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a b s t r a c t

High interfacial stresses near the ends of adherends are responsible for debonding failure of
bonded joints used extensively in structural engineering and microelectronics packaging.
This paper proposes a stress-function variational method for determination of the interfa-
cial stresses in a single-sided strap joint subjected to mechanical and thermal loads. During
the process, two interfacial shear and normal (peeling) stress functions are introduced, and
the planar stresses of adherends of the joints are expressed in terms of the stress functions
according to the static equilibrium equations. Two coupled governing ordinary differential
equations (ODEs) of the stress functions are obtained through minimizing the complemen-
tary strain energy of the joints and solved explicitly in terms of eigenfunctions. The stress
field of the joints based on this method can satisfy all the traction boundary conditions
(BCs), especially the shear-free condition near the adherend ends. Compared to results
based on finite element method (FEM) and other analytic methods in the literature, the
present variational method is capable of predicting highly accurate interfacial stresses.
Dependencies of the interfacial stresses upon the adherend geometries, moduli and tem-
perature are examined. Results gained in this study are applicable to scaling analysis of
joint strength and examination of solutions given by other methods. The present formalism
can be extended conveniently to mechanical and thermomechanical stress analysis of
other bonded structures such as adhesively bonded joints, composite joints, and recently
developed flexible electronics, among others.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bonded joints have found extensive applications in load transfer and connection of separated parts in aerospace, ground
and marine vehicles and other broad mechanical and civil structures. Bonded joints also play an important role in microelec-
tronics packaging and structural repairing. In the view of structural integrity, strength and durability of bonded joints directly
influences the reliability and safety of the resulting structures. Due to the existence of multiple surfaces/interfaces and mate-
rial dissimilarities across bonding interfaces, a complicated stress field and high stress concentration usually exist near free
edges of bonded joints in service. The high interfacial shear and normal (peeling) stresses are responsible for the typical deb-
onding failure of joints. Without a doubt, accurate estimate of the mechanical and thermal stresses of bonded joints is crucial
to joint design and health evaluation as well as understanding of their failure mechanism and damage evolution.

In the past decades, several analytic joint models have been proposed to approach the stress field of bonded joints sub-
jected to mechanical and thermal loads. To mention a few, Volkersen (1938) and Goland and Reissner (1944) are deemed as
. All rights reserved.
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the pioneers who first conducted the stress analyses of adhesively bonded single-lap joints subjected to mechanical loads. A
few limitations exist in their pioneering studies: the peak shear stress appears at adherend ends that violates the shear-free
condition at the free-ends; stress variation across the adhesive layer was ignored, among others. Hart-Smith (1973a, 1973b)
extended the above works by further taking into account the plasticity (idealized elastoplastic solid model) of the adhesive
layer, adherend stiffness imbalance and thermal mismatch. In Hart-Smith’s work, a failure criterion based on maximum
shear-strain was adopted. It was concluded that plastic deformation of the adhesive layer enhanced the strength of adhe-
sively bonded lap joints; in contrast dissimilarities of stiffness and coefficients of thermal expansion of the adherends de-
creased the strength of the bonded joints under consideration (Hart-Smith, 1973a, 1973b). Besides, by using a higher
order theory, Chen and Cheng (1983) presented an analytic model based on two-dimensional (2D) elasticity and the theorem
of minimum complementary strain energy. This model predicts that the peak shear stress in the adhesive layer is located at a
distance of �20% the adherend thickness from the adherend ends. Such shear stress distribution is largely in an agreement
with those predicted by means of finite element analysis (FEA) (Diaz, Hadj-Ahmed, Foret, & Ehrlacher, 2009; Lee & Kim,
2005; Mortensen & Thomsen, 2002). In addition, Tsai, Oplinger, and Morton (1998) furthered the classic studies by Volkersen
(1938) and Goland and Reissner (1944) to adopt a linearly varying shear deformation across the adhesive layer. Her (1999)
provided a simple tension-bar model to approach the interfacial stresses in adhesively bonded lap joints; Lee and Kim (2005)
considered adhesively bonded single/double lap joints, in which the adhesive layers were modeled as distributed linearly
elastic springs. Similarly, a generalized treatment dealing with the adherends as flexural beams can be traced to an earlier
work by Delale, Erdogan, and Aydinoglu (1981). A detailed review of historical development and comparison of several
important analytical models for stress analysis of adhesively bonded joints and composite joints can be found in the recent
review papers dedicated by da Silva, das Neves, Adams, and Spelt (2009a, 2009b). Yet, by studying the available models of
adhesively bonded joints, it is obvious that the adhesive layers in these models play a crucial role in the modeling process
and they function to connect the adherends of mismatching displacements. However, mismatch of material properties be-
tween the adherends and adhesive layers has been ignored though some thermosetting adhesive systems actually bear the
moduli very close to those of the synthetic adherends; generalized Hooke’s law of the adhesive layers and the shear-free con-
dition at the ends of adherends are not satisfied in most of these models.

On the other hand, with the development of microelectronics techniques since the 1980s, thermal stress induced struc-
tural failure and functionality defects in electronics packaging have become one of the technical concerns attracting excep-
tional research in the last three decades (Chen & Nelson, 1979; Ru, 2002; Suhir, 1986, 1989a, 1989b, 1991, 2001; Suhir &
Vujosevic, 2010; Suo, 2003; Timoshenko, 1925; Tsai, Hsu, & Han, 2004). It is technically desired to accurately predict the
interfacial thermal stresses in bonded thermostats (chips) (Chen & Nelson, 1979; Ru, 2002; Suhir, 1986, 1989a, 1989b,
1991, 2001; Suhir & Vujosevic, 2010; Timoshenko, 1925; Tsai et al., 2004) and the failure mechanism and damage evolution
in combined thermal and electric fields (Suo, 2003). More recently, with the birth of flexible electronics rooted in smart
deposition of rigid silicon micro-devices on compliant polymeric substrates, substantial effort has been devoted to explora-
tion of their mechanical functionality and durability that highly depend upon the interfacial stresses between the free-stand-
ing stiff silicon units and the flexible substrate layers (Jiang et al., 2007, 2008; Khang, Jiang, Huang, & Rogers, 2006, 2009; Kim
& Rogers, 2008; Lu, Yoon, & Suo, 2007; Song et al., 2008; Sun, Choi, Jiang, Huang, & Rogers, 2006). Accurate prediction of such
interfacial stresses is expected extremely important to optimize the deposition process and improve the mechanical dura-
bility of the novel intelligent flexible electronics to be commercialized in the near future (e.g. flexible displayers, etc.).

