CLASSIFICATION USING SPARK-ENABLED SWARM INTELLIGENCE ALGORITHMS

Firefly Algorithm

Kendrick Dahlin
North Dakota State University

Implementation

Swarm intelligence (Sl) describes a collection of models that imitate the behav-
lor of natural phenomena such as birds or ants. Individual entities all act upon
the same principles within a group, responding to others in the group and their
environment to swarm to a best solution. This behavior is de-centralized and self-
organized.

The Firefly Algorithm (FA) [2] is a swarm intelligence algorithm modeled after the
flashing light emitted by fireflies. A firefly is most attracted to the most intense
light they observe. An intensity of another firefly is inversely proportional to the
distance, and proportional to the brightness of the firefly.

Algorithm 1 Firefly Algorithm

1: Objective function f(z), == (zy,..24)7

2. Generate initial population of fireflies x; (i = 1, 2, ..., n)
3: Light intensity I; at r; is determined by [{x;)

4: Define light absorption coefficient ~

5: while ¢ < MaxGeneration do

i for i = 1 to nall fireflies do

T for j = 1 to nall fire flies do

8 if I; = I; then

9 Move firefly i towards 7 in d-dimension

10: Attractiveness varies with distance r via exp[—r~]
11: Evaluate new solutions and update light intensity
12: end if

13: end for

14: end for

15: Hank the fireflies and find the current best
16: end while
17: Postprocess results and visualization

Fig. 1: Big fancy graphic.

Apache Spark

On large scales, many methods of processing data are either computationally
expensive or insufficient. Apache Spark is a “multi-language engine for executing
data engineering, data science, and machine learning on single-node machines
or clusters."[Spark] Spark utilizes parallel processing to segment programs into
sub-tasks, and run these sub-tasks simultaneously.

A key feature of Spark is the Resilient Distributed Dataset (RDD). An RDD is a
“collection of elements partitioned across the nodes of the cluster than can be
operated on in parallel." An RDD can be created by parallelizing data in the driver
function. In our experiments we utilize an RDD to parallelize elements of the FA.

Worker Node

Executor | Cache

Driver Program ﬁ Task || Task
| % g

SparkContext 4—» Cluster Manager ‘

| Worker Node l
\

Executor | Cache

P | Task || Task

Fig. 2: Apache Spark Framework [1]

We implemented four variations of driver programs that ran the Firefly Algorithm in parallel
using Apache Spark. Each program measures time from the beginning of the driver program
to the end, including pre-processing data and measuring accuracy.

1. Parallel Data Python program that creates RDD from data.

2. Parallel Particles Python program that creates RDD from particles initialized outside
of FA.

3. Measured Execution Time Instead of measuring time of entire driver function, only
measures parallel parts.

4. Java ldentical to program 1, but in Java.

Algorithm 2 Driver Program

Begin spark session

Read data

Split data into X and y

Transform y into integer values

Standard scale X

rdd = sc.parallelize()

weights = rdd.mapPartitions(lambda x: firefly(x)).collect()
maodel = avg(weights)

Fig. 3: Driver Program Pseudo Code

The two metrics we utilized to measure scalability were speedup and scaleup. [Grammal].
Speedup measures the difference in time of as the number of nodes are increased.
T
speedup = -1 (1)

n
where 17 is the time it takes for an algorithm to be run using one node, and 7, is the time it

takes for an algorithm to be run using n nodes.
Scaleup measures the simultaneous increase in data size and nodes by the same ratio.

T
T SN (2)
Rsn
where Ty, is the running time for data size s with n nodes and T, is the running time for
data size R xn and R *x n nodes.

