Using Factor Analysis to Explore the Structure of a Vector Assessment

Mateo Cacheiro¹, John B. Buncher², Nekeisha Johnson², Aliza Jacobs ${ }^{3}$
${ }^{1}$ Tennessee Technological University, ${ }^{2}$ North Dakota State University, ${ }^{3}$ University of Maryland NDSU NORTHRAVOTITTY

Why Examine Vector Assessment

Insufficient vector algebra skills are often linked to difficulties in introductory physics.
Vector addition is well studied; yet there is little research on student abilities in vector subtraction
\square We are developing a tool to assess both vector addition and subtraction.

Research Question:

Can exploratory and confirmatory factor analysis (EFA and CFA) identify the factor structure and generate a model of what concepts our vector assessment is capturing?

What is Factor Analysis

Methods

\square Multiple choice assessment was given online to algebra-based introductory physics courses at NDSU.
Data was collected over the span of 3 years.
\square Assessment includes 16 multiple choice questions on vector addition and subtraction (8 each).
A total of $\mathrm{N}=511$ Students, N_EFA $=248 \quad \mathrm{~N}$ _CFA $=256$.
\square Student responses were treated at dichotomous data. $1=$ correct 0 = incorrect.
\square We used WLS estimation for the EFA, DWLS during the CFA, and used the Tetrachoric correlation matrix because the data is categorical. Finally parallel analysis (PA) was used to determine number of factors $=2$

| Question | Q1 | Q 2 | Q 3 | Q 4 | Q 5 | Q 6 | Q 7 | Q 8 | Q 9 | Q 10 | Q 11 | Q 12 | Q 13 | Q 14 | Q 15 | Q 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllllllll}\text { Factor } 1 & 0.830 & 0.819 & 0.515 & 0.623 & 0.723 & 0.821 & 0.501 & 0.625 & 0.389 & 0.166 & 0.09 & 0.207 & 0.124 & -0.12 & 0.229\end{array} 0.053$

| Factor 2 | -0.015 | -0.24 | 0.386 | 0.263 | 0.142 | 0.03 | 0.359 | 0.242 | 0.476 | 0.686 | 0.683 | 0.696 | 0.677 | 1.023 | 0.667 | 0.930 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CFA 2: Orientation

Acknowledgements

We would like to give a special thanks to Dan Bauer and Patrick Curran at Center Stat for supplying an intro course on SEMs. The course provided a conceptual understanding and groundwork for the methods used in the project. We would also like to thank the CiDER REU Cohort and Pollination Nation
REU Cohort. Material based on work suphorted by NSF DUE 1852045 . Any opinions, findings, onclusins, EU Cohort. Material based on work supported by NF DUE 1852045 . Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

Results \& Discussion

Statistic	$\chi^{2} / D F$	TLI	RMSEA	CFI	SRMR	Covariance	Eigenvalues Factor(1:2)	$\frac{\mathrm{CFA} 2}{\mathrm{AL}}$	$\begin{array}{\|l\|} \hline \text { EV } \\ \hline 4.15 \\ \hline \end{array}$
EFA	$35.51 \gg 2$	0.692 << 0.9	$0.207>0.2$			0.792	5.76:4.98	X - Opp	0.05
CFA 1	$1.11<2$	$0.998 \gg 0.9$	$0.021 \ll 0.2$	$0.998 \gg 0.9$	0.071	0.881	0.71:0.12	Y - Opp	-0.01
CFA 2	$1.31<2$	$0.995 \gg 0.9$	$0.035 \ll 0.2$	$0.996 \gg 0.9$	0.075	See above	See right	Opp	-0.19

\square PA suggests 2 factors.
\square EFA results suggest an +/- split. EFA statistical values are not significant
$\square 2^{\text {nd }}$ CFA is not a possible model.
All statistical values are significant; yet covariance matrix in not positive definite. Additionally, the covariances between all factors in the model are extremely high.
The $1^{\text {st }}$ CFA is a possible factor model. The statistics of the $1^{\text {st }}$ CFA are all significant.
\square Our assessment tests two separate topics as suspected. More importantly these two topics are vector addition and subtraction.
\square We would also like to report our potential concerns with the first CFA model. It is unexpected that the CFA with fewer parameters would produce a closer fitting model. We hope to investigate this concern more to validate the conclusions of the study.
\square We are not confident in the extraction of eigenvalues from the CFA models. We plan to investigate this further.