Along the vein of this development, in this study we propose an efficient stress-function variational method to approach
the mechanical and thermomechanical stresses of bonded joints subjected to mechanical load and temperature change. Two
interfacial shear and normal stress functions are introduced in this formulation; planar stress components of the bonded
joints are expressed in terms of these stress functions. To do so, the axial normal stress in each adherend of the joints is as-
sumed linearly varying across the adherend layer following the flexural stress formula of classic Euler–Bernoulli beams; the
other planar shear and transverse normal stresses in the adherends are determined to satisfy the static equilibrium equa-
tions and traction boundary conditions at the bottom and top surfaces and the ends of the adherends. Based on the theorem
of minimum complementary strain energy, two coupled governing ordinary differential equations (ODEs) of the stress func-
tions can be obtained and solved explicitly in terms of eigenfunctions. The stress field of the joints given by this method can
satisfy all the traction boundary conditions (BCs), especially the shear-free condition at the adherend ends which was nor-
mally ignored in typical analytic methods reported in the literature. Validation of the present method will be performed by
comparison of the interfacial stresses with those predicted by finite element method (FEM) and other analytic methods.
Dependencies of the interfacial stresses upon the adherend geometries, moduli and temperature change will be examined.
The present method is expected to provide improved accuracy of stress analysis of bonded joints subjected to mechanical
and thermal loads, which will further facilitate the study of interfacial cracking in bonded joints and other layered structures
(Hutchinson & Suo, 1992; Li, 2001; Li & Lee, 2009; Sih, 1973; Suo & Hutchinson, 1990; Tada, Paris, & Irwin, 1973; Wu & Dze-
nis, 2002; Wu, Lilla, & Zou, 2002, 2003, 2003, 2004; Yu & Hutchinson, 2003; Yu, He, & Hutchinson, 2001). The rest of the
paper is planned as follows. Section 2 provides the theoretical framework of the stress-function variational method based
on a single-sided strap joint as used as the model joint, including expressions of adherend stresses in terms of the interfacial
stress functions and formulation of the governing ODEs. Section 3 demonstrates the reliability of the present method
through determining the stress field in a single-sided strap joint subjected to mechanical load and temperature change,
respectively. Comparisons of the results with those given by FEM and available in the literature are made. Consequently,
applications of the present formalism and conclusions of this study are remarked.
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2. Problem formulation and solution

Without loss of generality, we start with a single-sided strap joint consisting of two identical slender substrate layers and
a slender cover layer as sketched in Fig. 1. The cover layer has the length 2L, thickness h1, and width b, and the substrate
layers have the thickness h2, width b, and length much larger than L. The coordinate systems are introduced as follows.
The x-coordinate is selected from the symmetric mid-span of the joint and directs along the layer axis; y1 and y2 are the ver-
tical coordinates with the corresponding origins located at the centroids of cross-sections of the cover and substrate layers,
respectively. The substrate layers are subjected to a uniform tensile stress p0 far away the cover layer; meanwhile the joint is
subjected to a uniform temperature change DT from the reference temperature of thermal stress free state. Due to symmetry
of the joint and external loading, stress analysis of the joint can be made only on the right half-portion [see Fig. 1(b)]. It is
expected that the mismatch of material properties across the adherend interfaces yields high mechanical and thermome-
chanical interfacial shear and normal stresses (debonding stresses) at the adherend ends as illustrated in Fig. 1(c). Such high
interfacial stresses are responsible for the failure of bonded joints, such as interface debonding commonly observed in engi-
neered structural joints.

Rigidly speaking, the adherends of bonded joints are in a complicated three-dimensional (3D) stress state due to the mis-
match of Poisson’s ratios across the adherend interfaces. To simplify the process, hereafter the joint is considered in the
plane-stress state, no residual stresses exist in the initial load-free state at the reference temperature, and the temperature
change is uniform in the joint. In addition, the adherends are dealt with as isotropic, linearly thermoelastic solids. For the
convenience of derivation below, parameters and variables with subscripts 1 and 2 are attached to the cover layer and
the substrate layers, respectively. Furthermore, results obtained in the plane-stress state can be conveniently converted to
those of the plane-strain state by replacing the Young’s moduli Ei(i = 1,2) by Ei= 1� t2

i

� �
, Poisson’s ratio ti(i = 1,2) by ti/

(1 � ti), and coefficients of thermal expansion ai(i = 1,2) by (1 + ti)ai.

2.1. Static equilibrium equations

Due to loss of lateral symmetry, deformation of a single-sided strap joint subjected to axial tension and/or uniform tem-
perature change is a combination of in-plane elongation and lateral deflection. The adherends of the joint are slender and
therefore dealt with as classic Euler–Bernoulli beams. Free-body diagrams (FBDs) of representative segments of the cover
and the substrate layers are shown in Fig. 2(a) and (b), respectively, in which stresses and relevant resultants, i.e., the axial
force Si, shear force Qi, and bending moment Mi(i = 1,2), are defined to follow standard sign conventions designated in ele-
mentary Mechanics of Materials (Beer, Johnston, Dewolf, & Mazurek, 2009). For the representative segmental element of the
cover layer [see Fig. 2(a)], relevant static equilibrium equations are
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Schematic of a single-sided strap joint: (a) the joint consists of a slender cover layer bonded to two identical slender substrate layers, (b) reduced
lf-structure based on symmetry, and (c) schematic interfacial shear and normal stresses.
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Fig. 2. Free-body diagrams of representative segmental elements of the adherends: (a) a representative segmental element of the cover layer and (b) a
representative segmental element of the right-substrate layer.
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RM ¼ 0 :
dM1

dx
¼ Q 1 �

h1

2
ðbsÞ: ð3Þ
Meanwhile, the static equilibrium equations of the representative segmental element of the right-substrate layer [see
Fig. 2(b)] are
RFx ¼ 0 :
dS2

