
1.  Introduction
Ice coverage has been recognized as an important hydraulic aspect of alluvial channels for a long time (Guo 
et al., 2017). The role of river ice in ecological (Prowse, 2001b), morphological (Ettema, 2002), and hydraulic 
aspects (Prowse, 2001a) have been well recognized. Recent evidence suggests that it plays an important role in 
regulating large-scale turbulent structures (Biron et al., 2019) and ultimately channel lateral migration (Turcotte 
et al., 2011). Under the impact of climate change, the loss of river ice (Yang et al., 2020) is expected to lead to 
detrimental consequences for aquatic environments (Thellman et al., 2021). Despite its importance, our under-
standing of icy flows is rather limited because of challenges related to field measurements. The goal of this study 
is to examine the impacts of ice coverage on flow profiles in a meandering bend, a common feature of the riverine 
system.

Field measurement of turbulent flows in rivers is challenging even under open-surface condition (Petrie 
et  al.,  2013), especially when secondary flow is observed (Moradi et  al.,  2019). The measurement under ice 
coverage poses a different set of safety and accuracy issues when instruments are placed beneath the ice layer 
(Biron et al., 2019). Under a fully frozen surface, it is necessary to drill holes across the ice layer in order to make 
the sensor submerged. In particular, it is challenging to obtain reliable data close to the ice layer as well as the 
river bed (Attar & Li, 2013).

As the top surface is frozen during winter (Ettema, 2002), it provides an additional layer of roughness in addition 
to the river bed. The presence of the ice coverage alters the spatial distribution of the entire velocity profile. 
Ice coverage creates a significant difference between the physical characteristics of surface and bed, forming 
an asymmetrical flow configuration (Chen et al., 2018; Parthasarathy & Muste, 1994). The asymmetrical flow 

Abstract  We investigate the impact of ice coverage on flow and bed shear stress profiles in a river 
bend. We perform field measurements using Acoustic Doppler Current Profiler in a bend of the Red River, 
North Dakota, the United States. Field campaigns were carried out under both open-surface and ice-covered 
conditions in 2020 and 2021. Our results show that the time-averaged velocity profile follows closely the 
quartic solution (Guo et al., 2017, under full ice coverage. While the flow profile under open-surface condition 
follows closely the logarithmic law near the bed, it is challenging to identify the logarithmic layers in our 
measured data under ice-covered condition. Our results also show that the impact of ice coverage is most 
significant near both banks where the vertical velocity profile is modified significantly due to the interaction 
of turbulent flows with the ice cover. Our results suggest that the bend curvature and ice coverage both have 
significant impacts on the velocity profile as well as the distribution of the bed shear stresses. Our findings 
provide new insights on sediment transport processes of ice-covered rivers, especially during the break-up 
period when the surface coverage changes rapidly.

Plain Language Summary  As climate change continues, shorter winter is expected to result 
in a less number of ice-covered days for natural streams. While ice cover has been linked to a variety of 
eco-hydraulic issues, it is unclear on the relationship between ice coverage and changes in river hydrodynamics. 
Thus the understanding of ice-covered flows has become a critical issue to predict morphological and 
ecological conditions of river flows in cold regions. This study aims to identify the impact of ice by conducting 
field-scale observations and comparing with analytical models. Our results show that the ice layer alters flow 
patterns beneath it, which leads to active areas near banks. This new finding suggests that ice cover might play 
a significant role in sediment transport near banks in Spring when its extension can change sharply in a short 
amount of time.
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configuration has been well studied under laboratory conditions (Hanjalić & Launder, 1972) in which the aspect 
ratio (width/depth) has been shown to control the overall flow dynamics.

There has been no universal law for asymmetrical flow configuration in rivers. In contrast to the logarithmic 
law of the open-surface case, it is unclear on the form of the time-averaged velocity profile in the asymmetri-
cal configuration (Guo et al., 2017). There exists a maximum velocity, which typically does not locate on the 
symmetry plane (Tatinclaux & Gogus, 1983; Tsai & Ettema, 1994b; Urroz & Ettema, 1994b). As the shape of 
the velocity profile is changed under ice-covered condition, its gradient near the river bed is different from the 
open-surface counterpart (Guo et al., 2017). Therefore, the hydraulics of ice-covered flows differs significantly 
(Ettema, 2002; Prowse, 2001a) from the open-surface condition.

The main structure of the velocity profile can be described in Figure 1. We denote z as the distance from a 
measured point to the river bed surface as shown Figure 1a. The vertical distance corresponding to the maxi-
mum velocity umax is zmax. Under ice-covered condition, zmax separates the entire profiles into: (a) the ice layer 
(hi); and (b) the bed layer (hb) as shown in Figure 1b. Thus the total depth H = hi + hb. Note that the local depth 
of a measured point is h = H − z. The stationary boundary condition on the ice and the bed surface dictate that 
u(z = 0) = u(z = H) = 0.

Under open-surface condition, one fundamental quantity that characterizes velocity profile near the river bed 
(Wilcock, 1996) is the friction velocity 𝐴𝐴

(

𝑢𝑢
⋆

𝑏𝑏

)

 . It can be linked to the bed shear stress as 𝐴𝐴 𝐴𝐴𝑏𝑏 = 𝜌𝜌
(

𝑢𝑢
⋆

𝑏𝑏

)2 , which is 
needed to determine sediment transport processes (Chaudhry, 2007). Therefore, the evaluation of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and τb are 

frequently required in river hydraulics.

Direct measurement of the bed shear stress τb or shear velocity 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 in rivers is not feasible (Petrie & Diplas, 2016) 

with the current technologies. Thus many methods have been proposed (Biron et al., 1998) to calculate 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 indi-

rectly from velocity measurements. Since the flow in the alluvial channel is characterized by high Reynolds 
numbers, turbulent statistics are typically involved in the calculation of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 (A. Sukhodolov et  al.,  1999): (a) 

Turbulent Kinetic Energy (TKE) (Soulsby, 1981), (b) Reynolds stress, and (c) Wall similarity methods (Hurther 
& Lemmin, 2000; López & García, 1999). These methods are highly accurate and they do not assume a predeter-
mined velocity profile. However, they require the full calculation of the Reynolds stress tensor. Therefore, precise 
measurement of turbulent fluctuation u′ is required along the water column pointwisely. For a small or medium 
river (A. Sukhodolov et al., 1999), it is a tedious task to perform this type of measurement along a cross-section in 
a reasonable amount of time because the sensor needs to traverse systematically point-to-point. For a large river, it 
is not feasible to carry out such a field campaign due to the potential change of the hydrological conditions (water 
level and discharge), which might alter completely the turbulent regime. Thus these methods are not widely used 
under field conditions.

The most common method to determine 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 in practice is to utilize the time-averaged velocity profile to 

determine 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 via the assumption of a logarithmic layer close to the river bed (Biron et  al.,  1998; Petrie & 

Diplas, 2016; Petrie et al., 2013). The main assumption is that there exists an equilibrium layer near the river 
bed at which the turbulence production and dissipation balances out to give rise to the logarithmic law. In 

Figure 1.  The differences in flow configuration under (a) open-surface condition, and (b) ice-covered condition. Under 
open-surface condition, the total depth H = h + z is separated into two portions: (i) the distance to the river bed (z) of a 
measured point; and (ii) its local depth (h). Under ice-covered condition, two logarithmic layers are assumed near the ice layer 
(δi) and the river bed (δb). The zmax is the position of the maximum velocity (umax) from the river bed.
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zero pressure gradient, the universal law of the wall has been verified in many laboratories and numerical 
simulations (Volino & Schultz,  2018). This logarithmic method does not require the acquisition of highly 
resolved turbulent statistics (Biron et  al.,  1998) and thus this procedure can be applied for many types of 
measurement devices including the popular Acoustic Doppler Current Profiler (ADCP) (Muste, Yu, Pratt, 
& Abraham,  2004; Muste, Yu, & Spasojevic,  2004; Petrie & Diplas,  2016). Since ADCP can provide the 
entire velocity profile in the water column in one measurement, the sensor is kept afloat at a stationary loca-
tion (fixed-vessel method) (Petrie & Diplas,  2016) for a period, which can vary from 1 to 25  min (Petrie 
et al., 2013). The time-averaged velocity profile is then fitted with the logarithmic law to find 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 . Note that due 

to the spatial averaging nature, the ADCP data cannot be represented using a prefixed confidence limit (Petrie 
& Diplas, 2016; Petrie et al., 2013).

In order to compute shear velocities for ice-covered flows (A. Sukhodolov et al., 1999), it has been hypothesized 
(two-layer hypothesis) that there exist three regions: (a) two logarithmic layers near the river bed and the ice 
surface; and (b) the mixing (core) region at the mid-depth as shown in Figure 1b. Here, two logarithmic layers 
are assumed to locate near the top (ice) and bottom (river bed) surfaces. Using the two-layer hypothesis, the 
logarithmic law method is typically applied (Ghareh Aghaji Zare et al., 2016) separately within the ice layer (δi) 
and the bed layer (δb) as shown in Figure 1b. To resolve the logarithmic layers, it is required that measured data 
must be carried out at locations near the ice layer and the river bed (A. Sukhodolov et al., 1999). However, the 
validity of the two-layer hypothesis has been questioned (Urroz & Ettema, 1994a) in meandering rivers since 
the secondary flows (Demers et al., 2011) might alter the local velocity profiles. In addition, it has been pointed 
out (Guo et al., 2017) that the double log-law profile is not physical as it is not possible to satisfy the continuity 
condition at the maximum velocity location umax. This challenge motivates the use of the entire velocity profile 
(Attar & Li, 2012) to derive 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 in ice-covered flows. This practice alleviates the requirement of resolving 

the logarithmic layer but it needs an assumption on the form of velocity distribution, which is generally not known 
under the field condition. To provide a physical argument for assuming the velocity profile (Guo et al., 2017), 
have derived an analytical form of velocity distribution along the water column using an assumption on the 
distribution of eddy viscosity. However, the accuracy and reliability of this method in estimating 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 (Guo 

et al., 2017; F. Wang et al., 2020) has not been examined in river bends.

As the logarithmic layer is considered valid within a thickness of (δb) in the bed layer as elaborated in Figure 1b, 
it is common to use wall units to non-dimensionalize hydraulic quantities. In this approach, 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and ν are used 

to form the velocity and viscous length scales. The friction Reynolds number based on shear velocity 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 , the 
logarithmic layer thickness δb, the vertical distance from the river bed z, and the non-dimensional velocity profile 
u +(z +) are expressed in terms of wall units as:

���� =
��⋆�
�

�+� =
��⋆�
�

�+ =
��⋆�
�

�+ (�+) =
�(�)
�⋆�

� (1)

Under laboratory condition, the logarithmic layer 𝐴𝐴 𝐴𝐴
+

𝑏𝑏
 can extend (Guo et al., 2017) up to z + = 10 4.

A similar procedure can be carried out to define the shear velocity for the ice layer as seen in Figure 1b with the 
shear velocity 𝐴𝐴

(

𝑢𝑢
⋆

𝑖𝑖

)

 :

���� =
��⋆�
�

�+� =
���⋆�
�

ℎ+ =
ℎ�⋆�
�

�+ (ℎ+) =
�(ℎ)
�⋆�

� (2)
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Under open-surface condition, the existence of the logarithmic layer has been 
assumed to follow the theoretical estimate (Gao et al., 2020) as:

2.6𝑅𝑅𝑅𝑅
1∕2
𝜏𝜏 ≤ 𝑧𝑧

+
≤ 0.15𝑅𝑅𝑅𝑅𝜏𝜏� (3)

The upper bound (thickness) for the logarithmic layer is thus: 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= 0.15𝑅𝑅𝑅𝑅𝜏𝜏 .

