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High interfacial stresses at the free edges of adherends are responsible for the debonding failure of adhe-
sively bonded joints (ABJs). In this paper, a general stress-function variational method is formulated to
determinate the interfacial shear and normal (peeling) stresses in ABJs in high accuracy. By extending
authors’ prior work in stress analysis of bonded joints (Wu and Jenson, 2011), all the planar stress com-
ponents in the adherends and adhesive layer of an ABJ are expressed in terms of four unknown interfacial
stress functions, which are introduced at the upper and lower surfaces of the adhesive layer. A set of gov-
erning ordinary differential equations (ODEs) of the four interfacial stress functions is obtained via min-
imizing the complimentary strain energy of the ABJ, which is further solved by using eigenfunctions. The
obtained semi-analytic stress field can satisfy all the traction boundary conditions (BCs) of the ABJ, espe-
cially the stress continuity across the bonding lines and the shear-free condition at the ends of adherends
and adhesive layer. As an example, the stress field in an adhesively single-sided strap joint is determined
by the present method, whose numerical accuracy and reliability are validated by finite element method
(FEM) and compared to existing models in the literature. Parameter studies are performed to examine the
dependencies of the interfacial stresses of the exemplified ABJ upon the geometries, moduli and temper-
ature change of the adherends and adhesive layer, respectively. The present method is applicable for scal-
ing analysis of joint strength, optimal design of ABJs, etc.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction stresses have been the leading factor dominating the structural
The history of joining technology is as old as our human being
itself beginning with building hunting and cultivating tools
through binding sharp stones to wood sticks, while use of ad-
vanced adhesive bonding techniques in manufacturing modern air-
craft structures started only around 30–40 years ago (Davis and
Bond, 1999; Higgins, 2000; Park et al., 2010). To date, adhesively
bonded metallic joints have been structured in commercial air-
crafts with the advent of Airbus A300 (Racker, 2004). Joining tech-
nology has also been extended for use in broader primary
structures in aerospace, ground vehicles, and other mechanical
systems and civil infrastructures. Fig. 1 illustrates several typical
adhesively bonded joints (ABJs). By comparison with traditional
mechanically fastened bolted, riveted and welded joints, ABJs bear
several advantages such as simplified structural design and fabri-
cation, reduced joining space and joint weight, enhanced fatigue
tolerance and structural durability, suppression of noises and
material wear, and so on (Tomblin and Davies, 2004).

In addition, joining technology also plays a crucial role in
microelectronics packaging since 1970s, where thermomechanical
failure and function degradation and have become one of technical
concerns (Chen and Nelson, 1979; Suhir, 1989; Eischen et al., 1990;
Ru, 2002; Suo, 2003). Accurate prediction of the interfacial thermo-
mechanical stresses in bonded thermostats (chips) is fundamental
to understanding the failure mechanism and damage evolution in
microelectronic devices subjected to combined mechanical, ther-
mal and electrical loads (Suo, 2003). More recently, flexible elec-
tronics based on smart deposition of stiffer silicon micro units
onto compliant polymeric substrates become more and more pop-
ular, which demands new understanding of their mechanical dura-
bility that highly depends on the interfacial stresses near the free
edges of the stiff silicon islands (Lu et al., 2007; Kim and Rogers,
2008; Suo, 2012; Sun, 2013). Rapidly expanding utilization of
adhesive joining technology in broad engineering sectors also pre-
sents new technological challenges to designers, structural ana-
lysts and materials scientists such as wise selection of adhesives,
accurate strength and durability analysis under various loading
and environmental conditions, reliable characterization of struc-
tural failure mechanisms, and so on. Among these, accurate stress
analysis and rational identification of the failure mechanism and
relevant criteria are considered to be crucial.

Substantial progress has been made in theoretical prediction of
interfacial stresses in ABJs subjected to either mechanical or
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Single-sided strapped joint Double-sided strapped bonded joint