dx
¼ bs; ð4Þ

RFy ¼ 0 :
dQ2

dx
¼ br; ð5Þ

RM ¼ 0 :
dM2

dx
¼ Q 2 �

h2

2
ðbsÞ: ð6Þ
2.2. Stress resultants

Define the interfacial shear stress s and normal (peeling) stress r as two independent functions to be determined:
s ¼ f ðxÞ and r ¼ gðxÞ: ð7Þ
The shear-free condition of the adherend edges at x = 0 and L requires
f ð0Þ ¼ f ðLÞ ¼ 0: ð8Þ
In addition, physical conditions of the axial tractions, shear-forces and bending moments at the adherend ends of the joint
specify
S1ð0Þ ¼ p0bh2; ð9aÞ
S1ðLÞ ¼ 0; ð9bÞ
Q1ð0Þ ¼ 0; ð9cÞ
Q1ðLÞ ¼ 0; ð9dÞ
M1ð0Þ ¼ M0 ¼ p0bh2ðh1 þ h2Þ=2; ð9eÞ
M1ðLÞ ¼ 0: ð9fÞ
S2ð0Þ ¼ 0; ð9gÞ
S2ðLÞ ¼ p0bh2; ð9hÞ
Q2ð0Þ ¼ 0; ð9iÞ
Q2ðLÞ ¼ 0; ð9jÞ
M2ð0Þ ¼ 0; ð9kÞ
M2ðLÞ ¼ 0: ð9lÞ
In the above, not all the BCs are linearly independent as will be discussed in Section 2.4.
In the case of thermomechanical stress analysis of the joint due to a pure temperature change DT(p0 = 0), the right terms

of (9a), (9e) and (9h) should be zeros in order to satisfy the traction-free BCs. In this case, thermomechanical analysis of a
single-sided strap joint is equivalent to that of bi-material thermostats as initially studied by Timoshenko (1925) and Suhir
(1986, 1989a, 1989b, 1991).
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Furthermore, all the stress resultants of the segmental elements of the layers can be uniformly expressed in terms of f and
g as follows. By integrating (1) with respect to x from x = 0, it yields
Z x

0
dS1 ¼ �

Z x

0
bf ðnÞdn: ð10Þ
With the shear-free condition at x = 0, i.e., BC (8), and BC (9a), the axial normal force (10) in the cover layer can be written
as Z x
S1ðxÞ ¼ p0bh2 � b
0

f ðnÞdn: ð11Þ
Integration of (2) with respect to x from x = 0 gives the shear-force of the cover layer:
Z x

0
dQ1 ¼ �

Z x

0
bgðnÞdn: ð12Þ
In addition, with the aid of the shear-free condition at x = 0 as given in (9c), the shear-force (12) in the cover layer
becomes
Q 1ðxÞ ¼ �b
Z x

0
gðnÞdn: ð13Þ
Moreover, integration of (3) with respect to x from x = 0 gives
Z x

0
dM1 ¼

Z x

0
Q 1ðnÞ �

h1

2
ðbsÞ

� �
dn: ð14Þ
By using the bending-moment BC at x = 0 as given in (9e), the bending moment (14) in the cover layer can be expressed
M1ðxÞ ¼ M0 � b
Z x

0

Z n

0
gð1Þd1 dn� bh1

2

Z x

0
f ðnÞdn: ð15Þ
Based on the same procedure, integration of (4) with respect to x from x = 0 yields
Z x

0
dS2 ¼

Z x

0
bf ðnÞdn: ð16Þ
With the axial traction BC at x = 0 as given in (9g), the axial force (16) in the substrate layer can be expressed as
S2ðxÞ ¼ b
Z x

0
f ðnÞdn: ð17Þ
Furthermore, the shear-force Q2(x) and bending moment M2(x) of the substrate layer can be determined accordingly by inte-
grating (5) and (6) with respect to x from x = 0, respectively:
Q 2ðxÞ ¼ b
Z x

0
gðnÞdn; ð18Þ

M2ðxÞ ¼ b
Z x

0

Z n

0
gð1Þd1 dn� bh2

2

Z x

0
f ðnÞdn: ð19Þ
In the above, two BCs of free shear-force and bending moment at x = 0 as given in (9i) and (9k) have been implied in the
derivations.

2.3. Planar stresses in adherends

2.3.1. Planar stresses in the cover layer
For slender adherends of the single-sided strap joint under consideration, as an approach, the axial normal stress in each

adherend can be assumed to be varying linearly. Such axial stress can be specified through the flexural stress formula of clas-
sic Euler–Bernoulli beams. As a result, the axial stress of the cover layer can be expressed as
rð1Þxx ¼
S1

bh1
�M1y1

I1
¼ p1 �

1
h1

Z x

0
f ðnÞdn� 12y1

h3
1

M0 �
Z x

0

Z n

0
gð1Þd1 dn� h1

2

Z x

0
f ðnÞdn

� �
: ð20Þ
Shear stress sð1Þy1x of the cover layer can be determined by integrating the 2D equilibrium equation of a representative
element:
@rð1Þxx

@x
þ
@sð1Þy1x

@y1
¼ 0; ð21Þ
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with respect to y1 from an arbitrary location y to the top surface at y1 = h1/2:
Z h1=2

y1

@rð1Þxx

@x
dy1 þ

Z h1=2

y1

@sð1Þy1x

@y1
dy1 ¼ 0; ð22Þ
which leads to
sð1Þy1x ¼ �
1
h1

h1

2
� y1

� �
� 3

h1

h2
1

4
� y2

1

 !" #
f ðxÞ þ 6

h3
1

h2
1

4
� y2

1

 !Z x

0
gðnÞdn: ð23Þ
In the above, the traction-free BC: sð1Þy1xðh1=2Þ ¼ 0 has been carried out. Furthermore, transverse normal stress rð1Þy1y1
in the cov-

er layer can be calculated by integrating the 2D equilibrium equation:
@rð1Þy1y1

@y1
þ
@sð1Þxy1

@x
¼ 0; ð24Þ
with respect to y1 from an arbitrary location y to the top surface at y1 = h1/2 as
Z h1=2

y1

@rð1Þy1y1

@y1
dy1 þ

Z h1=2

y1

@sð1Þxy1

@x
dy1 ¼ 0; ð25Þ
which yields
rð1Þy1y1
¼ � 1

h1

h1

2
h1

2
� y1

� �
� 1

2
h2

1

4
� y2

1

 !
� 3

h1

h2
1

4
h1

2
� y1

� �
� 1

3
h3

1

8
� y3

1

 !" #( )
f 0ðxÞ

þ 6

h3
1

h2
1

4
h1

2
� y1

� �
� 1

3
h3

1

8
� y3

1

 !" #
gðxÞ: ð26Þ
2.3.2. Planar stresses in the substrate layers
The stress components in the slender substrate layers can be obtained using the same approach. The axial normal stress

can be approximated to follow the flexural stress formula of classic Euler–Bernoulli beams:
rð2Þxx ¼
S2

bh2
�M2y2

I2
¼ 1

h2

Z x

0
f ðnÞdn� 12y2

h3
2

Z x

0

Z n

0
gð1Þd1 dn� h2

2

Z x

0
f ðnÞdn

� �
: ð27Þ
Shear stress sð2Þy2x can be determined through integration of the 2D static equilibrium equation:
@rð2Þxx