To date, there has been no report on the thickness of the logarithmic layer 
under ice-covered condition.

As mentioned above, one important factor affecting the distribution of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 is 

the effect of secondary flows (Petrie & Diplas,  2016). Laboratory experi-
ments (Anwar, 1986) have shown that the vertical velocity profile deviates 
from the logarithmic law in the bend region. In complex three-dimensional 
flows, it is even not possible to derive 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 using the logarithmic hypothesis 

(Biron et al., 2004). The distribution of the bed shear stress (τb) and thus the 
shear velocity 𝐴𝐴

(

𝑢𝑢
⋆

𝑏𝑏

)

 has been shown to be dependent on the local secondary 
flows (Bathurst et al., 1979; Stoesser et al., 2010). Since the understanding 
of secondary flows under ice-covered condition is limited, it is unclear how 
ice cover impacts the velocity and shear velocity distribution in meandering 
rivers. In a laboratory experiment (Urroz & Ettema, 1994a) has shown that 
there exists two counter-rotating vortices (double-stacked cell) in the second-

ary flow pattern of an ice-covered bend. These two vortices are thought to belong to a complex three-dimensional 
structure of the bend flow. Field measurements of (Demers et al., 2011) suggests that this double-stacked cell 
appears near the bend entrance but diminishes rapidly toward a single helical cell at the bend apex.

The main goal of the current study is to examine the impact of ice coverage on the vertical flow profile and 
its implication on the cross-stream distribution of bed shear stress. Field works are carried out under both 
open-surface and ice-covered conditions to provide the vertical velocity profiles. Whenever appropriate, the 
logarithmic law is invoked to derive 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 . On the other hand, the applicability of the quartic solution (Guo 

et al., 2017) will be examined using our measured data set. The results from these methods are compared to 
evaluate their compatibility in providing accurate value of shear velocities. The three-dimensional structures of 
flows under ice coverage are also discussed to identify locations where complex flow patterns might occur and 
limit the use of analytical methods.

2.  Methodology
2.1.  Study Area

Red River is known as a low-gradient river with its regular basis Spring floods. The channel bed of the Red River 
is mostly categorized as clay and fine silt (Weiss et al., 2015). A 2-km long section of the Red River near Lind-
enwood Park in Fargo, North Dakota was decided as the study field (Figure 2a). A pedestrian bridge located in 
the middle of the apex served as the reference location (Figures 2a and 2b). At the end of the reach, there exists 
a United States Geological Survey (USGS) station (USGS FARGO 09020104) at the gage elevation of 262.68 m 
above the North American Vertical Datum (NAVD88).

2.2.  Measurement Methodologies

Following the suggestion of (A. N. Sukhodolov, 2012; A. Sukhodolov et al., 1999), the fixed-vessel (FV) method 
(Petrie et al., 2013) was used for this study. The Acoustic Doppler Current Profiler (ADCP), Sontek M9, was 
used to measure the velocity components and bathymetry under the SmartPulse mode of 1 MHz. Note that the 
compass calibration must be carried out prior to each measurement. In our measurement, the blank distance was 
set to be 0.05 m. The measured bin was adjusted automatically and varied from 0.02 to 0.06 m depending on the 
total depth H (Hmax ≈ 4.1 m). Bin size at each vertical is monitored in the entire time series. Any time instances 
that have changes in the value of bin size are removed from the calculation. The signal-to-noise ratio (SNR) of 
all measurements were monitored online during the campaigns and also examined after the acquisition to check 
their reliability to avoid beam separation. The presence of signal interference near the river bed (z ≤ 30 cm) was 

Figure 2.  The study area and the measurement cross-sections. (a) The area of 
interest at the apex of a bend, and the location of cross-section Ie. The flow is 
in the North direction. (b) Under open-surface condition, the ADCP M9 sensor 
is deployed near the pedestrian bridge with the fixed-vessel methodology 
in five measurement days Oa, Ob, Oc, Od, and Oe (see Table 1). On each 
measurement day, the M9 is stationed in a number of vertical locations across 
the bridge as shown in Table 1.
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significant, thus the SNR was monitored closely in this region. If the SNRs from four different sensors were 
different from each other by 20 dB, the data points were omitted from the calculations.

Under open-surface condition, only one cross-section was chosen at the bridge location (see Figure 2a) (O) since 
it was a well-defined cross-section (red line). Measurements under open-surface condition were carried out on 
five measurement campaigns: (a) 2 October 2020 (Oa), (b) 4 October 2020 (Ob), (c) 22 June 2021 (Oc), (d) 24 
June 2021 (Od), and (e) 30 June 2021 (Oe). The M9 was attached to a Sontek Hydroboat as shown in Figure 2b. 
The fixed-vessel deployment technique was implemented by taking advantage of the pedestrian bridge. The 
location of the sensor (M9) was monitored both using the on-board GPS as well as the marked locations in the 

bridge section. As the HydroBoat is attached to  the pedestrian bridge, its 
lateral motion is kept minimal. Our on-board GPS data shows a variation of 
0.35 m in the lateral position of the boat, which is at the accuracy limit of the 
GPS device. At each vertical location, the M9 was kept stationary for at least 
600 s. The value of (ℓ) indicated the distance from the outer bank along the 
horizontal axis X as shown in Figure 4a. The details of measurements and 
their associate discharges are shown in Table 1.

Under ice-covered condition, measurements were conducted by opening 
ice holes (Figure 3b). The number of opened ice holes varied from 6 to 8 
holes depending on the cross-section. Locations of the ice holes were meas-
ured from the outer (left) bank. In order to probe the three-dimensional 
flow structures at this location, four separate cross-sections were chosen 
for measurements to elucidate the three-dimensional flow structures: Ia (19 
February 2021), Ib (20 February 2021), Ic (21 February 2021), and Id (21 
February 2021). These cross-sections were separated by a distance of 6.1 m 
along the North (Y) direction. To avoid bias in the measurement, a separate 
cross-section Ie (21 February 2021) at the bend apex, which was 310 m away 
from the bridge, was selected for an additional measurement (Figure 2a). In 
each measurement, the Sontek M9 sensor was placed 0.2 m under the ice 
layer. The distance from left bank ℓ at each cross-section was noted during 
the field survey and represented for each cross-section as seen in the diagram 
of Figure 3b. The period of measurement was limited to 120 s to avoid freez-
ing of the equipment's surface since the air temperature went below −20°C. 
This low air temperature was to ensure that the ice thickness was at least 
0.25 m, which was required to be safe to perform measurements. All details 
of the measurements were summarized in Table 1.

Case Date Surface Q (m 3/s) Elevation (m) No. verticals T∞ (mins)

Oa Oct/02/20 Open 23.41 265.96 13 10

Ob Oct/04/20 Open 23.87 265.96 12 10

Oc June/22/21 Open 14.30 265.87 8 15

Od June/24/21 Open 12.20 265.85 11 15

Oe June/30/21 Open 6.82 265.72 6 15

Ia (M1/M2) Feb/19/21 Ice 12.5 265.92 6 2

Ib (M1/M2) Feb/20/21 Ice 12.8 265.92 7 2

Ic Feb/21/21 Ice 13.8 265.93 7 2

Id Feb/21/21 Ice 13.8 265.93 8 2

Ie (M1/M2) Feb/21/21 Ice 13.8 265.93 6 2

Note. The hydrological data (flow discharge Q and elevation) is monitored at the USGS Fargo (09020104) Station. The exact 
location of each vertical location is illustrated in Figure 13. T∞ (minutes) is the total time of measurement in each vertical/
(ice hole) location. The notations M1 and M2 denote two consecutive measurements in one ice hole.

Table 1 
Expeditions in Fall 2020 Winter 2020 and 2021, and Summer 2021

Figure 3.  (a) The schematic diagram of the Rozovskii method. The degree of 
ϕ represents the orientation of time-averaged velocity, and θ is the degree of 
the depth-averaged velocity to the positive x axis. (b) The diagram shows the 
ice holes in five consecutive cross-sections Ia, Ib, Ic, Id and Ie in February 
2021. The number of ice holes for each cross-section is shown in Table 1. 
Each vertical location in one cross-section is marked by its distance from the 
corresponding left bank ℓ (m) (see also Figure 4). (c) Cross-sectional view of 
the river and ice holes next to the pedestrian bridge (19 February 2021).
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2.3.  Data Processing and Flow Statistics

The raw data of the M9 in text format were processed using our in-house 
MATLAB code to produce 1  Hz time series. A separate MATLAB code 
was used to calculate flow statistics from the time series including: (a) 
the depth-averaged velocity profiles; and (b) the time-averaged velocity 
profile  for each vertical location. Following the suggestion of (Petrie & 
Diplas, 2016), the depth-averaged value U(T) and the time-average profiles 
for each vertical u(z, T) were computed as the function of averaging period 
T as:

𝑈𝑈 (𝑇𝑇 ) =
1

𝐻𝐻 ∫

𝑧𝑧=𝐻𝐻

𝑧𝑧=0

𝑢𝑢(𝑧𝑧𝑧 𝑧𝑧 )𝑑𝑑𝑑𝑑� (4)

𝑢𝑢(𝑧𝑧𝑧 𝑧𝑧 ) =
1

𝑇𝑇 ∫

𝑡𝑡=𝑇𝑇

𝑡𝑡=0

𝑢𝑢(𝑧𝑧𝑧 𝑧𝑧)𝑑𝑑𝑑𝑑� (5)

The final values of U(T∞) and u(z, T∞) correspond to the time-averaged 
value of the entire record (T  =  T∞). They are denoted as the long-term 
depth-averaged (U∞) and time-averaged (u∞(z)) velocities, respectively, to 
provide a scale to indicate the range of variability of the signals. Note that our 
notation to describe the long-term (average) values are consistent with ones 
proposed by (Petrie & Diplas, 2016). Under the open-surface condition, the 
total length of the measurement period T∞ for each vertical was T∞ ≥ 10 min 
whereas it was only T∞ ≈ 2 min for ice-covered cases as shown in Table 1. In 
total, there were 50 and 55 depth-averaged time series under the open-surface 
and ice-covered conditions, respectively. Finally, the calculation of the shear 
velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 was based on the values of u∞(z) as shown in the next 

sections. All subsequent analyses are conducted based on the time-averaged 
(u∞) and depth-averaged (U∞) velocity.

2.4.  The Logarithmic Law of the Wall

The logarithmic law of a rough wall (Shen & Lemmin, 1997) is:

𝑢𝑢(𝑧𝑧)

𝑢𝑢
⋆

𝑏𝑏

=
1

𝜅𝜅
ln

𝑧𝑧

𝑧𝑧0
+ 𝛽𝛽� (6)

where κ  =  0.39 is the Von Karman constant, β is the additive constant 
(β = 8.5). The parameter z0 is the roughness length. The range of von Karman 

constant is 0.39 ≤ κ ≤ 0.41 (Biron et al., 1998; Marusic et al., 2013; Petrie & Diplas, 2016; Petrie et al., 2013). The 
value of κ = 0.39 is selected as the condition of high Reynolds number flows in rivers (Marusic et al., 2013). In 
natural rivers, this logarithmic law is typically considered valid within a distance δb from the river bed. Typically, 
δb varies from 20% to 50% (Petrie & Diplas, 2016; Petrie et al., 2013) of the total depth H. Under field conditions, 
the value of δb is not known in advance. Therefore, a procedure to determine δb will be discussed below.