Single-sided bonded joint Double-sided bonded joint

Single-lap joint Double-lap joint

Fig. 1. Typical adhesively bonded joints.
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thermomechanical loads since the pioneering works by Volkersen
(1938) and Goland and Reissner (1944) within the framework of
linear elasticity. Yet, limitations still exist in these pioneering joint
models and many follow-ups that were mainly induced by their
oversimplified assumptions. For instance, the peak shear stresses
predicted by Volkersen’s and Goland and Reissner’s models appear
at the adherend ends, which obviously violates the shear-free con-
dition at the free-ends; stress variation across the adhesive layer is
assumed very small and ignored, which cannot be held near the
adherend ends as to be discussed in this study, etc. In order to en-
hance the accuracy of stress analysis of ABJs, quite a few modern
joint models have been proposed in the last three decades. To men-
tion a few, Delale et al. (1981) formulated an ABJ model, in which
the adherends were treated as flexural Euler–Bernoulli beams and
the deformation of the adhesive layer was ignored due to the small
layer thickness. This model was generalized by the authors for
stress analysis of all kinds of ABJs. Yet, the shear stress predicted
by this model does not satisfy the shear-free condition at the adher-
end ends; the predicted interfacial stresses are overshot in a large
region close to the adherend ends by comparison with those pre-
dicted by refined finite element analysis (FEA). Chen and Cheng
(1983) further formulated an ABJ model where the stress field in
the adherends was expressed in terms of two unknown normal
stresses according to two-dimensional (2D) elasticity. These two
unknown stress functions were determined by solving a set of
two coupled 2nd order ordinary differential equations (ODEs) that
were derived by evoking the theorem of minimum complementary
strain energy of the joint. Though the stress variation across the
adhesive layer was ignored, the stress field gained by this model
can satisfy all the traction boundary conditions (BCs). Besides, this
model predicted the reasonable location of the peak interfacial
shear stress, which was located at a distance of �20% the adherend
thickness from the adherend ends as validated quantitatively by
FEA (Mortensen and Thomsen, 2002; Lee and Kim, 2005; Diaz
et al., 2009). Furthermore, Tsai et al. (2004) furthered the classic
studies by Volkersen (1938) and Goland and Reissner (1944) to
adopt a linearly varying shear deformation across the adhesive
layer, which can recover the classic Volkersen’s and Goland and
Reissner’s models at the limiting cases. Lee and Kim (2005) consid-
ered the adhesively bonded single/double lap joints with the adhe-
sive layers modeled as distributed linearly elastic springs. In
addition, there are also a few layerwise models developed recently
for stress analysis of ABJs. Hadj-Ahmed et al. (2001) formulated a
layerwise model called M4-4N (multi-particle model of multi-lay-
ered material with five kinetic fields per layer for an N-layer lami-
nate) for stress analysis of ABJs. In this model, the multi-layers of an
ABJ were modeled as a stack of Reissner plates coupled through the
interlaminar normal and shear stresses, and the governing equa-
tions were obtained via minimization of the strain energy of the
ABJ. Diaz et al. (2009) also proposed an improved layerwise ABJ
model, in which the ABJ was modeled as a stack of Reissner–Mind-
lin plates. A set of eight governing ODEs was obtained via evoking
the constitutive laws and solved to satisfy the traction BCs. This
ABJ model can be well validated by FEM for free-edge interfacial
stress prediction. Moreover, Yousefsani and Tahani (2013a,b) re-
cently provided another version of the layerwise ABJ models. In
their models, the displacements of artificially divided sub-layers
of an ABJ were treated as field variables, and a set of governing ODEs
was obtained by evoking the theorem of the minimum potential en-
ergy of the joint. For accurate interfacial stress prediction, 18 artifi-
cial sub-layers were used in their numerical examples. More
detailed survey of the historical developments and comparative
studies of several important analytical models for the stress analy-
sis of ABJs and composite joints can be found in the recent review
articles by da Silva et al. (2009a,b). Some more recent works include
the displacement method (Zhao et al., 2011) for stress analysis of
ABJs and stress function method (Kumar and Scanlan, 2013) for
stress analysis of adhesively bonded tubular joints with graded
interface stiffness, etc. Yet, compared to the perfect theoretical for-
mulation of cracking in layered elastic materials (Suo and Hutchin-
son, 1990; Hutchinson and Suo, 1992; Yu and Hutchinson, 2001,
2003; Wu and Dzenis, 2002; Wu et al., 2002, 2003), further theoret-
ical refinements are still needed for accurate and efficient stress
analysis of ABJs.

Without a doubt, the adhesive layers play a crucial role in all the
theoretical modeling of ABJs in the literature, which function to
link the adherends of mismatching displacements and physically
dominate the structural durability and failure process of ABJs.
Yet, mismatch of the material properties between the adherends
and adhesive layers has not been rigorously treated or has been
oversimplified in most existing models of ABJs though some ther-
mosetting adhesive systems may carry the mechanical properties
close to some special adherends made of plastics. In fact, the gen-
eralized Hooke’s law of the adhesive layers, the shear-free condi-
tion at adherend ends, and the stress continuity across the
bonding lines of ABJs are normally not satisfied in most literature
models of ABJs due to various technical compromises and oversim-
plifications in modeling. Besides, quite a few misunderstandings
still exist in some of the literature models that were mainly in-
duced by oversimplified model assumptions. For instance, some
researchers incorrectly claimed that the maximum interfacial
shear and normal stresses predicted by their theoretical models



Fig. 2. Schematic of a adhesively single-sided strap joint: (a) the joint consists of a
slender cover layer adhesively bonded to two identical slender substrate layers, (b)
reduced right half-structure based on symmetry, and (c) schematic interfacial shear
and normal stresses.