@x
þ
@sð2Þy2x

@y2
¼ 0; ð28Þ
with respect to y2 from the bottom surface y2 = �h2/2 to an arbitrary location y2 of the substrate layer such that
Z y2

�h2=2

@rð2Þxx

@x
dy2 þ

Z y2

�h2=2

@sð2Þy2x

@y2
dy2 ¼ 0; ð29Þ
which leads to
sð2Þy2x ¼ �
1
h2

y2 þ
h2

2

� �
þ 3

h2
y2

2 �
h2

2

4

 !" #
f ðxÞ þ 6

h3
2

y2
2 �

h2
2

4

 !Z x

0
gðnÞdn: ð30Þ
In the above, the stress-free BC: sð2Þy2xð�h2=2Þ ¼ 0 has been used. Furthermore, normal stress rð2Þy2y2
in the substrate layer can be

determined by integrating the 2D equilibrium equation:
@rð2Þy2y2

@y2
þ
@sð2Þxy2

@x
¼ 0; ð31Þ
with respect to y2 from the bottom surface at y2 = �h2/2 to an arbitrary location y2 such that
Z y2

�h2=2

@rð2Þy2y2

@y2
dy2 þ

Z y2

�h2=2

@sð2Þxy2

@x
dy2 ¼ 0; ð32Þ
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which further reduces to
rð2Þy2y2
¼ 1

h2

1
2

y2
2 �

h2
2

4

 !
þ h2

2
y2 þ

h2

2

� �" #
þ 3

h2
2

1
3

y3
2 þ

h3
2

8

 !
� h2

2

4
y2 þ

h2

2

� �" #( )
f 0ðxÞ

� 6

h3
2

1
3

y3
2 þ

h3
2

8

 !
� h2

2

4
y2 þ

h2

2

� �" #
gðxÞ: ð33Þ
In the above, traction-free BC: rð2Þy2y2
ð�h2=2Þ ¼ 0 has been adopted.

From the above derivation, it can be concluded that with the approximation of axial normal stress varying linearly across
the cover and substrate layers, the corresponding statically compatible shear and transverse normal stresses vary parabol-
ically and cubically across the layers, respectively.

2.4. Governing equations of interfacial stress functions and solution

With the above stress components in the cover and substrate layers, strain energy of the right half-joint (0 6 x 6 L) can be
expressed as (Beer et al., 2009; Chen & Cheng, 1983; Wu, Dzenis, & Strabala, 2008)
U ¼ b
Z L

0

Z h1=2

�h1=2

1
2

rð1Þxx eð1Þxx þ rð1Þyy eð1Þyy

h i
þ 1þ t1

E1
sð1Þxy1

� 	2

 �

dx dy1

þ b
Z L

0

Z h2=2

�h2=2

1
2

rð2Þxx eð2Þxx þ rð2Þyy eð2Þyy

h i
þ 1þ t1

E1
sð2Þxy2

� 	2

 �

dx dy2: ð34Þ
In the above, eðiÞxx and eðiÞyy(i = 1,2) are respectively the axial and transverse normal strains of the adherends defined by general-
ized Hooke’s law of isotropic, linearly thermoelastic solids (in the plane-stress state):
eðiÞxx ¼
1
Ei

rðiÞxx �
ti

Ei
rðiÞyy þ aiDT; ð35Þ

eðiÞyy ¼
1
Ei

rðiÞyy �
ti

Ei
rðiÞxx þ aiDT; ð36Þ
where ai(i = 1,2) are coefficients of thermal expansion of the upper and lower adherends, respectively, and DT is the uniform
temperature change of the joint from a reference temperature of thermomechanical-stress free state. Mathematically, strain
energy (34) is a functional with respect to the two unknown interfacial stress-functions f and g introduced above. Based on
the theorem of minimum complementary strain energy of elastic bodies, the strain energy of the joint reaches a stationary
point in the state of static equilibrium, which corresponds to the necessary condition in terms of variation of the strain en-
ergy (34) such that (Chen & Cheng, 1983; Timoshenko & Goodier, 1951; Wu et al., 2008)
dU ¼ 0; ð37Þ
i.e.,
dU ¼ b
Z L

0

Z h1=2

�h1=2

1
2

rð1Þxx deð1Þxx þ drð1Þxx eð1Þxx þ rð1Þyy deð1Þyy þ drð1Þyy eð1Þyy

h i
þ 2ð1þ t1Þ

E1
sð1Þxy1

dsð1Þxy1


 �
dx dy1

þ b
Z L

0

Z h2=2

�h2=2

1
2

rð2Þxx deð2Þxx þ drð2Þxx eð2Þxx þ rð2Þyy deð2Þyy þ drð2Þyy eð2Þyy

h i
þ 2ð1þ t2Þ

E2
sð2Þxy2

dsð2Þxy2


 �
dx dy2: ð38Þ
where d is the mathematical varational operator with respect to either f or g.
By substituting the stress expressions (20), (23), (26), (27), (30) and (33) and normal strains (35) as well as (36) into (38)

and performing several variational operations and mathematical simplifications, it turns out that stress-functions f and g sat-
isfy a system of two coupled 4th-order ODEs of constant coefficients:
A11FðIVÞðnÞ þ A12GðIVÞðnÞ þ B11F 00ðnÞ þ B12G00ðnÞ þ C11FðnÞ þ C12GðnÞ þ D1 ¼ 0; ð39aÞ