The shear velocity 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 and the roughness length (z0) are found by fitting the Equation 6 with the measured data 
(u(z)) in each vertical. A common procedure (Petrie & Diplas, 2016) is to use the linear regression line between 
the measured value of u(z) and ln(z). As the linear regression line is known, the values of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and z0 are computed 

as:

𝑢𝑢
⋆

𝑏𝑏
= 𝜅𝜅𝜅𝜅� (7)

�0 = exp
[

8.5� −
�
�

]

� (8)

Here, γ and m are the intercept point and the slope of the best-fit regression line, respectively.

Figure 4.  The depth-averaged velocity profiles (U) under open-surface 
condition at the bend apex. (a) The cross-section shape at the bridge. The 
value ℓ denotes the distance of the vertical location to the left bank. (b) 
Depth-averaged velocity profiles under different flow discharge Oa, Ob, Oc, 
Od, and Oe. The thalweg is defined as area with the total depth H ≥ 3.5 m, 
which is in the 10 m ≤ ℓ ≤ 30 m region for this cross-section.
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Under open-surface condition, the agreement between the linear regression line and the measured data must 
satisfy (Petrie & Diplas, 2016) the following criteria: (a) the correlation coefficient R 2 > 0.9, (b) a positive shear 
velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
> 0 , and (c) a realistic value of z0 (0.001 m < z0 < 10 m). In brief, the detailed steps of the logarithmic 

method for both open-surface and ice-covered conditions are as follows:

•	 �Step 1: Assume a value of δb ranging from 0.05 to 1.0 H with an increment of 0.05 H for each trial. The fitting 
to the logarithmic law is performed only when there is sufficient data in the logarithmic layer δb. The presence 
of at least five points within δb is required.

•	 �Step 2: The velocity magnitude u(z) is plotted against the ln(z) at every measurement point. Available 
MATLAB functions, “polyfit” and “polyval” are called to perform linear regression from the selected points 
in Step 1, to obtain the linear fitting parameters m and γ.

•	 �Step 3: The shear velocity is computed as 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
= 𝜅𝜅𝜅𝜅 .

•	 �Step 4: Equation 8 is used to compute the roughness length (z0) using the values of the parameters γ and m.
•	 �Step 5: R 2 value is computed from the linear fitting of Equation 6 in comparison to the corresponding meas-

ured data. The values of R 2, 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 , and z0 are checked simultaneously to validate the presence of the logarithmic 

layer. The following values are validated with R 2 > 0.9, 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
> 0 , and 0.001 m < z0 < 10 m.

•	 �Step 6: Record the value of R 2 and δb. Go back to Step 1 with an increment in the value of δb until the best R 2 
is found. If the best R 2 is greater than 0.9, move to Step 7.

•	 �Step 7: Compute 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 and its associated z0 corresponding to the best R 2.

The logarithmic fitting is performed for the ice layer in a similar fashion using the non-dimensional distance to 
the ice layer h + as shown in Equation 2.

2.5.  Quartic Profile for Asymmetrical Flows

The quartic profile of (Guo et al., 2017) is formulated using the relative distance η, which is defined as 𝐴𝐴 𝐴𝐴 = 2
𝑧𝑧

𝐻𝐻
 . 

The maximum velocity location is defined in term of its relative distance as: 𝐴𝐴 𝐴𝐴max =
2𝑧𝑧max

𝐻𝐻
 .

A non-dimensional parameter (λ) is used to represent the asymmetry of the flow profile as:

𝜆𝜆 =

√

2

𝜂𝜂max

− 1� (9)

Here 𝐴𝐴 𝐴𝐴 =
𝑢𝑢
⋆

𝑖𝑖

𝑢𝑢
⋆

𝑏𝑏

 quantifies the asymmetry of shear stress on the top 𝐴𝐴
(

𝑢𝑢
⋆

𝑖𝑖

)

 and bottom 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 surfaces. Therefore, the 

value of λ is important in determining the shape of the velocity profile. An interim parameter 𝐴𝐴

(

𝛼𝛼 =
1−𝜆𝜆

𝜆𝜆−𝜆𝜆2𝑛𝑛

)

 is also 
used to reflect this asymmetry. In this equation, n is the mixing turbulent intensity. While n can vary depending 
on the turbulent flow condition, it is found for the symmetric flow condition as n = 5/6 (Guo et al., 2017).

The location of the zero shear stress plane (ηc) typically does not coincide (Hanjalić & Launder, 1972) with the 
maximum velocity location. After the value of λ is obtained from the Equation 9, the value of ηc is computed as:

𝜂𝜂𝑐𝑐 =
2

(1 + 𝜆𝜆𝑛𝑛)
� (10)

Since λ is close to 1, the values of the critical and maximum positions are typically close in the thalweg (uc ≈ umax, 
ηc ≈ ηmax).

The quartic solution finds the best fit velocity profile (uf) to the measure data. uf can be written in terms of its 
non-dimensional form u + with the help of the bed shear velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 as:

𝑢𝑢𝑓𝑓 (𝜂𝜂)

𝑢𝑢
⋆

𝑏𝑏

= 𝑢𝑢
+
(𝜂𝜂)� (11)

Therefore, the bed shear velocity is used to provide a non-dimensional profile 𝐴𝐴 𝐴𝐴
+ = 𝑢𝑢∕𝑢𝑢⋆

𝑏𝑏
 . For example, the criti-

cal velocity at the critical depth ηc is non-dimensionalized as 𝐴𝐴
(

𝑢𝑢
+
𝑐𝑐 = 𝑢𝑢𝑐𝑐∕𝑢𝑢

⋆

𝑏𝑏

)

 .

The main contribution of (Guo et al., 2017) is that the dimensionless velocity profile (u +) is suggested to follow 
the analytical solution:

𝑢𝑢
+
(𝜂𝜂) = 𝑢𝑢

+

𝑐𝑐 + 𝜙𝜙(𝜂𝜂)� (12)
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Here the velocity profile function (ϕ(η)) is derived for infinitely long and straight channel as:

�(�, �) = 1
�

{

ln
(

�
��

)

+ � ln
2 − �
2 − ��

− 1 + �
2

ln

[

1 + �
(

1 −
�
��

)2
]

−
(

1 − ��+1)
√

� tan−1
√

�
(

1 −
�
��

)}

�
(13)

The shear velocity at the river bed can be calculated as:

𝑢𝑢
⋆

𝑏𝑏
=

∑

𝑗𝑗
𝜙𝜙 (𝜂𝜂𝑗𝑗 , 𝜆𝜆) (𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑐𝑐)
∑

𝑗𝑗
𝜙𝜙2 (𝜂𝜂𝑗𝑗 , 𝜆𝜆)

� (14)

Our detailed steps for fitting the vertical velocity profile under the ice-covered condition with the ADCP data are 
as follows:

•	 �Step 1: In each vertical location, the entire measurement points are selected from the value of u(z) as 
discussed in Section 2.3. The number of available points along the depth is dictated by the measured cell size 
(0.02 − 0.06 m), which is automatically adjusted by the M9 sensor. Note that in each cross-section Ia, Ib, and 
Ie, there are two separate measurements M1 and M2 (2 min each) at every vertical location (see also Table 1). 
In such cases, the fitting procedure is performed on the averaged value of M1 and M2. Since the number of 
points along the depth can be slightly different between the first measurement M1 and the second measure-
ment M2, we need to reconstruct the averaged profile of M1 and M2. First, the distance z is converted into the 
relative distance (0 ≤ η ≤ 2). The value of the entire depth is then divided into uniform intervals N = 100 in 
each vertical location as ηi (i = 1 → N). For each measurement M1 or M2, a procedure is carried out to map the 
measured data u(zi) into the interpolated value u(ηi) at the location ηi using the MATLAB function, ”interp1” 
with piecewise cubic spline interpolation. Second, the averaged value of 𝐴𝐴 𝐴𝐴𝐴 (𝜂𝜂𝑖𝑖) between the measurement M1 
and M2 is finalized for further processing.

•	 �Step 2: To further smooth out the variation of 𝐴𝐴 𝐴𝐴𝐴 (𝜂𝜂𝑖𝑖) long the depth, a Fourier filtering method is performed on 
𝐴𝐴 𝐴𝐴𝐴 (𝜂𝜂𝑖𝑖) with the first 5 frequencies to obtain the filtered value �̃ (��) .

•	 �Step 3: The location of the maximum velocity �̃max in the vertical axis (ηmax) is identified in this step. Since the 
value of ηmax controls the fitting accuracy, it is important to investigate the sensitivity of the fitting procedure 
with ηmax systematically. The value of ηmax is varied within the 10% range.

•	 �Step 4: The parameters λ and α are computed according to Equation 9 with the chosen value of ηmax. The 
location of the critical position of the eddy viscosity (ηc) is computed from the Equation 10. To reduce the 
sensitivity of the fitting to process to the selection of ηmax, the critical velocity is set to be equal to the maxi-
mum velocity 

(

�� = �̃max
)

 .
•	 �Step 5: The velocity distribution function (ϕ(ηi)) is computed by Equation 13.
•	 �Step 6: The shear velocity at the river bed 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 is computed by Equation 14 using the values of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 and uc. The 

non-dimensional critical velocity is computed as 𝐴𝐴 𝐴𝐴
+

𝑐𝑐 =
𝑢𝑢𝑐𝑐

𝑢𝑢
⋆

𝑏𝑏

 .
•	 �Step 7: The non-dimensional velocity profile (u +(ηi)) is produced by Equation 12.
•	 �Step 8: The fitted velocity magnitude (uf(ηi)) at the depth ηi is computed by Equation 11.
•	 �Step 9: The correlation coefficient factor R 2 between the measured (u(z)) and fitted (uf(z)) velocity profiles is 

computed. Record the dependence of the value R 2 on ηmax.
•	 �Step 10: Go back to Step 3. The iterative process will terminate until the highest correlation value R 2 is 

obtained with the selected ηmax.

The fitting error is calculated using the RMSE criterion as follows:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√

∑𝑛𝑛

𝑗𝑗
(𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑚𝑚)

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

� (15)

Here, Nobs stands for number of observations along the depth while um is the corresponding value on the fitting 
curve.

2.6.  Estimation of  From Depth-Averaged Velocity (Friction Method)

The computation of boundary shear stress is a challenge since the ADCP is not able to measure accurately the 
flow velocities near the river bed due to the side-lobe interference. This challenge leads to the use depth-averaged 
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velocity vector �⃗(��, ��) (Engel & Rhoads, 2016) to estimate 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 under open-surface condition. The procedure 

is as follows:

�� =

⎡

⎢

⎢

⎢

⎣

��
(

�
�0

)

1
6
⎤

⎥

⎥

⎥

⎦

−2

��� = �����

√

� 2
� + � 2

�

��� = �����

√

� 2
� + � 2

�

�� =
√

�2�� + �2��

�⋆� =
√

��
�

� (16)

where, ρ, Cf, and z0 are the fluid density, the friction coefficient, and the roughness height, respectively. The 
coefficient αr is set equal to 8.1 (Parker, 1991). The equivalent roughness height z0 is estimated as 2.95 × d84 
(Whiting & Dietrich,  1990). The sediment characteristics of the Red River at Fargo have been well studied 
(Galloway & Nustad, 2012) by the United States Geological Survey (USGS). The particle-size distribution of the 
study area indicates that fine particle (silt) is the most commonly found in the study area. The distribution shows 
that d50 = 0.5 mm. The value of d84 is computed from the USGS field survey data as d84 ≈ 2.088 mm (Blanchard 
et al., 2011; Galloway & Nustad, 2012). Ux and Uy are the two components of the depth-averaged velocity vector 

𝐴𝐴

(

𝑈⃗𝑈

)

 along the X and Y, respectively. The corresponding components of the magnitude shear stress (τb) are defined 
as τbx and τby. Since the depth-averaged velocity 𝐴𝐴 𝑈⃗𝑈 is available for all vertical locations, this friction method can 
be applied anywhere. The Equation 16 indicates a direct correlation between 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and U (Chauvet et al., 2014). The 

advantages and disadvantages of the logarithmic, quartic, and friction methods for computing shear velocity will 
be compared and contrasted.

