Development of a Rubric to Assess the Effects of the Types of Vector Operations and Alignments on Student Errors

Kristen Rodenhausen ${ }^{1}$, Nekeisha Johnson², John B. Buncher² ${ }^{1}$ University of Nebraska Omaha, ${ }^{2}$ North Dakota State University

Introduction

Previous research has shown that students have difficulties performing vector addition and subtraction After a full semester of instruction, more than half of the students in introductory algebra-based physics were unable to execute 2D vector addition [1]
Students are consistent with the errors they make based on problem type [2]
We elaborate on previous research by analyzing freeresponse student work from a large population of students

Research question

Do the types of vector arithmetic problems given to students influence the errors they make?

Solving for change in momentum
$\Delta \vec{p}=\overrightarrow{p_{f}}-\overrightarrow{p_{i}}$

We developed a rubric to categorize the errors students make when executing vector arithmetic
The rubric consists of 27 categories
We categorized student responses in sets of 20 Population included $\mathrm{N}=122$ students enrolled in Physics 212 during the Spring 2019 semester
We have analyzed $\mathrm{N}=40$ students using the rubric Students were given an 8 question, free-response worksheet in class at the end of the semester Upon completion, students were given extra credit for participation
The worksheet consisted of 4 vector addition and 4 vector subtraction problems
For both operations, 4 various alignments were presented: aligned, x-opposed, y-opposed, and opposed

Results

- 5 out of 40 students (13\%) changed their chosen vector arrangement method at least once

Provided Resultant vector (not ambiguous)	Provided Resultant line (ambiguous)	Did not provide any Resultant
86%	5.6%	8.4%

Fig. 1 : Percent of students that presented at least a single resultant "line", organized by vector operation and alignment.

Almost all students provided at least a resultant "line".

Fig. 3 : Percent of students that were not precise with the magnitude and direction of the resultant vector but were generally correct.

More students were able to be generally correct for the addition set of problems

Fig. 2 : Percent of students that presented the correct resultant vector, organized by vector operation and alignment.

Students were more successful performing vector addition than subtraction

fig. 4 : Percent of students that "completed-the loop", organized by vector operation and alignment.

Overall, subtraction had higher rates of students that "Completed-the-Loop".

Fig. 5 : Various methods students used to flip vector B for subtraction problems and the percent of students that performed each.

Of the students that attempted to flip vector B, most were correct

Student Samples

No resultant present
"Split-the-Difference"

"Complete-the-Loop"

Conclusions

Students tended to be consistent with their chosen method, which supports previous research claims
As expected, subtraction is more difficult for students than addition
"Completing-the-loop" is a prevalent and consistent error
We suspect that there were significantly fewer students that "completed-the-loop" for the Opposed-Subtraction problem because fewer students drew a resultant vector for this specific question
Students reflect vector B about an axis more when it is presented in the direction of the first quadrant
The rubric successfully extracts the information we are seeking to assess

Future Work

Finish coding the rest of the data sets, $\mathrm{N}=40$ completed out of total $N=122$
Validate interrater reliability of the rubric Compare results with the multiple-choice analysis Check if free-response analysis corroborates conclusions from multiple-choice analysis

1] Nguyen and Meltzer, Initial understanding of vector concepts among students in introductory physics courses
[2] Johnson and Buncher, Examining consistency of student errors in vector operations using module analysis

Material based on work supported by NSF DUE 1560142 and DUE 1852045. Any opinions, findings, conclusions, or authors and do not necessarily reflect the views of NSF.