A12FðIVÞðnÞ þ A22GðIVÞðnÞ þ B12F 00ðnÞ þ B22G00ðnÞ þ C12FðnÞ þ C22GðnÞ þ D2 ¼ 0; ð39bÞ
where
FðnÞ ¼ Fðx=h2Þ ¼ �
1

p0h2

Z x

0
f ðfÞdf; ð40aÞ

GðnÞ ¼ Gðx=h2Þ ¼
1

p0h2
2

Z x

0

Z f

0
gðgÞdg df; ð40bÞ
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A11 ¼
1

105
h3

12 þ e12

� 	
; ð41aÞ

A12 ¼
11

210
�h2

12 þ e12

� 	
; ð41bÞ

A22 ¼
13
35
ðh12 þ e12Þ; ð41cÞ

B11 ¼ �
4

15
ðh12 þ e12Þ; ð41dÞ

B12 ¼
1
5
½ð1� 5l1Þ � ð1� 5l2Þe12�; ð41eÞ

B22 ¼ �
12
5

h�1
12 þ e12

� 	
; ð41fÞ

C11 ¼ 4 h�1
12 þ e12

� 	
; ð41gÞ

C12 ¼ 6 �h�2
12 þ e12

� 	
; ð41hÞ

C22 ¼ 12 h�3
12 þ e12

� 	
; ð41iÞ

D1 ¼

ð3þ 4h12Þh�2
12 þ 1

2 ða1 � a2ÞDTE1=p0;

ðfor combined mechanical and thermal loads—plane-stressÞ
ð3þ 4h12Þh�2

12 þ 1
2 ½ð1þ t1Þa1 � ð1þ t2Þa2�DTE1=p0;

ðfor combined mechanical and thermal loads—plane-strainÞ
ð3þ 4h12Þh�2

12 ; ðfor pure mechanical load—either plane-stress or plane-strainÞ
1
2 ða1 � a2ÞDTE1=p0; ðfor pure thermal load—plane-stressÞ
1
2 ½ð1þ t1Þa1 � ð1þ t2Þa2�DTE1=p0; ðfor pure thermal load—plane-strainÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð41jÞ

D2 ¼
�6ð1þ h12Þh�3

12 ; ðfor pure mechanical or combined mechanical and thermal loadsÞ
0; ðfor pure thermal loadÞ

(
ð41kÞ

h12 ¼ h1=h2; ð41lÞ
e12 ¼ E1=E2: ð41mÞ
In the above, when the thermomechanical stress of the joint due to pure temperature change is considered, the stress p0

adopted in the 4th and 5th expressions in (41j) is understood as a stress reference for dimensionless purpose as was initially
introduced in (40a) and (40b). In addition, these governing equations can also be applied to the cases of plane strain by
replacing Ei by Ei= 1� t2

i

� �
; ti by ti/(1 � ti), and ai by (1 + ti)ai, where i = 1, 2.

Furthermore, the system of dimensionless ODEs (39a) and (39b) can be recast in matrix format:
A11 A12

A12 A22

� �
FðIVÞðnÞ
GðIVÞðnÞ

( )
þ

B11 B12

B12 B22

� �
F 00ðnÞ
G00ðnÞ


 �
þ

C11 C12

C12 C22

� �
FðnÞ
GðnÞ


 �
þ

D1

D2


 �
¼

0
0


 �
: ð42Þ
The above ODEs can be further expressed in a concise format:
½A�fUðIVÞg þ ½B�fU00g þ ½C�fUg þ fDg ¼ f0g; ð43Þ
where [A], [B] and [C] are three 2 � 2 symmetric real matrices:
½A� ¼ ½A�T ¼
A11 A12

A12 A22

� �
; ð44aÞ

½B� ¼ ½B�T ¼
B11 B12

B12 B22

� �
; ð44bÞ

½C� ¼ ½C�T ¼
C11 C12

C12 C22

� �
; ð44cÞ
and {U}, {D}, and {0} are three vectors defined as
fUg ¼ fFðnÞ;GðnÞgT ; ð45aÞ
fDg ¼ fD1;D2gT

; ð45bÞ
f0g ¼ f0;0gT

: ð45cÞ
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The solution to (43) can be obtained by superimposing the general solution {W} of the corresponding set of homogeneous
ODEs to a particular solution {U0}:
fUg ¼ fWg þ fU0g; ð46Þ
½A�fWðIVÞg þ ½B�fW00g þ ½C�fWg ¼ f0g; ð47Þ
fU0g ¼ �½C��1fDg: ð48Þ
To solve the system of homogeneous ODEs (47), assume the general solution {W} to carry the form:
fWg ¼ fW0g expðknÞ; ð49Þ
where k and {W0} are respectively the eigenvalue and eigenvector of the characteristic equation corresponding to (47):
k4½A�fW0g þ k2½B�fW0g þ ½C�fW0g ¼ f0g: ð50Þ
In addition, by introducing
fW1g ¼ k2fW0g; ð51Þ
the eigenvalue problem (50) can be converted to a generalized eigenvalue problem:
I 0
0 A

� �
W0

W1


 �
¼ �k�2 0 �I

C B

� �
W0

W1


 �
; ð52Þ
which can be solved efficiently by using robust numerical algorithms available in the literature [e.g. the eig () function pro-
vided by Matlab™]. Thus, the final expression of the general solution (46) is
fUg ¼
X4

k¼1

ck Wk
0

n o
expðkknÞ þ dk Wk

0

n o
expð�kknÞ

h i
þ fU0g; ð53Þ
where Wk
0

n o
(k = 1,2,3,4) are eigenvectors attached to eigenvalues kk(k = 1,2,3,4), respectively, and ck and dk(k = 1,2,3,4) are

the real or complex constants to be determined in satisfying the traction BCs (8)–(9I). Only eight BCs are linearly indepen-
dent and can be extracted from (8)–(9I) to determine ck and dk(k = 1,2,3,4) such that
Fð0Þ ¼ 0; ð54aÞ
FðL=h2Þ ¼ �1; ð54bÞ
F 0ð0Þ ¼ 0; ð54cÞ
F 0ðL=h2Þ ¼ 0; ð54dÞ
Gð0Þ ¼ 0; ð54eÞ
GðL=h2Þ ¼ 1=2; ð54fÞ
G0ð0Þ ¼ 0; ð54gÞ
G0ðL=h2Þ ¼ 0: ð54hÞ
Consequently, substitution of (53) into (54a)–(54h) leads to a set of eight linear algebraic equations:
X4