scaleup =

Splic Data Pregram Bum Hims St Particles Program Bun [inee

Diata Sizes 207 4 Daka SZes
00 - —a— Lkala size 1006 —— Data size 1000
—— Lhala =ize 11040 —— Dala sioe 1100
== Dala size 1203 =@ [Data cize 1200
—a~ Data size 1304 GO0 —#- Datasize 1300 |
S0 #- Data size 1403 #— Data 5ize 1400
=& [ata size 1500 =& Dafta size 1500
#— [ata 5178 1600 501 4 #— Data 5 1600
g =a0 —a— [ata size 17040 E —a— Data siee 1700
= Dsata s17e 18040 = Data sire 1EID
3 t:'. —8— Data size 1903 & —8— Data size 190
3 ' —&— Data size 2000 g 4 —&— Data size 2000
5400]
i i
i
L} Ju<
=00 ',L
S~ —F — == .
i ——0 e ——— _':!IE 200 - — -_._-—-——l_ l
2040 — = e 1
=t = -
:i. :' 1I-3| ?IB = 1 14 1:5 56
Murnber of Procuswors Humbsr of Frocessers
Execution Tirme F'I'I:IgI'EII'I'I Run Time J-EI'-'EI Hun Time
9 1 .
[rala Sices Dala &ores
== [kata si1ze 1001 1651 - =g= Data sue 100
) #— [kata size 1104 i #— Data size 1100
—8— [kala size 1204 i Y —8— Data size 1200
—— Lsld =ize 1300 140 \ —8— Dgla sige 1300
m —8— Lkald =ize 14040 —8— [ala sige 1900
—@— Drala zize 1500 | A —#— Data size 1500
#— [eata size 1600 f — —@= Dalta giza 1600
g g #— Data size 1700 u 1a , /ah _ &~ Data size 1700
= Data 31ze 1800 = , M Data 5128 1800
E —a— [eata s17e 1900 '|;|' { M‘x& —— Data sipg 1.0
3 s —a— Data size 2004 o w4 e —8— Data sive 7000 -
g =y —
w . “ — T
ao 4 " an — .-h-h_”_._h'“?-._.____... .
- . = T
.__,'_,—" —_— —— -\""\-\.___ -_\"'“.
— e
- ":l-_,__=,:_:‘
:= L} ———______1
20 e
: ! 4 1 : |
1 14 Fi T 1 T 14 Er-] ah
Mumner of Procassars Mumber of Processors

| would like to thank my research advisor Dr. Simone Ludwig, and mentor for

L6

Results Cont.

Splt Data Pregram Speedup

—— [ata size 10040

—#— [ata size 1104

—8— [Data size 1204
—8— D&l size 1304
—— Lhald size 1404
—l— [hala mize 1504
@ Dala size 1600
@ [hala size 1700
Drata size 1800

—a— [ata size 1900
—a— LAl mige 2000

i 4 Data Sizes
i —a— Data size 1000
.'I] —a— Data 5170 1104
—a— [kaka 517 12040
—i— [aka size 1300 \'
—8— [ala size 1404
—i#— [ata size 1504
—#— Lhala zize 1600
—l— Lhald mize 1500
Ceala =ize 1000

Fig.

Splic Data Program Scale-Uz

== Scal=-up

Ewecution Time Program Scale-Up

L0+

G

4

LE

—8— Scalzup

Mumber of Processing Lnits

Split Farbicles Program Spesdup

L)

—&— Data sire 1000
—— Data sire 11400]
—&— Data size 1200
—8— Data size 1300
—8— Dala sige 1400
—8— Dala size 1500 |
#— Data size 1600
#— Data size 1700
Data size 1800
—a— Data sira 190
—a— Dala sise 2000 <

1 T 14 28 =11}
Humber of Frucessers

Java Program Spesdup

T =@ [Data size 1100

1 —e= Data size 1500

Jdala Huoes A
== [iata size 1000 i

—&— DMata size 1200 /
—— Lala size 1300 .

—#— [ala size 1900 o~

e Data size 1600 f,-r
o Data size 1700
Data size 180D

: Speedup

Spht Particles Program Scale-Up

—g— Scdle-up

Java Pregram Scale-Up

== Sraleup

Fig. 6: Scaleup

Acknowledgements

this project, Aaron Misquith.

[1]

Apache Spark. Spark Overview. Accessed: 2024-07-25. 2024. URL: https : / / spark .

References

apache.org/docs/2.1.0/.

2]

Xin-She Yang. “Firefly Algorithms for Multimodal Optimization”. In: 2010.