X.-F. Wu, Y. Zhao / International Journal of Solids and Structures 50 (2013) 4305–4319 4307
were higher than the values predicted by FEM while not yet realiz-
ing the singular nature of these interfacial stresses near the adher-
end ends such that the numerical values of these stresses could
tend to higher and higher with refining the mesh size in FEA. Also,
high shear stresses exist at the interfaces between the adhesive
layer and adherends near the free-edges, which may lead to a
noticeable change of the normal stresses across the adhesive layers
even at a very small thickness. Yet, a majority of the ABJ models as-
sume constant shear stress across the adhesive layers. Thus, more
sophisticated models are still needed to elucidate the stress nature
across the adhesive layers in ABJs, which have been broadly inte-
grated into various engineering structures and systems.

To find more accurate stress field in bonded joints, Wu and Jen-
son (2011) recently formulated an efficient stress-function varia-
tional method. In their formulation, two unknown interfacial
shear and normal stress functions were introduced independently,
and the stress field in the joint was expressed in terms of the two
interfacial stress functions. To simplify the process, the axial nor-
mal stress in each adherend of the joint was assumed to be linearly
varying across the adherend layer, which is compatible with the
flexural stress formula of classic Euler–Bernoulli beams as also
adopted by many existing joint models. The rest planar shear
and transverse normal stresses in the adherends were determined
to exactly satisfy the stress equilibrium equations and the traction
BCs at the top and bottom surfaces as well as the adherend ends. A
set of two coupled governing ODEs of the unknown interfacial
stress functions was obtained via triggering the theorem of mini-
mum complimentary strain energy of the entire joint, which was
further solved explicitly in terms of eigenfunctions. The stress field
obtained by this method has high accuracy and satisfies all the
traction BCs and stress continuity across the bonding line, espe-
cially the shear-free condition at the adherend ends. It needs to
be acknowledged that the concept of such formulation based on
minimization of the complimentary strain energy of a bonded joint
was initially used by Chen and Cheng (1983), while Wu and Jenson
(2011) first introduced two independent interfacial stress func-
tions at the bonding line, which makes the theoretical formulation
more straightforward and physically meaningful. Also, such a the-
oretical framework can be easily extended to other bonded joints
including ABJs as to be demonstrated in the present study, adhe-
sively bonded composite and multi-material joints, etc.

Along this vein, in this study we further extend Wu and Jenson’s
(2011) stress-function variational method to formulate a general
semi-analytic method for accurately determining the interfacial
stresses in ABJs subjected to mechanical or thermomechanical loads.
To demonstrate the efficiency and effectiveness of this method,
without loss of generality, we start with a special case of an adhe-
sively single-sided strap joint where two interfaces between the
adhesive layer and adherends present. In this case, two unknown
interfacial shear and normal (peeling) stress functions can be intro-
duced at each interface. As a result, a set of four coupled ODEs with
four unknown interfacial stress functions are obtained after apply-
ing the theorem of minimum complimentary strain energy of the
joint. Such a set of ODEs can be solved by using eigenfunction meth-
od. The rest of the paper is outlined as follows. Section 2 provides de-
tailed formulation of the theoretical framework of stress-function
variational method for ABJs. Section 3 demonstrates the effective-
ness of the present method in determining the stress field in the
model joint subjected to mechanical loads and temperature change,
respectively. Detailed parameter studies are performed to explore
the dependencies of the interfacial stresses of the model joint upon
the geometries, moduli, Poisson’s ratios, and temperature change of
the adherends and adhesive layer. Comparisons of the present re-
sults with those based on FEM and available in the literature are
made. Potential applications of the present semi-analytic method
and conclusions of the study are addressed in consequence.
2. Problem formulation and solution