2.7.  Secondary Flow Visualization

The classical Rozovskii's method (Lane et al., 2000) is used to visualize the secondary flow pattern as shown 
in Figure 3a. The Cartesian components of the velocity ux (East), uy (North), and uz (up) are used to derive the 
secondary components. The primary and the secondary flow components are up and us are computed using the 
projections of the East and North components on the depth-averaged velocity vector at the vertical:

𝑢𝑢𝑝𝑝 =
(

𝑢𝑢
2
𝑥𝑥 + 𝑢𝑢

2
𝑦𝑦

)0.5
cos(𝜃𝜃 − 𝜙𝜙)� (17)

𝑢𝑢𝑠𝑠 =
(

𝑢𝑢
2
𝑥𝑥 + 𝑢𝑢

2
𝑦𝑦

)0.5
sin(𝜃𝜃 − 𝜙𝜙)� (18)

Here ϕ and θ are defined as the angle between the depth-averaged vector U and the time-averaged vector u to 
the x (East) direction in the counter-clockwise direction. The components us and the uz are used to visualize the 
secondary flow pattern.

3.  Result
As the measured cross-sections locate in a meandering bend, the impact of the channel curvature is significant. 
This effect is presented using the depth-averaged velocities U under open-surface condition as shown in Figure 4. 
Overall, the depth-averaged profiles are asymmetrical toward the outer bank. At high discharges (Oa and Ob), 
the maximum velocity is visible in the left part of the thalweg. Note that QOa ≈ QOb and thus the velocity profiles 
of Oa and Ob are closely similar. At low flow conditions (Oc, Od, and Oe), such an asymmetry is not distinct 
as the flow in the thalweg is nearly uniform. In the following sections, the characteristics of the vertical profiles 
will be examined at each location ℓ in the cross-sections. First, the statistical analysis is carried out to determine 
if the measured data is sufficient to generate reliable values for U and u(z). Second, the validity of the logarith-
mic law is examined under open-surface condition. Third, the presence of the double log-law is investigated for 
the ice-covered cases. Fourth, we revisit the quartic solution and its applicability to derive shear velocity for 
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ice-covered condition in the current study. Finally, we address the changes in secondary flow patterns under the 
impacts of the ice cover.

3.1.  Data Statistics

Under open-surface condition, the results show that the value of the time-averaged velocity u(h, T) at all locations 
h along the depth does depend on the averaging period T. Figure 5 illustrates that the u(h, T) mostly oscillates near 
the free surface (h = 0.26 m) and the bed (h = 3.44 m) at the stations of Oa5 and Ob5, especially when T < 200 s. 
Despite the continuous oscillations even after the T = 200  s, they remain in the 5% of u∞ range. In particu-
lar, u(h, T) converges to its long-term values u∞(h) within ±5% in the first 100 s. The value at the mid-depth 
u(h = 1.82 m,T) converges even more quickly to the long-term value. In contrast to the time-average velocity, 
the depth-averaged U(T) converges rapidly to its long-term value U∞ without any significant oscillation within 
the first minute. As shown in Figure 4, the obtained depth-averaged profiles of Oa and Ob are consistent given 
closely similar flow discharges. A similar observation is applied for Oc and Od. In brief, the period T ≈ 200 s is 
sufficient for the time-averaged profile u(h, T) and depth-averaged U(T) to attain their accuracy within ±5% of 
their long-term values.

The variation of the vertical velocity profile u(h, T) under different periods of averaging T is shown in Figure 6. 
To examine the convergence of the vertical profiles as a function of the period T, four different periods are 
selected: D − 1 (t = 0 → 120 s) ; D − 2 (t = 200 → 320 s); D − 3 (t = 0 → 400 s); and D − 4 (t = 0 → 620 s) for the 
verticals Oa5 (Figure 6a) and Oc6 (Figure 6b). In both Oa5 and Oc6, there exists a significant complex flow profile 
near the free surface (h < 1.5 m). In this region, the shape of the vertical profile is significantly dependent on 
the  averaging period T. Comparing the period D − 1 and D − 2, which last 120 s, the time-averaged profiles (u(h, 
T)) are significantly different, especially in the near surface region. In the near bed region (h > 2 m), the shape 
of the profile is less sensitive to the choice of the period T. Indeed, the profile (u(h, T)) becomes nearly identical 
between D − 3 and D − 4 when the value of T is extended to 620 s. In other vertical locations, the convergence of 
velocity profiles is similar to ones as seen in Figure 6. Therefore, a period of 600 s (10 min) is sufficient to obtain 
the velocity profile convergence under open-surface condition.

The impacts of T value on the three-dimensional flow pattern can be examined using the East (uE − x) and Up 
(uup − z) components as shown in Figure 7 (the vertical Oa8). Note that the magnitudes of uE and uup are one order 
of magnitude smaller than the uN. Hence, any dependence of three-dimensional flow pattern on the duration T 
can be reflected easily in uE and uup components. Different values of T, which correspond to four subsets with 
different periods D − 1, D − 2, D − 3, and D − 4, are tested. As seen in Figure 7, the structure of the circulatory 
vortex is consistent across all averaging periods D − 1, D − 2, D − 3, and D − 4. Thus, the 10-min record ensures 
that the three-dimensional flow structure is captured accurately.

Under the ice-covered condition in Figure 8, the total length of the measurement period T∞ is limited to approxi-
mately 120 s. Therefore, there exists a larger variation of U(T) and u(h, T) from their respective long-term values. 
As seen in Figure 8, two independent measurements (M1 and M2) of the same ice hole Ib7 at the depth h = 1.64 m 
are shown. It can be seen that the ratios 𝐴𝐴

𝑈𝑈 (𝑇𝑇 )

𝑈𝑈∞
≥ 10% and 𝐴𝐴

𝑢𝑢(ℎ,𝑇𝑇 )

𝑢𝑢∞(ℎ)
≥ 20% for both Ib7 − M1 and Ib7 − M2 at the early 

stage from T = 0 to T = 100 s. Here, it is seen that the stabilization of u(h, t) and U(T) can only attain when 
T > 100 s. For other ice holes, their running statistics also show a similar behavior. There exist a significant vari-
ation of 𝐴𝐴

𝑈𝑈 (𝑇𝑇 )

𝑈𝑈∞
 and 𝐴𝐴

𝑢𝑢(ℎ,𝑇𝑇 )

𝑢𝑢∞(ℎ)
 within ±10% in the first minute. The values of U(T) and u(h, T) converge in a synchronous 

fashion only when T > 100 s. In brief, it is evident that the duration of measurement T = 120 s has a significant 
impact on the velocity profiles.

To examine the variability of the vertical profile due to a short period of measurement T = 120 s, the vertical 
profiles at the vertical Ib7 in two consecutive measurements (M1 and M2) are plotted in Figure 9a. The results show 
that the overall vertical profiles of both measurements are consistent. However, the depth-averaged velocities are 
significantly different (UM1 = 0.1591 and UM2 = 0.1967 m/s). To further investigate the variation of the derived 
shear velocity, the logarithmic fitting is carried out for the bed and the ice layer in Figures 9b and 9c, respectively. 
There exists a significant difference in the value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 between the two measurements (𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
(𝑀𝑀1) = 0.0352 m/s 

and 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
(𝑀𝑀2) = 0.0477 m/s). However, the value of 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 does not vary significantly (𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
(𝑀𝑀1) = 0.0269 m/s and 

𝐴𝐴 𝐴𝐴
⋆

𝑖𝑖
(𝑀𝑀2) = 0.0255 m/s). Moreover, the separation from logarithmic profile initiates at h + ≈ 10, 251 in the first 
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measurement (M1), while it is h + ≈ 9, 693 in the second measurement (M2). This behavior is consistent with 
the convergence characteristics as shown in Figure  8 where the two measurements exhibit slightly different 
convergence profiles. Recognizing this limitation, we use the averaged profile resulting from two measurements 
(M1 and M2).

Figure 5.  Statistical convergence properties for the depth-averaged velocity U(T) and the time-averaged velocity u(h, T) (Section 2.3) as the function of the record 
length T for the vertical location Oa5 (left column—𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂5

= 4.1 m) and Ob5 (right column—𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂5
= 4.1 m). The record length T is varied from 1 s to the entire record 

(T∞ ≈ 600 s). The long-term values of U(T∞) and u(h, T∞) are denoted as U∞ and u∞(h), respectively. Three values of depth are chosen h = 0.26 m (near surface), 
h = 1.82 m (mid-depth), and h = 3.44 m (near bed).
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3.2.  The Universality of the Logarithmic Law Under Open-Surface 
Condition

Under the open-surface condition, the logarithmic fitting is summarized in 
Table 2. The presence of the logarithmic law is validated in most measure-
ments of Oa, Ob, Oc, Od, and Oe with high degree of agreement (R 2 ≥ 90%) 
in the thalweg. Location of each vertical is indicated under the column “ℓ 
(m)”, as the distance from the outer bank. It can be observed in Table 2 that 
the logarithmic law is observed in all sufficiently deep locations (H ≥ 3.5 m). 
In these locations, the logarithmic layer (δb) remains in 20% of the total depth 
(δb ≈ 20%H). In the majority of the stations, the logarithmic layer can extend 
up to approximately 50% of the total depth. Therefore, the law of the wall is 
considered applicable for most locations in the bend thalweg regardless of 
the flow discharge.

To further examine the universality of the logarithmic law, the extension of 
the logarithmic layer is presented in Figure 10 in terms of wall units. Three 
vertical locations are shown in different measurement dates as Oc4, Od7, 
and Oe5. The measured data fit excellently well with the logarithmic law as 
evidenced by the correlation between the u +(z +) and z + for these cases in the 
range of 4,000 ≤ z + ≤ 10, 000. However, the separation from the logarithmic 
law initiates at different values of z + depending on the profile. For example, 
the separation starts at z + ≈ 15, 000 for the case Oc4 and Oe5. However, it 
starts much later at z + ≈ 20, 000 for the case Od7. Here the value of the shear 
velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 is found to vary around 0.01 m/s. Consequently, the local value 

of 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏

𝜏𝜏 (Equation 1) varies from 8,000 to 60,000. As shown in the Table 2, 
the logarithmic layer 𝐴𝐴

(

𝛿𝛿
+

𝑏𝑏

)

 obeys the theoretical limit (Equation 3) excellently 
well with 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
≥ 𝛿𝛿

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 for all cases.

There are vertical locations that do not follow the logarithmic law (Oa6, 
Oa7, Oa8, Oa9, Ob4, Oc3). In these profiles, it is not possible to perform the 
logarithmic fitting with the listed constraints in Section 2.4. They are mostly 
located near the inner and outer banks where the secondary flows are strong. 
The deviation of the velocity profiles of these locations from the logarithmic 
law will be discussed in Section 3.5.

3.3.  The Double Log-Law Under Ice-Covered Condition

In contrast to the open-surface condition, the presence of the logarithmic 
layer is found using the criteria in Section 2.4 only in limited locations near 

the bed as shown in Table 3. In those locations, the logarithmic layer δb extends well beyond 20% and up to 50% 
of H. Interestingly, the value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 is found to be significantly larger near banks 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
≈ 0.04 m/s (Ib7 and Id8) than 

ones in the thalweg region (Ia6, Ib2, Ib6, Ic2, and Id6) in which 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 varies around 0.01 m/s. In brief, our data confirm 

the presence of the logarithmic layer near the river bed in a limited number of ice holes.

