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Implementation

Swarm intelligence (Sl) describes a collection of models that imitate the behav-
lor of natural phenomena such as birds or ants. Individual entities all act upon
the same principles within a group, responding to others in the group and their
environment to swarm to a best solution. This behavior is de-centralized and self-
organized.

The Firefly Algorithm (FA) [2] is a swarm intelligence algorithm modeled after the
flashing light emitted by fireflies. A firefly is most attracted to the most intense
light they observe. An intensity of another firefly is inversely proportional to the
distance, and proportional to the brightness of the firefly.

Algorithm 1 Firefly Algorithm

1: Objective function f(z), == (zy,..24)7

2. Generate initial population of fireflies x; (i = 1, 2, ..., n)
3: Light intensity I; at r; is determined by [{x;)

4: Define light absorption coefficient ~

5: while ¢ < MaxGeneration do

i for i = 1 to nall fireflies do

T for j = 1 to nall fire flies do

8 if I; = I; then

9 Move firefly i towards 7 in d-dimension

10: Attractiveness varies with distance r via exp[—r~]
11: Evaluate new solutions and update light intensity
12: end if

13: end for

14: end for

15: Hank the fireflies and find the current best
16: end while
17: Postprocess results and visualization

Fig. 1: Big fancy graphic.

Apache Spark

On large scales, many methods of processing data are either computationally
expensive or insufficient. Apache Spark is a “multi-language engine for executing
data engineering, data science, and machine learning on single-node machines
or clusters."[Spark] Spark utilizes parallel processing to segment programs into
sub-tasks, and run these sub-tasks simultaneously.

A key feature of Spark is the Resilient Distributed Dataset (RDD). An RDD is a
“collection of elements partitioned across the nodes of the cluster than can be
operated on in parallel." An RDD can be created by parallelizing data in the driver
function. In our experiments we utilize an RDD to parallelize elements of the FA.

Worker Node

Executor | Cache

Driver Program ﬁ Task || Task
| % g

SparkContext 4—» Cluster Manager ‘

| Worker Node l
\

Executor | Cache

P | Task || Task

Fig. 2: Apache Spark Framework [1]

We implemented four variations of driver programs that ran the Firefly Algorithm in parallel
using Apache Spark. Each program measures time from the beginning of the driver program
to the end, including pre-processing data and measuring accuracy.

1. Parallel Data Python program that creates RDD from data.

2. Parallel Particles Python program that creates RDD from particles initialized outside
of FA.

3. Measured Execution Time Instead of measuring time of entire driver function, only
measures parallel parts.

4. Java ldentical to program 1, but in Java.

Algorithm 2 Driver Program

Begin spark session

Read data

Split data into X and y

Transform y into integer values

Standard scale X

rdd = sc.parallelize()

weights = rdd.mapPartitions(lambda x: firefly(x)).collect()
maodel = avg(weights)

Fig. 3: Driver Program Pseudo Code

The two metrics we utilized to measure scalability were speedup and scaleup. [Grammal].
Speedup measures the difference in time of as the number of nodes are increased.
T
speedup = -1 (1)

n
where 17 is the time it takes for an algorithm to be run using one node, and 7, is the time it

takes for an algorithm to be run using n nodes.
Scaleup measures the simultaneous increase in data size and nodes by the same ratio.

T
T SN (2)
Rsn
where Ty, is the running time for data size s with n nodes and T, is the running time for
data size R xn and R *x n nodes.
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