Without loss of generality, consider an adhesively single-sided
strap joint which is made up with two identical slender substrate
layers and a slender cover layer, which are adhesively bonded to-
gether through a thin adhesive layer as sketched in Fig. 2. The cov-
er layer has the length 2L, thickness h1, and width b; the substrate
layers carry the thickness h2, width b and length much larger than
L; the thickness of the adhesive layer is h0. The coordinate systems
are introduced as follows. The x-coordinate is selected from the
symmetric mid-span of the joint to direct along the layer axis;
y1, y2 and y0 are the vertical coordinates with the corresponding
origins attached at the centroids of cross-section of the cover, sub-
strate, and adhesive layer, respectively. The substrate layers are
subjected to a uniform tensile stress p0 far away the cover layer;
meanwhile the joint is subjected to a uniform temperature change
DT from the reference temperature of free thermomechanical
stresses. Due to symmetry of the joint and external loads, stress
analysis of such an ABJ can be made only on the right half-portion
(see Fig. 2(b)). It can be expected that mismatch of the material
properties across the adherend interfaces will evoke high interfa-
cial shear and normal stresses (debonding or peeling stresses) at
the adherend ends as illustrated in Fig. 2(c). Such high interfacial
mechanical or thermomechanical stresses are responsible for the
failure of the ABJs, such as interface debonding as commonly ob-
served in engineered structural ABJs.

In practice, subjected to mechanical or thermomechanical
loads, ABJs with finite width are typically in a general three-dimen-
sional (3D) stress state. To simplify the process, hereafter the ABJ is
considered in the plane-stress state and without residual stresses in
the initial load-free state at the reference temperature, and the
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temperature change is assumed to be uniform throughout the
joint. In addition, the adherends and adhesive layer are treated
as isotropic, linearly thermoelastic solids. Thus, the mechanical
and thermomechanical stresses can be treated separately accord-
ing to method of superposition. For the convenience of derivation,
in the following, parameters and variables attached with subscripts
1, 2, and 0 are designated to the cover, substrate and adhesive lay-
ers, respectively. Furthermore, results obtained in the plane-stress
state can be conveniently converted to those in the plane-strain
state by simply replacing the Young’s moduli Ei(i = 0,1,2) by
ð1� t2

i Þ=Ei, Poisson’s ratio ti(i = 0,1,2) by ti=ð1� tiÞ, and coeffi-
cients of thermal expansion ai(i = 0,1,2) by (1 + ti)ai.

2.1. Static equilibrium equations

Due to loss of lateral symmetry, the deformation of an adhe-
sively single-sided strap joint is a combination of inplanar elonga-
tion and lateral deflection. The adherends and adhesive layer of the
joint are slender; their axial stresses can be approximated to follow
the classic Euler–Bernoulli beam theory while the shear and lateral
normal stresses are determined to exactly obey the static equilib-
rium equations in 2D elasticity. Free-body diagrams (FBDs) of the
representative segments of the cover, substrate and adhesive lay-
ers are plotted in Fig. 3(a)–(c), respectively, in which the stresses
and related stress resultants, i.e., the axial force Si, shear force Qi,
and bending moment Mi(i = 0,1,2), are defined to follow the stan-
dard sign conventions designated in elementary textbooks of
Mechanics of Materials (Beer et al., 2009). For the representative
segmental element of the cover layer (see Fig. 3(a)), the corre-
sponding static equilibrium equations are

RFx ¼ 0 :
dS1

dx
¼ �bs1; ð1Þ

RFy ¼ 0 :
dQ1

dx
¼ �br1; ð2Þ

RM ¼ 0 :
dM1

dx
¼ Q1 �

h1

2
ðbs1Þ: ð3Þ

The static equilibrium equations of the representative segmental
element of the right substrate layer (see Fig. 3(c)) can be expressed
as

RFx ¼ 0 :
dS2

dx
¼ bs2; ð4Þ

RFy ¼ 0 :
dQ2

dx
¼ br2; ð5Þ

RM ¼ 0 :
dM2

dx
¼ Q2 �

h2

2
ðbs2Þ: ð6Þ
Fig. 3. Free-body diagrams of representative segmental elements of the adhesively bond
The static equilibrium equations of the representative segmental
element of the adhesive layer (see Fig. 3(b)) are written as

RFx ¼ 0 :
dS0

dx
¼ bðs1 � s2Þ; ð7Þ

RFy ¼ 0 :
dQ0

dx
¼ bðr1 � r2Þ; ð8Þ

RM ¼ 0 :
dM0

dx
¼ Q 0 �

bh0

2
ðs1 þ s2Þ: ð9Þ
2.2. Stress resultants

Define the shear and normal (peeling) stresses at the interface
between the upper adherend and the adhesive layer as two inde-
pendent interfacial stress functions to be determined:

s1 ¼ f1ðxÞ and r1 ¼ g1ðxÞ: ð10Þ

Similarly, the interfacial shear and normal (peeling) stresses at the
interface between the lower adherend and the adhesive layer are
assumed to be another two independent interfacial stress functions
to be determined:

s2 ¼ f2ðxÞ and r2 ¼ g2ðxÞ: ð11Þ

Thus, the shear-free conditions at the adherend edges at x = 0 and L
stand for

f1ð0Þ ¼ f1ðLÞ ¼ 0 ð12aÞ

and

f2ð0Þ ¼ f2ðLÞ ¼ 0: ð12bÞ

In addition, the physical conditions of the axial tractions, shear-
forces and bending moments at the upper and lower adherend ends
as well as at the ends of the adhesive layer specify