The logarithmic layer near the ice cover is found in a larger number of vertical stations as shown in Table 4 in 
all cross-sections Ia, Ib, Ic, Id, and Ie. In these locations, the logarithmic layer extends mostly up to 20% of the 
total depth H in general. However, the value of the shear velocity 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 is generally lower than 0.01 m/s. In short, the 

applicability of the logarithmic law for the ice layer is different from the river bed layer.

Following the fitting procedure, lower and upper limits of u ⋆ and z0 are investigated using a 95% confidence limit 
as shown in Table 6 for both the ice and bed layers. On one hand, the results show that the confidence interval for 
u ⋆ in bed and ice layers are in the order of 0.008 m/s, except verticals very close to the banks (e.g., Ia1). On the 
other hand, the confidence interval of z0 is unrealistically large in both ice and bed layers.

The thickness of the logarithmic layers in wall units (𝐴𝐴 𝐴𝐴
+

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 ) for applicable ice holes are summarized in 

Tables 3 and 4 for the bed and the ice layer, respectively. Here, the theoretical bounds (Equation 3) are well 

Figure 6.  The variability of the vertical flow profile as the record length T 
changes at the vertical location Oa5 and Oc6. Four periods (D − 1, D − 2, 
D − 3, and D − 4) with different values of measurement period T (seconds) 
are examined: D − 1 (t = 0 → 120 s); D − 2 t = 200 → 320 s); D − 3 
(t = 0 → 400 s; and (D − 4) t = 0 → 620 s. The vertical flow profile near the 
river bed converges rapidly in the first 120 s.
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below the measured values of 𝐴𝐴 𝐴𝐴
+

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 . Thus the Equation 3 is effective in 

predicting the potential thickness of the logarithmic layer under ice coverage.

3.4.  The Applicability of Quartic Profiles for Ice-Covered Flows

Overall, the entire profiles in almost all ice holes follow closely the quar-
tic solution as shown in Figure 11 and Table 5 following the fitting proce-
dure as discussed in Section  2.5. Surprisingly, the quartic solution works 
well even in the shallow parts of banks (e.g., Id2 and Id7 in Figure 11). In 
certain locations (Ia5 and Id2), the existence of the maximum velocity umax 
is evident. However, it is not straightforward to assign a unique value of umax 
in the time-averaged velocity profile for other cases. Here, the optimization 
of R 2 (see Section 2.5) is useful in justifying the value of ηmax. As shown in 
Table 5, the umax location does not typically coincides to the symmetry plane 
(η = 1). Rather, the value of ηmax is frequently greater than 1 and indicates 
that the maximum velocity appears closer to the ice layer. The asymmetry of 

the velocity profile is also evident as the value of 𝐴𝐴 𝐴𝐴 =
𝑢𝑢
⋆

𝑖𝑖

𝑢𝑢
⋆

𝑏𝑏

 is mostly less than 
1 as shown in Table 5. Therefore, our data supports for a general use of the 
quartic form for ice-covered flow profiles in rivers. The value of Root Mean 
Square Error (RMSE) and Absolute Error (AE) are computed to determine 
the discrepancy between the quartic solution and the observation at each 
vertical (see Figure 11). Results show that the error is approximately 5% of 
umax as shown in Figure 12.

3.5.  The Structures of Secondary Flow

Under open-surface condition, our results show the signature of a classical 
circulation in the bridge cross-section under high discharge (Oa and Ob) as 
shown in Figure 13a (upper panel). On Oa, the secondary flow contains a 
large vortex occupying the entire thalweg area from the river bed to the free 
surface. In Ob, the secondary vortex is closer to the bed. This circulation 
rotates in the clockwise direction (Oa4−12 and Ob4−12). In Oa, the center of 
this circulation locates near the vertical Oa6 to Oa9. In Ob, the circulation 

locates at the vertical Ob6. In other words, the location of the circulation center is sensitive to the change in 
flow discharge. In addition to the main circulation, the presence of the outer bank cell is also evident in both 
Oa and Ob.

Figure 7.  The sensitivity of the flow pattern (ux(T∞), uz(T∞)) to the length 
of the averaging period T (Section 3.1). The flow patterns are consistent 
across different scenarios of (D − 1) t = 0 → 120 s (T = 120 s); (D − 2) 
t = 200 → 320 s (T = 120 s); (D − 3) t = 0 → 400 s (T = 400 s); and (D − 4) 
t = 0 → 620s (T = 620 s). The center of the rotation is found closer to the bed.

Figure 8.  Statistical properties of the depth-averaged velocity U(T) and the time-averaged velocity u(h, T) under ice-covered 
condition as the function of the record length T(s). Two measurements (M1 and M2) of same station Ib7 are shown at the 
depth h = 1.64 m. Here the sample length T is varied from 1 s to the entire record (T∞ = 120 s). The long-term values of 
U(T∞) and u(h, T∞) are denoted as U∞ and u∞(h), respectively.
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Under lower discharges in Oc, Od, and Oe, the secondary flow structure completely changes. The main circula-
tion (clockwise) becomes weaker in the thalweg (Oc6, Od7−8, and Oe3). The main circulation moves toward the 
center of the thalweg as the discharge decreases (Oc, Od, and Oe—see Table 1) as shown in Figure 13 (lower 
panel). There exist two additional (counter-clockwise) circulations near the outer and inner banks. The extensions 
of these circulations are significantly large as shown in Oc1−4, Oc7−8, Od1−5, and Od9−11. Three circulations are 
visible in both Oc and Od and roughly the same size. In brief, the migration of the main circulation is significant 
as the water level reduces due to the presence of the outer and inner-bank cells.

Our data indicates a significant impact of the ice cover on the secondary flow pattern. Since the cross-section Ia, 
Ib, Ic, and Id are parallel and separated from each other, it is possible to infer the three-dimensional flow structure 
at the study site as shown in Figure 14. Under ice coverage, both the main circulation and the flow convergence 
pattern are altered. Weak circulations are found in the cross-section Ia (Ia2, and Ia4). Here there are signatures of 
two “double-stacked” cells. However, the senses of rotation are in the opposite directions. The existence of such 
structures cannot be found in Ib. There are two main structures in Ib, the main circulation and the inner bank cell. 
Both of them rotates in the counter-clockwise direction between Ib1−Ib5 and Ib6−Ib7. The secondary flow pattern 
returns to the regular pattern with a clockwise circulation in the thalweg in Ic and Id. In addition, the inner bank 
circulation also reverses its direction to the clockwise direction (Ic6−Ic7 and Id6−Id8). Therefore, the secondary 
flow pattern varies drastically from one cross-section to another in the ice-covered bend.

3.6.  Shear Velocity Distribution in the Bend

Under open-surface condition, the bed shear velocity 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 is derived using the logarithmic method as summa-
rized in the Table 2. At high discharge (Oa and Ob), 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 can be as high as 0.04 m/s. Despite a slight difference in 

the value of QOa and QOb, the distribution of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 across the cross-section is consistent. In both measurements (Oa 

Figure 9.  The presence of the logarithmic profile (solid lines) for two consecutive measurements under ice-covered flows. 
(a) Non-dimensional time-averaged velocity profiles of the first and the second measurement at vertical Ib7. (b) on the ice 
layer at the vertical Ib7; and (c) on the bed layer. The logarithmic law (Equation 6) is written in wall units (see Equations 1 
and 2). The separation from the logarithmic law determines the value of the logarithmic layer thickness 𝐴𝐴 𝐴𝐴

+

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 .
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and Ob), there exists a strong skewed distribution of the shear velocity toward the outer bank as shown the trend 
line in Figure 15a. The location of the maximum 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
(𝑂𝑂𝑂𝑂2) does not coincide with the maximum depth-averaged 

velocity location (Oa4 and Ob4) (see also Figure 4). The value of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 decreases gradually from the outer bank to 

the thalweg toward the value of 0.01 m/s, but it slightly increases near the inner bank. This trend is not observed 
under low discharges (Oc and Od) in Figure 15b, which shows that 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 varies in a small range from 0.005 to 

0.015 m/s in the thalweg. In brief, a higher discharge leads to a skew 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 distribution with a large magnitude 

increase (up to four folds) near the outer bank.

Under ice-covered condition, the value of 𝐴𝐴 𝐴𝐴
⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 are derived from two separate methods: (a) the logarithmic 

law (Section 2.4); and (b) the quartic profile (Section 2.5). Shear velocities from the logarithmic law are listed 
in Table 4 for all cross-sections Ia, Ib, Ic, and Id, while estimates from the quartic solution are shown in Table 5. 
On both the ice and the bed layers, the quartic solution can provide the value of 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 in the majority of ice 

holes as seen in Figure 16. On the contrary, the logarithmic method (solid diamonds) can provide only at certain 
locations due to the stringent constraints (see Section 2.4) as seen in Table 3. For both 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 , the logarith-

mic method yields a significantly higher value in comparison to the quartic solution as indicated in Figure 16. 
Both the logarithmic and the quartic methods indicate that 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 are elevated near banks. In particular, 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 

Case ℓ (m) H (m)𝐴𝐴 𝛿𝛿𝑏𝑏

𝐻𝐻
  R 2𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 (m/s) z0 (m) Reτ 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 𝐴𝐴 𝐴𝐴

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

Oa4 16.15 3.66 0.50 0.99 0.0150 0.061 57,876 28,938 8,681

Oa5 20.12 4.10 0.50 0.94 0.0136 0.0245 55,883 27,941 8,382

Oa10 34.14 3.83 0.50 0.95 0.0090 0.014 34,453 17,226 5,168

Ob5 19.51 4.10 0.50 0.91 0.0087 0.0003 35,549 17,774 5,332

Ob6 22.53 4.20 0.30 0.95 0.0079 1.5 × 10 −4 24,613 7,384 3,692

Ob7 25.60 4.23 0.20 0.99 0.0095 9.7799 57,067 11,413 8,560

Ob8 28.65 3.99 0.20 0.99 0.0125 0.0365 12,428 2,485 1,864

Ob9 31.70 3.82 0.20 0.98 0.0124 0.1006 27,596 5,519 4,139

Oc2 10.36 3.50 0.50 0.99 0.0069 0.0001 24,147 12,073 1,811

Oc4 16.15 3.95 0.35 0.99 0.0070 0.0188 32,142 11,249 4,821

Oc5 19.51 4.06 0.20 0.99 0.00796 0.0195 26,764 5,352 4,015

Oc6 23.16 3.95 0.50 0.98 0.01557 0.4489 61,531 30,765 9,230

Oc7 28.35 3.65 0.45 0.97 0.0121 0.4760 46,680 21,006 7,002

Od3 11.89 3.64 0.50 0.99 0.0122 0.5166 44,313 22,156 3,323

Od4 14.02 3.88 0.40 0.98 0.0078 0.4182 33,176 13,270 4,976

Od5 16.15 4.09 0.50 0.96 0.0121 0.5056 49,544 24,772 7,431

Od6 19.20 4.22 0.40 0.97 0.0107 0.4165 51,227 20,491 7,684

Od7 22.25 4.10 0.50 0.98 0.0109 0.2300 44,573 22,286 6,686

Od8 24.38 3.80 0.50 0.96 0.0089 0.0570 33,914 16,957 5,087

Od9 26.52 3.60 0.50 0.93 0.0096 0.2257 34,722 17,361 5,208

Od10 28.65 3.70 0.45 0.99 0.0131 1.2623 49,931 22,469 7,490

Oe2 15.85 4.01 0.50 0.94 0.0124 2.0462 49,601 24,800 7,440

Oe3 18.90 4.03 0.35 0.98 0.0088 1.1045 43,687 15,290 6,595

Oe4 20.42 4.05 0.45 0.96 0.0110 2.2522 47,432 21,344 7,115

Oe5 23.47 3.76 0.50 0.94 0.0089 0.6461 33,410 16,705 5,011

Note. The friction Reynolds number 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑏𝑏

𝜏𝜏 and the thickness of the logarithmic layer 𝐴𝐴 𝐴𝐴
+

𝑏𝑏
 are explained in Equation 1. The 

theoretical bound for 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is computed from Equation 3. Only the stations in the thalweg region (H ≥ 3.5 m) are listed in 

this table.

