Study				
Art	0.176302			
Biology	0.351038			
Business	0.301841			
Chemistry	0.357608			
Computer science	0.318231			
Economics	0.253002			
Engineering	0.355423			
science	0.321036			
Geography	0.241203			
Geology	0.376647			
History	0.159304			
Materials science	0.39057			
Mathematics	0.325191			
Medicine	0.352145			
Philosophy	0.12752			
Physics	0.32342			
Political science	0.250773			
Psychology	0.27023			
Carlala	0.040007			

Author Analysis


Author Rank Correlations


ciacionis
-0.046171
0.040615
-0.052977
-0.030472
-0.046171
1.000000
0.025924
-0.007920
-0.174996

Fields of Study				
Art	-0.10828			
Biology	-0.07696			
Business	0.333928			
Chemistry	-0.09585			
Computer science	-0.0187			
Economics	-0.0525			
Engineering	-0.01664			
Environmental science	-0.08433			
Geography	-0.07197			
Geology	-0.1115			
History	-0.03289			
Materials science	-0.01221			
Mathematics	-0.02265			
Medicine	-0.13311			
Philosophy	-0.06857			
Physics	-0.01317			
Political science	0.025074			
Psychology	0.036448			
Sociology	-0.06763			

Machine Learning Algorithms

- Linear Regression uses residuals to optimize a line of best fit for the given data
- Bayesian Ridge conditional model where the mean of a variable is described by a linear combination of other variables
- Decision Tree Regression uses a tree-like model of decisions to either predict the target value
- Random Forest Regression combines the output of multiple decision trees to reach a single result
- Polynomial Regression relationship between the independent & dependent variables is modelled as an nth degree polynomial