S1ð0Þ ¼ p0bh2; ð13aÞ

S1ðLÞ ¼ 0; ð13bÞ

Q1ð0Þ ¼ 0; ð13cÞ

Q1ðLÞ ¼ 0; ð13dÞ

M1ð0Þ ¼ bm0 ¼ p0bh2ðh1 þ 2h0 þ h2Þ=2; ð13eÞ

M1ðLÞ ¼ 0; ð13fÞ

S2ð0Þ ¼ 0; ð13gÞ

S2ðLÞ ¼ p0bh2; ð13hÞ
ed joint: (a) the cover layer, (b) the adhesive layer, and (c) the right-substrate layer.
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Q 2ð0Þ ¼ 0; ð13iÞ

Q 2ðLÞ ¼ 0; ð13jÞ

M2ð0Þ ¼ 0; ð13kÞ

M2ðLÞ ¼ 0; ð13lÞ

S0ð0Þ ¼ 0; ð13mÞ

S0ðLÞ ¼ 0; ð13nÞ

Q 0ð0Þ ¼ 0; ð13oÞ

Q 0ðLÞ ¼ 0; ð13pÞ

M0ð0Þ ¼ 0; ð13qÞ

M0ðLÞ ¼ 0: ð13rÞ

In the above, not all the traction BCs are linearly independent as will
be discussed in Section 2.4.

In the case of thermomechanical stress analysis of the joint due
to a pure temperature change DT (p0 = 0), the right terms of (13a),
(13e) and (13h) need to be specified as zeros in order to satisfy the
traction-free BCs along the axes (without mechanical loads). In this
case, the thermomechanical stress analysis of the adhesively sin-
gle-sided strap joint is equivalent to that of an adhesively bonded
thermostat.

Furthermore, stress resultants of all the segmental elements of
the layers can be determined completely in terms of the four inter-
facial stress functions fi and gi(i = 1,2) as follows. By integrating (1)
with respect to x from x = 0, it yieldsZ x

0
dS1 ¼ �

Z x

0
bf1ðnÞdn: ð14Þ

With the axial force condition at x = 0, i.e., BC (13a), the axial normal
force (14) in the cover layer can be written as

S1ðxÞ ¼ p0bh2 � b
Z x

0
f1ðnÞdn: ð15Þ

Integration of (2) with respect to x from x = 0 gives the shear-force
of the cover layer:Z x

0
dQ1 ¼ �

Z x

0
bg1ðnÞdn: ð16Þ

In addition, with the aid of the shear-free condition at x = 0 in (13c),
the shear-force (16) in the cover layer becomes

Q 1ðxÞ ¼ �b
Z x

0
g1ðnÞdn: ð17Þ

Moreover, integration of (3) with respect to x from x = 0 givesZ x

0
dM1 ¼

Z x

0
Q 1ðnÞ �

h1

2
ðbs1Þ

� �
dn: ð18Þ

By evoking the bending moment BC at x = 0 in (13e), the bending
moment (18) in the cover layer can be expressed as

M1ðxÞ ¼ bm0 � b
Z x

0

Z n

0
g1ð1Þd1dn� bh1

2

Z x

0
f1ðnÞdn: ð19Þ

Based on the same procedure, integration of (4) with respect to x
from x = 0 yieldsZ x

0
dS2 ¼

Z x

0
bf2ðnÞdn: ð20Þ
With the axial traction BC at x = 0 in (13g), the axial force (20) in the
substrate layer can be expressed as

S2ðxÞ ¼ b
Z x

0
f2ðnÞdn: ð21Þ

Furthermore, the shear-force Q2(x) and bending moment M2(x) of
the substrate layer can be determined accordingly by integrating
(5) and (6) with respect to x from x = 0, respectively:

Q2ðxÞ ¼ b
Z x

0
g2ðnÞdn; ð22Þ

M2ðxÞ ¼ b
Z x

0

Z n

0
g2ð1Þd1dn� bh2

2

Z x

0
f2ðnÞdn: ð23Þ

In the above, the shear-force and bending moment conditions at
x = 0, i.e., (13i) and (13k), have been triggered. For the adhesive
layer, by using the above procedure, integration of (7) with respect
to x from x = 0 yieldsZ x