Table 2 
Derivation of the Shear Velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and the Equivalent Roughness Height (z0) Using the Logarithmic Fitting (Section 2.4) 

for the Case Oa, Ob, Oc, Od, and Oe (See Table 1)
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can increase from 0.01  m/s (thalweg) to approximately 0.05  m/s near the 
inner bank. Therefore, shear velocity magnitude varies greatly across the 
cross-section under ice coverage.

4.  Discussion
Ice coverage is an essential component of river hydraulics (Ettema, 2002; 
Smith & Ettema, 1995; J. Wang et al., 2008). The impacts of ice on flow 
dynamics in rivers has recently drawn significant attention (Lauzon 
et al., 2019) from a wide range of viewpoint such as hydrological (Beltaos 
& Prowse, 2009), morphological (Chassiot et al., 2020; Kämäri et al., 2015), 
ecological (Knoll et  al.,  2019) applications. Under the impact of climate 
change, global coverage of river ice has declined sharply (Peng et al., n.d; 
Yang et  al.,  2020) potentially leading to a large-scale transformation of 
river dynamics in cold regions, especially during spring when snow and ice 
thaw (Lotsari et al., 2020). Changes in river ice dynamics might lead to new 
morphological evolution of river deltas in cold regions (Lauzon et al., 2019) 
as it is known that ice coverage alters sediment transport regime (Lau & 
Krishnappan, 1985; Turcotte et al., 2011). However, field measurement of 
ice-covered flows is challenging and thus there are limited data on flow 
profiles to date (Biron et al., 2019; Ghareh Aghaji Zare et al., 2016; Lotsari 
et al., 2017). Therefore, this work is intended to revisit this important prob-
lem using a modern approach of turbulent flows.

4.1.  The Logarithmic Layer Under Open-Surface Condition

Our data support the existence of a universal logarithmic layer (Marusic et  al.,  2013) for the current site. In 
particular, our results in Table 2 show that the logarithmic layer is applicable for vertical locations with sufficient 
depth (H ≥ 3.5 m) in the thalweg. In these locations, the logarithmic layer is easily detectable as it accounts for 
a significant portion of the depth (up to 1.5 m as shown in Figure 6). As demonstrated in Figure 10, stations 
Oc4, Od7, and Oe5 all follow closely the logarithmic profile. It has been known that the logarithmic law might be 
valid for the majority portions of the flow depth (Biron et al., 1998) in laboratory conditions. The value of δb is 
suggested to be 10%–20% of the total depth (Biron et al., 1998, 2004) under field conditions. Our results show 
that the logarithmic layer can extend up to half of the total flow depth (δb/H = 50%) regardless of the flow rate. 
This observation can be seen in the thalweg region and/or near the both banks due to its sensitivity to the local 
morphological details. As suggested in (Afzalimehr & Rennie, 2009), extension of the logarithmic law can be 
even beyond the value of 50% with a different channel bed condition (gravel).

Figure 10.  The presence of the logarithmic law (solid lines) at three vertical 
locations Oc4 (blue circle), Od7 (green triangle), Oe5(red diamond) under 
open-surface condition (see Table 1). The logarithmic law (Equation 6) is 
written in wall units (see Equation 1). The separation from the logarithmic law 
determines the value of the logarithmic layer thickness 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 . The logarithmic 

layer is considered as a collection of measured points near the river bed so that 
the value fitting of R 2 ≥ 0.9 (see Section 2.4).

Case ℓ (m) H (m)𝐴𝐴 𝛿𝛿𝑏𝑏

𝐻𝐻
  R 2 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 (m/s) z0 (m) Reτ 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 𝐴𝐴 𝐴𝐴

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

Ia6 33.83 1.93 0.40 0.9734 0.0161 1.8574 31,088 13,990 4,663

Ib2 13.53 3.11 0.50 0.9158 0.0128 0.1205 40,001 16,000 6,000

Ib6 31.82 2.60 0.35 0.9418 0.0137 0.1364 35,623 8,905 5,343

Ib7 36.39 2.33 0.50 0.9478 0.0477 5.6604 111,125 38,893 16,669

Ic2 14.63 3.50 0.50 0.9162 0.0102 0.0538 29,113 14,556 4,367

Id2 12.04 3.43 0.50 0.9620 0.0170 0.998 47,217 23,608 7,083

Id6 30.33 3.42 0.50 0.9206 0.0089 0.0247 24,773 12,386 3,716

Id8 39.47 1.65 0.45 0.9921 0.0203 1.5292 26,143 11,764 3,921

Note. The friction Reynolds number Reτ and the thickness of the logarithmic layer 𝐴𝐴 𝐴𝐴
+

𝑏𝑏
 are explained in Equation 1. The 

theoretical bound for 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is computed from Equation 3.

Table 3 
Derivation of the Shear Velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and the Equivalent Roughness Height (z0) Using the Logarithmic Fitting (Section 2.4) 

for the Case Ia, Ib, Ic, and Id (See Table 1)
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A closer examination of the logarithmic layer thickness in wall units shows that it follows closely the theoretical 
bounds in Equation 3. Our results in Table 2 and Figure 10 show that the upper bound is applicable for the current 
site. In fact, the logarithmic layer can extend well beyond the 0.15Reτ limit in many cases as shown in Table 2. 
Note that the value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 (and thus Reτ) can be estimated using the Equation 16 from the depth-averaged velocity 

U. Therefore, our data suggests that the Equation 3 can serve as an estimation for the logarithmic layer thickness 
if the velocity profile u(z) is not available.

It is known that complex flow fields in shallow areas or rapidly changing bathymetry (Biron et al., 1998; Stone 
& Hotchkiss, 2007) can lead to the deviation from the logarithmic law (Biron et al., 2004) due to the presence 
of secondary flows (Petrie & Diplas, 2016). In the presence of complex bathymetry with an adverse pressure 
gradient, the equilibrium layer could become very thin or completely vanish. Thus the logarithmic law might 
not exist in certain locations (Bagherimiyab & Lemmin, 2013; Biron et al., 1998). In meandering rivers, second-
ary flows (Petrie et al., 2013) might impact the distribution of the vertical velocity profile. The absence of the 
logarithmic layer is also shown to coincide with a strong presence of secondary flow circulation at our site (Oa6, 
Oa7, and Oa8—see Figure 13a). In particular, the secondary flow is significantly strong in Oa and Ob for loca-
tions near both the outer and inner banks. The impact of secondary flow from both banks on the vertical profile 
is demonstrated in Figure 6. While the variation of the vertical profile in the first 1.5 m depth is minimal in 
Oa5, there is a significant deviation of the profile from the logarithmic law near the surface of Oc6 (Figure 6b), 
which is a common signature of secondary flows. This behavior is consistent with field observation of (Chauvet 
et al., 2014), which indicates that the degree of deviation depends on the distance to banks. Thus our results show 
that it is challenging to perform the logarithmic fitting near both banks even under open-surface condition when 
the flow depth is limited.

4.2.  The Challenge of Using Logarithmic Fitting for Ice-Covered Flows

It is striking that the theoretical bound for 𝐴𝐴 𝐴𝐴
+

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

+

𝑏𝑏
 (Equation 3) is highly effective. As shown in Tables 3 and 4, 

the limit of 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is satisfied in all available cases for both the ice and river bed layers. This highlights a potential 

use of the Equation 3 in examining the presence of the logarithmic layers in ice-covered flows. As the value of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 

Case ℓ (m) H (m)𝐴𝐴 𝛿𝛿𝑖𝑖

𝐻𝐻
  R 2𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 (m/s) z0 (m) Reτ 𝐴𝐴 𝐴𝐴

+

𝑖𝑖
 𝐴𝐴 𝐴𝐴

+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

Ia1 8.84 1.72 0.30 0.9033 0.0213 2.0291 29,706 8,912 4,455

Ia4 23.77 3.46 0.20 0.9499 0.0117 0.0767 33,374 6,675 5,006

Ia5 28.35 3.39 0.30 0.9276 0.0197 0.7907 27,459 8,238 4,118

Ib4 22.68 4.01 0.20 0.9174 0.0083 0.0007 27,177 5,435 4,076

Ib5 27.25 3.68 0.30 0.9837 0.0078 0.0023 23,455 7,037 3,518

Ib7 36.39 2.33 0.20 0.9921 0.0255 0.4402 48,465 9,693 7,269

Ic1 10.06 3.04 0.25 0.9262 0.0120 0.4061 30,021 7,505 4,503

Ic3 19.20 3.74 0.20 0.9398 0.0066 0.0001 21,242 4,248 3,186

Ic5 28.35 3.48 0.35 0.9630 0.0053 0.0001 15,101 5,285 2,265

Id2 12.04 3.43 0.25 0.9852 0.0089 0.0117 24,838 6,209 3,725

Id3 16.61 3.57 0.20 0.9404 0.0041 1 × 10 −7 11,917 2,383 1,787

Id5 25.76 3.74 0.30 0.9716 0.0053 1 × 10 −5 15,978 4,793 2,396

Id6 30.33 3.42 0.25 0.9663 0.0070 0.0011 19,543 4,886 2,931

Id8 39.47 1.65 0.30 0.9845 0.0049 0.0001 6,591 1,977 988

Ie2 9.14 2.54 0.30 0.9860 0.0101 0.0392 20,941 6,282 3,141

Ie5 22.86 4.41 0.40 0.9322 0.0044 0.0001 15,930 6,372 2,389

Ie7 32.00 3.04 0.20 0.9539 0.0034 4.5 × 10 −5 8,313 1,662 1,246

Note. The friction Reynolds number 𝐴𝐴 𝐴𝐴𝐴𝐴
𝑖𝑖

𝜏𝜏 and the thickness of the logarithmic layer 𝐴𝐴 𝐴𝐴
+

𝑖𝑖
 are explained in Equation 1. The 

theoretical bound for 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is computed from Equation 3.

Table 4 
Derivation of the Shear Velocity 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and the Equivalent Roughness Height (z0) Using the Logarithmic Fitting (Section 2.4) 

for the Case Ia, Ib, Ic, and Id (See Table 1)
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can be estimated from the quartic method (Section 3.4), the value of 𝐴𝐴 𝐴𝐴
+

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 can be deduced from the Equation 3. 

Therefore, the physical value of δtheory can be recovered. This estimated value of δtheory can guide field measure-
ment in capturing sufficient data in the area of interest.