k¼1

ckW
k;1
0 þ

X4

k¼1

dkW
k;1
0 ¼ �Uð1Þ0 ; ð55aÞ

X4

k¼1

ckW
k;1
0 expðkkL=h2Þ þ

X4

k¼1

dkW
k;1
0 expð�kkL=h2Þ ¼ � 1þUð1Þ0

h i
; ð55bÞ

X4

k¼1

ckkkW
k;1
0 �

X4

k¼1

dkkkW
k;1
0 ¼ 0; ð55cÞ

X4

k¼1

ckkkW
k;1
0 expðkkL=h2Þ �

X4

k¼1

dkkkW
k;1
0 expð�kkL=h2Þ ¼ 0; ð55dÞ

X4

k¼1

ckW
k;2
0 þ

X4

k¼1

dkW
k;2
0 ¼ �Uð2Þ0 ; ð55eÞ

X4

k¼1

ckW
k;2
0 expðkkL=h2Þ þ

X4

k¼1

dkW
k;2
0 expð�kkL=h2Þ ¼ 1=2�Uð2Þ0 ; ð55fÞ
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X4

k¼1

ckkkW
k;2
0 �

X4

k¼1

dkkkW
k;2
0 ¼ 0; ð55gÞ

X4

k¼1

ckkkW
k;2
0 expðkkL=h2Þ �

X4

k¼1

dkkkW
k;2
0 expð�kkL=h2Þ ¼ 0: ð55hÞ
In the above, Wk;1
0 and Wk;2

0 (k = 1,2,3,4) are respectively the first and second elements of the kth eigenvector, and Uð1Þ0 and Uð2Þ0

are the 1st and 2nd elements of the particular solution vector {U0}. Moreover, for thermomechanical stress analysis of the
joint due to pure temperature change, the right terms of (54b) and (54f) should be zeros, which further influence the right
terms of (55b) and (55f) accordingly. Therefore, once ck(k = 1,2,3,4) and dk(k = 1,2,3,4) are determined by solving the above
system of linear algebraic Eqs. (55a)–(55h) numerically, relations (40a), (40b) and (53) finalize the stress functions f and g as
f ðxÞ=p0 ¼
X4

k¼1

ckW
k;1
0 kk expðkkx=h2Þ �

X4

k¼1

dkW
k;1
0 kk expð�kkx=h2Þ; ð56aÞ

gðxÞ=p0 ¼
X4

k¼1

ckW
k;2
0 k2

k expðkkx=h2Þ þ
X4

k¼1

dkW
k;2
0 k2

k expð�kkx=h2Þ: ð56bÞ
Consequently, with the stress functions f and g given in (56a) and (56b), all planar stresses in the adherends can be deter-
mined using the expressions formulated in Section 2.3. It needs to be mentioned that except for the BCs of the single-sided
strap joint, all the derivations above are actually independent of the specific configuration of the joint. Thus, the governing
Eqs. (39a) and (39b) can be applicable to other statically equivalent bonded joints such as single-lap joint, symmetric bonded
joints, etc.

3. Examples and discussions

3.1. Interfacial stresses in a single-strap joint due to mechanical loads

To validate the analytic model formulated in this work, we consider the interfacial shear and normal stresses of a single-
sided strap joint subjected to uniform axial tension (in plane-stress state) by using the present method and FEM (ANSYS™),
respectively. The single-sided strap joint is assumed to be made of two identical aluminum substrate layers (E2 = 70 GPa,
v2 = 0.34) reinforced with a steel cover layer (E1 = 200 GPa, v1 = 0.29). The adherends have the same width; other geometries
of the joint are: h1 = 2 mm (steel), h2 = 4 mm (aluminum), and L = 20 mm (See Fig. 1). The uniform tensile stress of the sub-
strate layers is assumed to be p0 = 1 MPa. In the linear FEM stress analysis of the joint using ANSYS™, four-node elements
(PLANE182) and mapped uniform quadrilateral meshes are utilized. Also, it needs to be mentioned that near the free-edge
of two bonded dissimilar adherends, a stress singularity exists. To track the potential singular stresses near the free edges,
FEM simulations based on four mesh sizes (i.e., 0.4 � 0.4 mm, 0.2 � 0.2 mm, 0.1 � 0.1 mm, and 0.05 � 0.05 mm) are consid-
ered sequentially. Variations of the interfacial shear and normal stresses with the distance from the left edge are plotted in
Fig. 3(a) and (b). It can be observed that due to the bending moment near the mid-span of the joint (See Fig. 1), very high
interfacial stresses exist near the free edge. Furthermore, the stress comparison shown in Fig. 3(a) and (b) indicates that
the present model is capable of predicting very good stress variations along the interface, especially for the interfacial normal
stress.
0 4 8 12 16 20

0

5

10

15

20

25

30

 Mesh size 0.4×0.4 mm, σmax=10.8MPa (FEM) 
 Mesh size 0.2×0.2 mm, σmax=15.5MPa (FEM)
Mesh size 0.1×0.1 mm, σmax=21.5MPa (FEM)
Mesh size 0.05×0.05 mm, σmax=29.3 MPa (FEM)

 Results by the present model, σmax=9.34 MPa

Distance from the left edge

N
or

m
al

 s
tr

es
s 

σ y
y 

(M
Pa

) Comparison of interfacial normal stresses σyy 

x (mm)(a)
0 4 8 12 16 20

-3

-2

-1

0

x (mm)

 Mesh size 0.4×0.4 mm, peak τmax=0.79MPa (FEM) 
 Mesh size 0.2×0.2 mm, peak τmax=1.54MPa (FEM)
Mesh size 0.1×0.1 mm, peak τmax=2.42MPa (FEM)

Mesh size 0.05×0.05 mm, peak τmax=3.43 MPa (FEM)

 Results by the present model, τmax=2.55 MPa

Distance from the left edge 

Sh
ea

r 
 s

tr
es

s 
τ xy

 (
M

Pa
)

Comparison of interfacial shear stresses τxy 

(b)

Comparison of interfacial shear and normal stresses predicted by the present stress-function variational method with those by FEM (ANSYS™): (a)
ial shear stress s and (b) interfacial normal stress r (axial tensile stress of the substrate layers: p0 = 1 MPa).