0
dS0 ¼

Z x

0
b f1ðnÞ � f2ðnÞ½ �dn: ð24Þ

With the axial traction BC at x = 0 as given in (13g), the axial force
(24) in the substrate layer can be determined as

S0ðxÞ ¼ b
Z x

0
f1ðnÞ � f2ðnÞ½ �dn: ð25Þ

Similarly, the shear-force Q0(x) and bending moment M0(x) of the
adhesive layer can be determined by integrating (8) and (9) with re-
spect to x from x = 0, respectively:

Q0ðxÞ ¼ b
Z x

0
½g1ðnÞ � g2ðnÞ�dn; ð26Þ

M0ðxÞ ¼ b
Z x

0

Z n

0
½g1ð1Þ � g2ð1Þ�d1dn� bh0

2

Z x

0
½f1ðnÞ þ f2ðnÞ�dn:

ð27Þ

In the derivation of (26) and (27), two traction BCs of free shear-
force and bending moment of the adhesive layer at x = 0 as given
in (13o) and (13q) have been implied.

2.3. Planar stresses in adherends and adhesive layers

2.3.1. Planar stresses in the upper adherend
For the linearly thermoelastic slender adherends of the ABJ un-

der consideration, as an approach, the axial stress in the adherends
can be assumed to vary linearly. Such axial stress can be expressed
as the flexural stress according to classic Euler–Bernoulli beam the-
ory due to the bending moment superimposed with a uniform axial
stress due to pure axial tension. Thus, the axial stress of the cover
layer can be expressed as

rð1Þxx ¼
S1

bh1
�M1y1

I1

¼ p1 �
1
h1

Z x

0
f1ðnÞdn

� 12y1

h3
1

m0 �
Z x

0

Z n

0
g1ð1Þd1dn� h1

2

Z x

0
f1ðnÞdn

� �
; ð28Þ

where p1 = p0h2/h1. Shear stress sð1Þy1x of the cover layer can be deter-
mined by integrating the 2D static equilibrium equation of a repre-
sentative differential element:

@rð1Þxx

@x
þ
@sð1Þy1x

@y1
¼ 0; ð29Þ
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with respect to y1 from an arbitrary location y to the top surface at
y1 = h1/2:Z h1=2

y1

@rð1Þxx

@x
dy1 þ

Z h1=2

y1

@sð1Þy1x

@y1
dy1 ¼ 0; ð30Þ

which leads to

sð1Þy1x¼�
1
h1

h1

2
�y1

� �
� 3

h1

h2
1

4
�y2

1

 !" #
f1ðxÞþ

6

h3
1

h2
1

4
�y2

1

 !Z x

0
g1ðnÞdn:

ð31Þ

In the above, the traction-free BC: sð1Þy1xðh1=2Þ ¼ 0 has been carried
out. Furthermore, transverse normal stress rð1Þy1y1

in the cover layer
can be calculated by integrating the 2D static equilibrium equation:

@rð1Þy1y1

@y1
þ @s

ð1Þ
xy1

@x
¼ 0; ð32Þ

with respect to y1 from an arbitrary location y to the top surface at
y1 = h1/2 asZ h1=2

y1

@rð1Þy1y1

@y1
dy1 þ

Z h1=2

y1

@sð1Þxy1

@x
dy1 ¼ 0; ð33Þ

which yields

rð1Þy1y1
¼ � 1

h1

h1

2
h1

2
� y1

� �
� 1

2
h2

1

4
� y2

1

 !(

� 3
h1

h2
1

4
h1

2
� y1

� �
� 1

3
h3

1

8
� y3

1

 !" #)
f 01ðxÞ

þ 6

h3
1

h2
1

4
h1

2
� y1

� �
� 1

3
h3

1

8
� y3

1

 !" #
g1ðxÞ: ð34Þ
2.3.2. Planar stresses in the lower adherends
The stress components in the slender substrate layers can be

obtained similarly. The axial normal stress can be approximated
to follow the flexural stress formula of classic Euler–Bernoulli
beams:

rð2Þxx ¼
S2

bh2
�M2y2

I2
¼ 1

h2

Z x

0
f2ðnÞdn

� 12y2

h3
2

Z x

0

Z n

0
g2ð1Þd1dn� h2

2

Z x

0
f2ðnÞdn

� �
:

ð35Þ

Shear stress sð2Þy2x can be determined via integrating the 2D static
equilibrium equation:

@rð2Þxx

@x
þ @s

ð2Þ
y2x

@y2
¼ 0; ð36Þ

with respect to y2 from the bottom surface y2 = �h2/2 to an arbi-
trary location y2 of the substrate layer:Z y2