As the logarithmic fitting is the standard method for estimating 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 in straight channel in open-surface condition 

(Petrie & Diplas, 2016), it is not clear how to estimate 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 under ice coverage (Attar & Li, 2012; Ghareh Aghaji Zare 

et al., 2016; A. Sukhodolov et al., 1999), especially in river bends (A. N. Sukhodolov, 2012). Previous works 
(Ghareh Aghaji Zare et al., 2016; A. Sukhodolov et al., 1999) have assumed the double log-law and used the loga-
rithmic fitting for ice coverage to derive 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 . Our results in Tables 3 and 4 indicate that only few vertical stations 

are qualified to perform logarithmic fitting using our data. The strict requirement of the logarithmic fitting thus 
does not allow the recovery of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 value for ice-covered condition in all ice holes. The reason for this challenge 

might be the presence of the secondary flows as shown in Figure 14. Under ice-covered condition, the magni-
tude of the secondary flow is approximately 0.1 m/s, which is in the same order as the streamwise component. 
Field measurements (Demers et al., 2011; A. N. Sukhodolov, 2012; A. Sukhodolov et al., 1999) have shown that 
complex three-dimensional flow might arise in river bend with ice-covered condition. This complex flow field 
(Biron et al., 1998, 2004) might deviate the near-wall profiles from the classical logarithmic law. Therefore, it is 
critical to find a robust method to estimate the value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 under field condition.

4.3.  The Performance of Quartic Solution

It has been recognized (Biron et al., 1998) in early measurements that the logarithmic method requires sufficient 
data in the boundary layer. This requirement is typically not satisfied in field measurements (Attar & Li, 2012) 

Case ℓ (m) H (m) umax (m/s) R 2 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 (m/s)𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 (m/s) λ ηmax

Ia2 14.33 3.14 0.1451 0.9184 0.0012 0.0016 1.3234 0.7269

Ia5 28.35 3.39 0.1357 0.9273 0.0073 0.0032 0.4422 1.6729

Ib2 13.53 3.11 0.1998 0.9916 0.0078 0.0062 0.7886 1.2331

Ib4 22.68 4.01 0.2115 0.9748 0.0074 0.0048 0.6428 1.4153

Ib5 27.25 3.70 0.1747 0.9846 0.0074 0.0049 0.6564 1.3977

Ib6 31.82 2.60 0.1599 0.9795 0.0023 0.0030 1.3067 0.7387

Ib7 36.39 2.33 0.2036 0.9828 0.0293 0.0193 0.6596 1.3937

Ic2 14.63 3.50 0.1926 0.9746 0.0071 0.0034 0.4825 1.6223

Ic4 23.77 3.95 0.1917 0.9765 0.0045 0.0034 0.7535 1.2756

Ic5 28.35 3.48 0.1844 0.9383 0.0064 0.0050 0.7784 1.2454

Id2 12.04 3.43 0.1846 0.9119 0.0143 0.0097 0.6777 1.3706

Id3 16.61 3.57 0.1983 0.9560 0.0075 0.0033 0.4372 1.6791

Id4 21.18 3.95 0.2023 0.9733 0.0060 0.0023 0.3879 1.7384

Id5 25.76 3.74 0.1934 0.9812 0.0057 0.0035 0.6142 1.4521

Id6 30.33 3.42 0.1843 0.9295 0.0084 0.0066 0.7912 1.2300

Id7 34.90 2.84 0.1707 0.9254 0.0103 0.0046 0.4453 1.6690

Id8 39.47 1.65 0.1476 0.9380 0.0121 0.0076 0.6305 1.4310

Ie1 4.57 0.65 0.0839 0.9486 0.0022 0.0020 0.9009 1.1040

Ie2 9.14 2.54 0.1551 0.9631 0.0088 0.0064 0.7290 1.3059

Ie3 13.72 3.78 0.1741 0.9781 0.0056 0.0033 0.5836 1.4919

Ie4 18.29 4.46 0.1596 0.9485 0.0044 0.0021 0.4776 1.6285

Ie7 32.00 3.04 0.1094 0.9560 0.0063 0.0035 0.5624 1.5194

Note. The local Reynolds number based on shear velocity 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 and water viscosity ν is Reτ (see Equation 1). The location (ηmax) 

and the maximum velocity (umax) are determined by the iterative procedure in Section 3.4.

Table 5 
Derivation of the Shear Velocity on the Ice Layer 𝐴𝐴

(

𝑢𝑢
⋆

𝑖𝑖

)

 and the Bed Layer 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 Using the Quartic Solution (Section 3.4) for 
the Case Ia, Ib, Ic, and Id (See Table 1)
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as it is challenging to obtain measured data near the river bed and the ice layer. Our data in Figure 11 shows that 
the quartic solution agrees well with field measurement. As it uses the entire velocity profile, the quartic solution 
can be applied in the majority of ice holes. Note that the quartic solution is designed (Guo et al., 2017) so that it 
coincides to the logarithmic layer in the limit of z + → 0. This feature relaxes the strict requirement of Section 2.4. 
Therefore, the quartic solution can provide an estimation for the shear velocity 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 even if there are limited meas-

urements along the vertical profile.

One important assumption of the quartic solution is the separation of flows in the ice and the bed layer by a 
distinct maximum velocity location umax(zmax). As shown in Figure 1, the velocity profile is governed by differ-
ent sets of shear velocities (Ghareh Aghaji Zare et al., 2016; Guo et al., 2017; A. Sukhodolov et al., 1999). The 
presence of umax in the analytical solution is apparent because the shear stress distribution along the depth is 
assumed to be linear (Guo et al., 2017). However, it is not clear whether or not a distinct umax is evident in field 

Figure 11.  The agreement between the measured profiles and the quartic solution. The fitting procedure provides the shear 
velocity on the river bed 𝐴𝐴

(

𝑢𝑢
⋆

𝑏𝑏

)

 and the ice layer 𝐴𝐴
(

𝑢𝑢
⋆

𝑖𝑖

)

 in Section 2.5. The details of the available data are described in Table 5 
for all ice holes. The averaged profile (from two measurements M1 and M2) is used for the cross-sections Ia, Ib, and Ie. The 
discrepancies between the model and the observations are computed with RMSE.
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measurements. Our results show that it is challenging to determine the location zmax from our field data since the 
time-averaged profile does not typically show a distinct umax. While our fitting procedure attains good agreement 
(R 2 ≥ 0.9) with measurement data, the determination of umax location does affect the overall shape of the profile. 
The maximum velocity location ηmax is the critical factor to attain a high value of R 2. In fact, the value of umax 
and its position in near-bank locations are usually determined decisively as shown in Figure 11 (Id2). However, 
the minimal variation of the velocity profile u(z) in the mixing core region prevents a straightforward approach to 
locate ηmax (Ic4) in the thalweg. Therefore, an iterative procedure as shown in Section 3.4 is necessary to obtain 
the maximum value for R 2. The difficulty of locating a single value for ηmax also highlights the limitation of the 
quartic method. It is required that the velocity profile has a distinct maximum value, which is not guaranteed in 
the presence of complex bathymetry. The strong secondary flow as illustrated in Figure 14 near Ia5, Ic4, and Id7 
might deviate the vertical velocity profiles from the quartic form.

4.4.  Secondary Flow Patterns

It has been long known that flows in streams and rivers have helical patterns 
(Demers et  al.,  2011) which possess secondary flow (SF) components. In 
contrast to the randomness of turbulent structures, secondary flows appear 
in time-averaged velocity profiles (Zhong et  al.,  2016) as separate enti-
ties. Secondary flows originate from two main sources: channel curvature 
(Prandtl's first kind); and heterogeneous turbulent stresses (Prandtl's second 
kind) (Nikora & Roy, 2012). In the first kind, secondary flow is directed from 
the inner bank toward the outer bank as the flow approaches a bend (Kang 
et al., 2011). The impacts of curvature on the formation of the main flow cell 
are clear and were discussed in many studies (Koken et al., 2013; Van Balen 
et al., 2010). The second kind of secondary flow is formed in response to 
roughness heterogeneity (Rodríguez & García, 2008). In this flow type, the 
fluctuations of turbulent shear stress are sustained across the cross-section, 
leading to the formation of many flow cells (Nezu et al., 1993) occupying 
the entire cross-section (Blanckaert et al., 2010). The distribution of shear 
stresses along the cross-sectional perimeter (e.g., bed, bank, and surface) 
determines the types and number of flow cells, and how these cells interact 
with each other (Albayrak & Lemmin, 2011; Blanckaert et al., 2010; Nikora 
et al., 2019; Rodríguez & García, 2008). While this phenomenon has been 
postulated for natural channels (Nezu et al., 1993), its existence has rarely 
been investigated under field condition (Chauvet et al., 2014).

Case H (m)𝐴𝐴 𝐴𝐴
⋆

𝑙𝑙𝑙𝑙
 (m/s) u ⋆ (m/s)𝐴𝐴 𝐴𝐴

⋆

𝑢𝑢𝑢𝑢 (m/s) 𝐴𝐴 𝐴𝐴
𝑙𝑙𝑙𝑙

0
 (m) z0 (m)𝐴𝐴 𝐴𝐴

𝑢𝑢𝑢𝑢

0
 (m)

Oc2 (bed) 3.50 0.0065 0.0069 0.0073 4.28 × 10 −5 0.0001 0.0003

Ob5 (bed) 4.10 0.0079 0.0087 0.0095 0.0002 0.0003 0.0004

Ib7 (bed) 2.33 0.0401 0.0477 0.0553 4.0442 5.6604 7.2766

Id6 (bed) 3.42 0.0076 0.0089 0.0102 0.0044 0.0247 0.0450

Id8 (bed) 1.65 0.0192 0.0203 0.0214 0.2415 1.5292 2.8169

Ia1 (ice) 1.72 0.0116 0.0213 0.0310 0.6902 2.0291 3.3680

Ib5 (ice) 3.68 0.0072 0.0078 0.0084 0.0008 0.0023 0.0038

Ib7 (ice) 2.33 0.0213 0.0255 0.0297 0.2339 0.4402 0.6465

Ic5 (ice) 3.48 0.0048 0.0053 0.0059 2.5 × 10 −5 0.0001 0.0002

Id8 (ice) 1.65 0.0040 0.0049 0.0058 3 × 10 −6 0.0001 0.0002

Note. The lower and upper limits of u ⋆ and z0 for the ice and bed layers in representative verticals according to 95% confidence 
level.

Table 6 
The Accuracy of the Logarithmic Fitting

Figure 12.  Error analysis of profile fitting using the quartic solution for Ia5, 
Ib5, Ic4, Id2, Id7, and Ie7. The observed values (uobs) are plotted against the 
fitted results (uquartic). The line of perfect agreement is shown in black. The 
linear regression line is displayed by a blue dashed line, which shows a good 
agreement between the observed and fitted data. The maximum absolute errors 
are shown indicating the upper and lower bound errors of 0.014(m/s).

 19447973, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
031742 by N

orth D
akota State U

niversity, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

KOYUNCU AND LE

10.1029/2021WR031742

21 of 27

Under open-surface condition, our results in Figure 13 show a striking dependence of secondary flow patterns 
on the flow discharge. The dominance of the main circulation in Oa and Ob is replaced by the co-existence of 
multiple-cell structures in Oc, Od, and Oe. In effect, our results show a transition from a single circulation (high 
discharge) to multiple circulations (low discharge). This transition is important because it highlights the potential 
linkage between the flow discharge with the strength of the main circulation. Our results in Oa suggest that the 
impact of channel curvature, which induces the main circulation, is dominant when the flow discharge is suffi-
ciently large. At low discharges, this dominance is lost. The main circulation and the bank cells all play important 
roles in creating the helical patterns across the cross-section. This phenomenon agrees with the field observation 
of (Chauvet et al., 2014) and laboratory data of (Albayrak & Lemmin, 2011). Future works might be needed in 
understanding the precise threshold at which this transition occurs.