0 10 20 30 40 50
-120

-100

-80

-60

-40

-20

0

20

(b) x (mm)

Distance from left free edge

Prediction of thermal interfacial normal stresses: 
Aluminum/Molybbdenum system (plane-strain) 
h1=2.5mm; E1=70GPa; υ1=0.345; α1=23.6×10-6/oC
h2=2.5mm; E2=325GPa; υ2=0.293; α2=4.9×10-6/oC
L=50.8mm, ΔT=240 oC 

T
he

rm
al

 in
te

rf
ac

ia
l n

or
m

al
 s

tr
es

s 
σ 

(M
Pa

) 

0 10 20 30 40 50

-60

-40

-20

0

20

40

60 

T
he

rm
al

 in
te

rf
ac

ia
l s

he
ar

 s
tr

es
s 

 τ 
(M

Pa
) 

(a) x (mm)

Distance from left free edge

Prediction of thermal interfacial shear stresses: 
Aluminum/Molybbdenum system (plane-strain) 
h1=2.5mm; E1=70GPa; υ1=0.345; α1=23.6×10-6/oC 
h2=2.5mm; E2=325GPa; υ2=0.293; α2=4.9×10-6/oC 
L=50.8mm, ΔT=240 oC 

Fig. 4. Variations of the thermomechanical interfacial shear and normal stresses in a bimaterial thermostat subjected to uniform temperature change
(DT = 240 �C): (a) interfacial shear stress s and (b) interfacial normal stress r.

0 1 2 3 4 5
-5

0

10

20

30

40

In
te

rf
ac

ia
l n

or
m

al
 s

tr
es

s 
σ /

p 0

h1/h2 decreases

(b) x/h2 

Prediction of interfacial normal stresses: 
Modulus ratio: E1/E2 = 3 
Length ratio: L/h2 = 5 
Thickness ratio: h1/h2=0.2, 0.5, 1 & 2

Distance from joint mid-span 

0 2 4 6 8 10
-8

-6

-4

-2

0 

2 

In
te

rf
ac

ia
l s

he
ar

 s
tr

es
s 

τ/
p 0

Prediction of interfacial shear stresses:  
Modulus ratio: E1/E2 = 3 
Length ratio: L/h2= 10 
Thickness ratio: h1/h2= 0.2, 0.5, 1 & 2

h1/h2 increases

(c) x/h2 

In
te

rf
ac

ia
l n

or
m

al
 s

tr
es

s 

0 2 4 6 8 10

0

10

20

30

40

h1/h2 increases

(d) x/h2 

Prediction of interfacial normal stresses:
Modulus ratio: E1/E2 = 3 
Length ratio: L/h2 = 10 
Thickness ratio: h1/h2=0.2, 0.5, 1 & 2 

Distance from joint mid-span

0 1 2 3 4 5
-8

-6

-4

-2

0

2

In
te

rf
ac

ia
l s

he
ar

 s
tr

es
s 

τ/
p 0

h1/h2 increases

(a) x/h2 

Prediction of interfacial shear stresses:
Modulus ratio: E1/E2 = 3 
Length ratio: L/h2 = 5 
Thickness ratio: h1/h2= 0.2, 0.5, 1 & 2

Fig. 5. Variations of the dimensionless interfacial shear and normal stresses in single-sided strap joints with the dimensionless distance from the joint mid-
span at varying thickness and length ratios (E1/E2 = 3).

X.-F. Wu, R.A. Jenson / International Journal of Engineering Science 49 (2011) 279–294 289
In addition, due to the existence of stress singularity near the free-edge, the interfacial stresses predicted by FEM increase
rapidly with decreasing mesh size. Like most analytic models available in the literature, the present model is unable to pre-
dict such singularity. However, the very good fitting to the interfacial stress variations predicted by FEM confirms the validity
of the present model that can be utilized for scaling analysis, design and optimization of joint structures, among others.
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3.2. Thermal interfacial stresses in a bimaterial thermostat

It has been mentioned that thermomechanical stress analysis of a single-sided strap joint (see Fig. 1) due to a pure tem-
perature change is equivalent to that of a bimaterial thermostat. To validate the present model, herein we consider the ther-
momechanical stress analysis of an aluminum/molybdenum thermostat subjected to a uniform temperature change as
studied by Suhir (1989a, 1989b), Ru (2002), Eischen, Chung, and Kim (1990). In terms of the symbol system utilized in this
work, the system parameters are: h1 = 2.5 mm, E1 = 70 GPa, t1 = 0.345, a1 = 23.6 � 10�6/�C, h2 = 2.5 mm, E2 = 325 GPa,
t2 = 0.293, a2 = 4.9 � 10�6/�C, L = 50.8 mm and DT = 240 �C (Eischen et al., 1990; Ru, 2002; Suhir, 1989a, 1989b). A plane-
strain state is assumed in the simulation based on the present model. Fig. 4(a) and (b) show the distribution of thermome-
chanical interfacial shear and normal stresses along the interface, respectively. It can be observed that the shear and peeling
stresses are highly localized at the free edges. Specifically, the peak value of interfacial shear stress smax = 69.32 MPa appears
at a distance close to L/20 from the free edges which is very close to the one by Ru (2002) (smax = 70 MPa); the peak value of
interfacial normal stress rmax = 117.70 MPa occurs at the free edges which is slightly higher than those predicted by Ru
(2002) and Eischen et al. (1990) while lower than that given by Suhir (1989a, 1989b). Stress variations along the interface
and locations of the peak stresses match the literature results very well (Eischen et al., 1990; Ru, 2002). Thus, the above com-
parisons confirm the reliability of the present method.