�h2=2

@rð2Þxx

@x
dy2 þ

Z y2

�h2=2

@sð2Þy2x

@y2
dy2 ¼ 0; ð37Þ

which leads to

sð2Þy2x ¼ �
1
h2

y2 þ
h2

2

� �
þ 3

h2
y2

2 �
h2

2

4

 !
f2ðxÞ

"

þ 6

h3
2

y2
2 �

h2
2

4

 !#Z x

0
g2ðnÞdn: ð38Þ
In the above, the stress-free BC: sð2Þy2xð�h2=2Þ ¼ 0 has been used. Fur-
thermore, normal stress rð2Þy2y2

in the substrate layer can be deter-
mined by integrating the 2D equilibrium equation:

@rð2Þy2y2

@y2
þ
@sð2Þxy2

@x
¼ 0; ð39Þ

with respect to y2 from the bottom surface at y2 = �h2/2 to an arbi-
trary location y2:Z y2

�h2=2

@rð2Þy2y2

@y2
dy2 þ

Z y2

�h2=2

@sð2Þxy2

@x
dy2 ¼ 0; ð40Þ

which further reduces to

rð2Þy2y2
¼ 1
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g2ðxÞ: ð41Þ

In the above, traction-free BC: rð2Þy2y2
ð�h2=2Þ ¼ 0 has been adopted.

2.3.3. Planar stresses in the adhesive layer
The stress components in the adhesive layer can also be derived

by the same token. Again, the axial normal stress can be
approximated according to the flexural stress formula of classic
Euler–Bernoulli beams aforementioned:

rð0Þxx ¼
S0

bh0
�M0y0

I0

¼ 1
h0

Z x

0
f1ðnÞ� f2ðnÞ½ �dn

�12y0
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Z x

0

Z n

0
½g1ð1Þ�g2ð1Þ�d1dn�h0

2

Z x

0
½f1ðnÞþ f2ðnÞ�dn

� �
:

ð42Þ

Shear stress sð0Þy0x can be determined via integrating the 2D static
equilibrium equation:

@rð0Þxx

@x
þ @s

ð0Þ
y0x

@y0
¼ 0; ð43Þ

with respect to y0 from the lower interface y0 = �h0/2 to an arbi-
trary location y0 of the adhesive layer:Z y0

�h0=2

@rð0Þxx

@x
dy0 þ

Z y0

�h0=2

@sð0Þy0x

@y0
dy0 ¼ 0; ð44Þ

which leads to

sð0Þy0x¼�f2ðxÞ�
1
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0

4

 !Z x

0
½g1ðnÞ�g2ðnÞ�dn: ð45Þ

In the above, the stress-continuity BC: sð0Þy0xð�h0=2Þ ¼ �f2ðxÞ has

been evoked. Furthermore, normal stress rð0Þy0y0
in the adhesive layer

can be determined by integrating the 2D equilibrium equation:

@rð0Þy0y0

@y0
þ @s

ð0Þ
xy0

@x
¼ 0; ð46Þ

with respect to y0 from the bottom surface at y0 = �h0/2 to an
arbitrary location y0:
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Z y0
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@rð0Þy0y0
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which can be further reduced to
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In the above, stress-continuity BC: rð0Þy0y0
ð�h0=2Þ ¼ g2ðxÞ has been

adopted. If setting y0 = h0/2, expressions (45) and (48) can be con-

sistently reduced to sð0Þy0xðh0=2Þ ¼ �f1ðxÞ and rð0Þy0y0
ðh0=2Þ ¼ g1ðxÞ,

where the minus sign prior to f(x) is due to the sign conversion of
stress components in elasticity.

From the above derivation, it can be concluded that with the
approximation of axial normal stress varying linearly across the
cover, substrate and adhesive layers, the corresponding statically
compatible shear and transverse normal stresses vary piecewise
parabolically and cubically across these layers, respectively. More
importantly, such a stress field satisfies all the traction BCs at the
ends of the adherend and adhesive layers, and the stress continuity
across the interfaces between the adherend and adhesive is also
fulfilled.