Comparing our results in Figures 13 and 14, it is evident that the ice cover adds further complexities in the second-
ary flow patterns. The maximum velocity is found to be umax ≈ 0.19 m/s in the thalweg area (see Figure 11). 
Meanwhile, the corresponding secondary flow velocity in the same vertical (Ic2) remains below 0.015 m/s, which 
is less than 10% of umax. This range of secondary flow agrees with other observations in literature (Tsai & 
Ettema, 1994a). While the flow convergence pattern is still visible at Ia, the secondary flow patterns at other 
cross-sections vary greatly in a short distance of approximately 20 m. These results indicate that the large-scale 
flow structure of the entire reach has been modified with the presence of the ice cover. There is no apparent 
existence of a large-scale circulation at Ia, Ib, and Ic as shown in Figure 14. A circulation reemerges at Id near the 

Figure 13.  The dependence of secondary flow structures at the bridge cross-section on flow discharge (See Table 1) under 
open-surface condition. The secondary flow vectors are visualized with the Rozovskii method. The vertical location of each 
ADCP measurement on the cross-section is marked with numbers. Number of vectors are reduced by a factor of two for 
visibility purpose.
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outer bank but it is also accompanied by a change in the flow convergence pattern. The intermittent appearance 
of the circulation suggests that the large-scale circulation is truly a local phenomenon, which could depend on the 
bathymetry and the flow depth.

Laboratory experiment (Urroz & Ettema, 1994a) suggests that the secondary flow under ice-covered condition 
could have a special structure (double-stacked) where two sets of vortices are found on top of each other in the 
thalweg. Field measurements of (Demers et al., 2011) suggest that the double-stacked vortices might exist at the 
bend entrance. However, our results in Figure 14 do not support the persistent existence of such a structure in this 
case in all cross-section Ia, Ib, Ic, and Id. Our result only shows a single vortex in Id close to the outer bank. It 
has been shown (Lotsari et al., 2017) that flow depth can alter the secondary flow pattern of ice-covered flows 
at river bends by changing the direction of the high-velocity core (Attar & Li, 2013). Therefore, the disagree-
ment from our measurements with the laboratory experiment of (Urroz & Ettema, 1994a) might be explained 
by the difference in aspect ratio between field and laboratory scales. In the experimental setup of (Urroz & 
Ettema, 1994a), the range of aspect ratio (AR) is 10 < AR < 20 (large aspect ratio). In our case, the aspect ratio 
is estimated to be approximately 10. Thus the double-stacked vortices might appear only at certain aspect ratios 
of river cross-sections.

4.5.  Shear Stress Distribution

In the literature, the period of ice coverage is assumed to be a quiescent period of sediment transport (Ettema, 2002) 
since the value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 is assumed to be smaller than the open-surface counterpart. Comparing the Figures 16b 

and 15b under similar flow discharges, it is evident that the ice coverage contributes to a significant increase of 
𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 near banks. The value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 can reach from 0.02 to 0.05 m/s in the vicinity of the inner and outer banks under 

ice-covered condition. Such a magnitude is comparable to the bed shear stress under open-surface condition 
near the outer bank as shown in Figure 15 at a much higher level of flow discharge (Oa). This finding is rather 
surprising since the ice-covered flow discharge is much smaller in comparison to the open-surface ones as shown 

Figure 14.  The spatial variability of secondary flow structures across four consecutive cross-sections under ice-covered 
condition in February 2021. The cross-sections Ia, Ib, Ic, and Id are parallel to each other and separated by a distance of 
6.1 m as shown in Figure 13. The flow direction is from Ia to Id in the South-North direction (bottom to top). The ice holes 
are numbered from the outer bank to the inner bank as shown in Table 1. Number of vectors are reduced by a factor of two for 
visibility purpose.
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in Table 1. Such a sharp increase indicates a potential impact on sediment 
transport processes in shallow areas. Future efforts should be carried out to 
investigate this phenomenon further.

Overall, the friction method (2.6) provides an excellent estimation of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 

with minimal input information, especially at low discharge. Under low 
flow condition (Oc and Od) in Figure 15b, the friction method predicts that 

𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
≈ 0.007 m/s where as the logarithmic method suggests that 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
≈ 0.01 m/s. 

However, the it cannot provide an accurate estimation of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 at high discharge 

(Oa and Ob) as shown in Figure 15a. The friction method gives a reasonable 
estimation of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
≈ 0.01 m/s throughout the cross-section. However, it cannot 

capture the extreme values of 𝐴𝐴 𝐴𝐴
⋆

𝑏𝑏
 near the outer bank. A careful approach must 

be carried out to examine shear velocities near banks separately.

4.6.  Limitation

In laboratory measurement or numerical simulation (Ma et  al.,  2021), 
turbulent statistics can be obtained by extending the averaging time T to an 
extremely large value (e.g., 𝐴𝐴 𝐴𝐴 = 50

𝐻𝐻

𝑢𝑢
⋆

𝑏𝑏

 ). Under field conditions, it is challeng-
ing to obtain reliable data for the velocity profile (Biron et al., 1998) in large 
rivers. It is because of a well-known limitation of the ADCP signal near the 
river bed. It requires a long period of measurement (Petrie & Diplas, 2016) 
to provide an accurate time-averaged velocity profile. Therefore, the duration 
of measurement (Buffin-Bélanger & Roy, 2005) plays an important role in 
attaining statistically convergent results. Under open-surface condition, our 
time series length is set to be a minimum of 600 s in all vertical locations. 
Note that the T∞ = 10 min has been reported to be sufficient for ADCP meas-
urement (Chauvet et al., 2014) to reconstruct secondary flow features at field 
scale.

Since the field campaign can be only carried out when the ice cover is suffi-
ciently thick (≥0.25 m) for this Red River, it thus requires that the air temper-
ature in the field campaign should be sufficiently low (a typical situation 
in February). The ADCP M9 sensor can function properly in the range of 
air temperature (>−20°C). However, a prolonged campaign in few hours in 
many ice holes leads to the deterioration of the signal quality as the sensor 
surface can become frozen easily and make a long acquisition infeasible. 
In contrast to the open-surface condition, the record length (T∞) of our ice 
measurements is relatively short (2 min) to prevent the M9 sensor surface 

from freezing. Such a short duration (2 min) might not be enough to obtain the fully convergent profile u∞(z) 
(±5%) (Marian et al., 2021). In addition, it is not possible to obtain boundary layer flow in the first distance of 
0.25 m from the ice layer due to the configuration of ADCP measurement. Future works need to rely on other 
modalities such as Acoustic Doppler Velocimetry (ADV) to capture this boundary layer flow more accurately in 
conjunction with ADCP data. In addition, the comparison between ADV and ADCP data can provide sufficient 
data for uncertainty analysis (Longo et al., 2012) to determine precisely the required sampling duration T∞ for 
ice-covered flows.

In laboratory condition (Flack & Schultz,  2010) or numerical simulation (Ma et  al.,  2021), the value of the 
equivalent roughness height, z0, can be related to the physical roughness (Flack & Schultz, 2010). However, it has 
been shown (Petrie & Diplas, 2016) that the value of z0 cannot be determined reliably using field measurement 
data (Petrie et al., 2013). Under open-surface condition, the obtained values of z0 can vary from 1.0 × 10 −4 m to 
the order of 10.0 m. This variability agrees with other field studies in literature (Petrie & Diplas, 2016; Petrie 
et al., 2013). In particular, this range of obtained z0 does not agree with the measured sediment grain size at the 
site, which has d50 ≈ 0.5 mm (Galloway & Nustad, 2012). In ice-covered case, our estimation for z0 varies from 
1.0 × 10 −7 to 2.03 m as shown in Table 4 for ice roughness. This estimation does not agree with the physical 

Figure 15.  Shear velocity 𝐴𝐴
(

𝑢𝑢
⋆

𝑏𝑏

)

 profiles on the river bed under open-surface 
condition. The value of 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 is derived by the logarithmic fitting method in 

Section 2.4. The relative location ℓ to the outer bank (along the East direction) 
is chosen to represent the vertical locations (see Figure 4). Two levels of 
flow discharge are examined (a) high discharge (QOa = 23.41 m 3/s and 
QOb = 23.87 m 3/s); and (b) low discharge (QOc = 14.3 m 3/s, QOd = 12.2 m 3/s, 
and QOe = 6.82 m 3/s). The details of the flow measurements are reported in 
Table 1.
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range of ice roughness (Bushuk et al., 2019), which is at the limit of 0.02 m. 
Therefore the fitted value of z0 cannot be interpreted as the actual physical 
roughness.

5.  Conclusion
The impacts of ice coverage on velocity profiles in a river bend are investi-
gated using Acoustic Doppler Current Profiler. The main goal is to evaluate 
the changes in the vertical velocity profiles as well as the secondary flow 
pattern as the ice coverage emerges in a river bend. In addition, the quartic 
method is examined as an alternative procedure to derive the bed shear veloc-
ity instead of using the classical logarithmic method. Our results show that 
the vertical flow profiles and the bed shear velocity are altered significantly 
under ice coverage. The following conclusions are made:

1.	 �Our data support the existence of a universal logarithmic layer close to 
the river bed (within 20% of the local depth) in the thalweg of the bend 
under open-surface condition. In certain locations, the logarithmic layer 
can extend up to 50% of the total depth. In wall units, the theoretical 
bound (Equation 3) is well respected.

2.	 �Under ice-covered condition, the logarithmic law is not recognized for 
the majority of the vertical locations. In the cases where it is applicable, 
the logarithmic layer is restricted in 20% of the total depth.

3.	 �It might be challenging to use the logarithmic law to derive the shear 
velocities 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 due to the lack of data both temporally and spatially 

near the bed and the ice layers. On the other hand, the quartic solution 
(Guo et al., 2017) is helpful in determining these shear velocities. The 
quartic solution, however, is sensitive to the determination of zmax, which 
might result in an underestimation of the shear stresses.

4.	 �Our results show that the ice coverage changes the spatial distribution 
of the bed shear stress across the cross-section. Under the open-surface 
condition, the spatial distribution of bed shear velocity is skewed toward 
the outer bank, especially under a high discharge. Under the ice-covered 
condition, high values of bed shear velocity appear on both banks. The 
elevated values of shear stresses near the banks suggest that sediment 
transport processes might be active during winter in shallow areas.

5.	 �Under open-surface condition, the secondary flow pattern is dependent 
on the flow discharge. At high discharge, a single circulation dominates 
the overall pattern. At low discharge, two counter-rotating circulations, 
which have reverse senses of rotation to the high discharge one, mutually 
exist. Under ice-covered condition, the secondary flow pattern becomes 
highly complex. Multiple circulations are found simultaneously with 
alternating senses of rotation. This feature is distinctively different from 
the open-surface counterparts.
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version 3.2.1 (Caswell et  al., 2020), available under the Matplotlib license at https://matplotlib.org/. Velocity  

Figure 16.  The distribution of shear velocity on: (a) the ice layer 𝐴𝐴
(

𝑢𝑢
⋆

𝑖𝑖

)

 , and 
(b) the river bed 𝐴𝐴

(

𝑢𝑢
⋆

𝑏𝑏

)

 across the bend apex cross-section. The blue diamonds 
represent the shear velocities which are derived from the logarithmic 
methodology (Section 2.4). The red circles represent the shear velocities, 
which are derived from the quartic methodology. The dash-dotted lines show 
the trend lines of 𝐴𝐴 𝐴𝐴

⋆

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

⋆

𝑏𝑏
 with each type of fitting methodology.
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contours and vectors were created through the open-source Paraview software (5.4.1). The flow velocity data 
was first processed using the Velocity Mapping Toolbox (VMT) version (4.09) licensed, available at https://
hydroacoustics.usgs.gov/movingboat/VMT/VMT.shtml. The raw data is processed with our MATLAB (v. 9.6) 
scripts. Our raw data is available at https://github.com/trunglendsu/ESIP/tree/main/ADCP_Data.
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