3.3. Scaling analysis of interfacial stresses

Now let us further examine dependencies of the interfacial mechanical and thermomechanical stresses upon geometries
and material properties of the single-sided strap joint including layer thickness ratio h1/h2, length ratio L/h2, modulus ratio
E1/E2, and coefficients of thermal expansion a1 and a2. In the current study of linearly thermoelastic joints, the joint stresses
due to mechanical loads and temperature change can be obtained through linear superposition and therefore dealt with sep-
arately for convenience of scaling analysis and practical applications.
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Fig. 6. Variations of the dimensionless interfacial shear and normal stresses in single-sided strap joints with the dimensionless distance from the joint mid-
span at varying thickness and length ratios (E1/E2 = 10).
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3.3.1. Scaling analysis of interfacial stresses due to mechanical loads
For the scaling analysis of mechanical stresses in the joint, four thickness ratios (h1/h2 = 0.2,0.5,1,2), two length ratios (L/

h2 = 5,10), and two modulus ratios (E1/E2 = 3,10) are adopted; Poisson’s ratios of the adherends are fixed as t1 = 0.345 and
t2 = 0.293. In this case, the joint is considered in a plane-stress state. Figs. 5 and 6 show variations of the dimensionless inter-
facial shear stress s/p0 and normal (peeling) stress r/p0 with the dimensionless distance x/h2 from the joint mid-span at vary-
ing length and modulus ratios, respectively. It can be observed that the interfacial shear and normal stresses have high stress
concentrations near the interior edges of the adherends and the shear stresses satisfy the shear-free BC at two adherend
ends. Due to the existence of a bending moment at the mid-span, as illustrated in Fig. 1, the peak value of interfacial normal
stress at the interior edges is much larger than that of the shear stress in all the cases under examination; the stress concen-
tration of both the interfacial shear and normal stresses at the interior edges is much higher than that at the exterior edges.
Thus, it can be concluded that for single-sided strap joints, debonding failure at the mid-span due to the high peeling stress is
the main failure mode. Such high stress concentration can be mechanically suppressed by using double-sided strap joints to
eliminate the potential bending moment and related larger defection at the mid-span.

In addition, Figs. 5 and 6 also show that for fixed modulus and thickness ratios of the single-sided strap joint, the length
ratio L/h2 (i.e., ratio of the cover layer length vs. the thickness of substrate layers) does not appreciably influence the inter-
facial stress variation; however both the thickness and modulus ratios of the adherends significantly affect the interfacial
stress variation. For given length ratio L/h2, higher flexural rigidity of the cover layer due to either larger modulus ratio
(E1/E2) or larger thickness ratio h1/h2 can lead to a lower stress concentration of both the interfacial shear and normal stres-
ses. The reason is that stiffer cover layer can suppress the larger deflection of the cover layer at the mid-span and therefore
decreases the deflection-induced higher shear and peeling stresses near the interior edges. Thus, stiffer and thicker cover
layers are favorable to enhance mechanical durability of single-sided strap joints.

3.3.2. Scaling analysis of interfacial stresses due to a pure temperature change
The derivation in Section 2 has indicated that thermomechanical stress analysis of a single-sided strap joint due to a pure

temperature change is equivalent to that of a bimaterial thermostat. For the scaling analysis of thermomechanical stresses in
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Fig. 7. Variations of the dimensionless thermomechanical interfacial shear and normal stresses in a bimaterial thermostat with the dimensionless distance
from the right free-edge at varying thickness and length ratios (E1/E2 = 3).
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such a bimaterial thermostat, the above parameter ratios are further adopted in the simulations. In this case, the thermostat
is considered in a plane-strain state for the particular interest of electronic packaging. Figs. 7 and 8 show variations of the
dimensionless interfacial shear stress s/{E2[(1 + t1)a1 � (1 + t2)a2]DT} and normal (peeling) stress r/{E2[(1 + t1)a1 �
(1 + t2)a2]DT} with the dimensionless distance x/h2 from the joint mid-span at varying length and modulus ratios. It can
be observed that the shear stress is antisymmetric while the normal stress is symmetric with respect to the quarter-span
of the cover layer (or the mid-span of the equivalent bimaterial thermostat). Similar to the case of pure mechanical stress
[see Figs. 5 and 6], the length ratios L/h2 under investigation do not clearly affect the thermal interfacial shear and normal
stress variation; however the thickness and modulus ratios noticeably influence the thermomechanical interfacial stresses.

It can be detected from Figs. 7 and 8 that for the given modulus ratios (e.g. E1/E2 = 3 and 10 such that the cover layer is
stiffer than the substrate layer), the peak value of the thermomechanical interfacial shear-stress decreases with decreasing
thickness ratio (h1/h2); in contrast the peak value of normal stress occurring at adherend ends increases with decreasing
thickness ratio (h1/h2). In this case, the thicker the cover layer is, the larger the bending stiffness of the thermostat is. The
larger stiffness of the cover layer leads to higher bending flexural stress and therefore higher interfacial normal stress
and lower sliding (i.e., lower shearing strain near the interface) for a given mismatch of thermal strains. In addition, for a
fixed thickness ratio (h1/h2), the peak value of either the thermomechanical interfacial shear or normal stress increases
remarkably with increasing modulus ratio (E1/E2). This can be understood that the mismatch of the coefficients of thermal
expansion of the adherends leads to a mismatch of thermal strains when subjected to a temperature change that further
induces the bending of the thermostat. As a result, the larger the modulus ratio is, the higher the thermal stress is. Further-
more, the peak value of the thermomechanical interfacial normal stress is larger than that of shear stress. This phenomenon
is more pronounced with the increase of modulus ratio (E1/E2). The above scaling analysis indicates that interface debonding
due to high peeling stress is the dominate failure mode of bimaterial thermostats.

In addition, the solving process for the eigenvalue problem (52) and the set of linear algebraic equations can be performed
conveniently by designing a concise computational code such as using Matlab™. Compared to FEM, this method is more effi-
cient for stress analysis of bonded joints since it only requires the input of basic dimensions and material properties. Thus,
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the present method is an efficient, reliable method for scaling analysis, sensitivity analysis of design parameters, and optimal
design of bonded joints. This method can also be easily extended to stress analysis of other joints.

4. Concluding remarks

A novel stress-function variational method has been successfully formulated to approach the interfacial stresses of
bonded joints subjected to mechanical or thermomechanical loads. In the process, the axial normal stresses are approached
as linearly varying across the adherend layers based on the flexural stress formula of the elementary beam theory, while the
planar shear and transverse normal stresses are determined by exactly satisfying the 2D stress equilibrium equations. The
deformation compatibility of the joints is satisfied in the sense of minimization of the complementary strain energy of the
joint. A set of governing ODEs has been developed, which can be used for stress analysis of a variety of bonded joints made of
two adherends for joint design, structural optimization, and interfacial damage evaluation. Advantages of the current inter-
facial stress solutions include that all the BCs are satisfied exactly and all the material and geometrical parameters have been
incorporated into the model. This offers an improved understanding of the scaling behavior of stress variation in bonded
joints. The analytic formalism developed in this work can be conveniently generalized for a variety of bonded structures
and layered materials where interfacial stresses dictate their strength and reliability.
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