2.4. Governing equations of interfacial stress functions and solution

With the above stress components in the ABJ, the strain energy
of the right half-joint (0 6 x 6 L) is

U ¼ b
Z L

0

Z h1=2

�h1=2

1
2

rð1Þxx eð1Þxx þ rð1Þyy eð1Þyy

h i
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h i2
� �

dxdy1
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Z h2=2

�h2=2

1
2

rð2Þxx eð2Þxx þ rð2Þyy eð2Þyy

h i
þ 1þ t2

E2
sð2Þxy2

h i2
� �

dxdy2

þ b
Z L

0

Z h0=2

�h0=2

1
2

rð0Þxx eð0Þxx þ rð0Þyy eð0Þyy

h i
þ 1þ t0

E0
sð0Þxy0

h i2
� �

dxdy0:

ð49Þ

In the above, eðiÞxx and eðiÞyy (i = 0,1,2) are respectively the axial and
transverse normal strains of the adhesive layer, upper and lower
adherends, which are defined according to the generalized Hooke’s
law of isotropic, linearly thermoelastic solids (in the plane-stress
state):

eðiÞxx ¼
1
Ei

rðiÞxx �
ti

Ei
rðiÞyy þ aiDT; ð50Þ

eðiÞyy ¼
1
Ei

rðiÞyy �
ti

Ei
rðiÞxx þ aiDT; ð51Þ

where ai(i = 0,1,2) are coefficients of thermal expansion of the
adhesive layer, upper and lower adherends, respectively, and DT
is the uniform temperature change of the joint from the reference
temperature of free thermomechanical stress state. In the sense of
mathematics, strain energy (49) is an energy functional with re-
spect to the four unknown interfacial stress-functions fi(i = 1,2)
and gi(i = 1,2) adopted above. According to theorem of minimum
complimentary strain energy of an elastic body, the strain energy
of the joint reaches a stationary point at static equilibrium of the
joint, which corresponds to the necessary condition in terms of var-
iation of the strain energy (49) with respect to the four unknown
stress functions

dU ¼ 0; ð52Þ

i.e.,

dU ¼ b
Z L
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�
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where d is the mathematical varational operator with respect to
either fi(i = 1,2) or gi(i = 1,2).

By substituting the stress expressions (28), (31), (34), (35), (38),
(41), (42), (45), (48), and normal strains (50) and (51) into (53) and
evoking the variational operation and several mathematical sim-
plifications, it yields the interfacial stress functions f1, f2, g1, and
g2 to satisfy a system of four coupled 4th-order ODEs of constant
coefficients:

½A� UðIVÞ
n o

þ ½B� U00

 �

þ ½C�fUg þ fDg ¼ f0g: ð54Þ

In the above, {U}4�1 is a dimensionless interfacial stress function
vector defined as

fUg ¼ fF1ðnÞ;G1ðnÞ; F2ðnÞ;G2ðnÞgT
; ð55Þ

F1ðnÞ ¼ F1ðx=h2Þ ¼ �
1

p0h2

Z x

0
f1ðfÞdf; ð56aÞ

F2ðnÞ ¼ F2ðx=h2Þ ¼ �
1

p0h2

Z x

0
f2ðfÞdf; ð56bÞ

G1ðnÞ ¼ G1ðx=h2Þ ¼
1

p0h2
2

Z x

0

Z f

0
g1ðgÞdgdf; ð56cÞ

G2ðnÞ ¼ G2ðx=h2Þ ¼
1

p0h2
2

Z x

0

Z f

0
g2ðgÞdgdf: ð56dÞ

[A], [B] and [C] are three 4 � 4 real-valued symmetric coefficient
matrices, which are related to the elastic properties and layer thick-
ness of the ABJ as

½A� ¼

1
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and

½C�¼

4 h�1
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ð57cÞ

where

h02 ¼ h0=h2; h12 ¼ h1=h2; e20 ¼ E2=E0; e21 ¼ E2=E1: ð58Þ

{D}4�1 is a dimensionless 4 � 1 mechanical or thermomechanical
load vector:

fDg ¼ fD1;D2;D3;D4gT
; ð59Þ

in which

D1 ¼ h�1
12 1þ 3ð1þ 2h02 þ h12Þh�2

12

h i
e21 þ

1
2
ða1 � a0ÞDTE2=p0;

ð60aÞ

D2 ¼ �6ð1þ 2h02 þ h12Þh�3
12 e21; ð60bÞ

D3 ¼ �
1
2
ða2 � a0ÞDTE2=p0; ð60cÞ

D4 ¼ 0: ð60dÞ

In the above, when the thermomechanical stress state of the joint
due to a pure temperature change is considered, the stress p0

adopted in (60a) and (60c) is understood as a stress reference for
the purpose of dimensionless formulation. In addition, these gov-
erning equations can be conveniently extended to the cases of plane
strain state by replacing Ei with Ei=ð1� t2

i Þ, ti with ti=ð1� tiÞ, and ai

with (1 + ti)ai, where i = 0, 1, and 2, as mentioned above.
Solution to (54) can be determined by superimposing the gen-

eral solution {W} of the corresponding set of homogenous ODEs
to a particular solution {U0} (Wu and Jenson, 2011):

fUg ¼ fWg þ fU0g; ð61Þ

½A� WðIVÞ
n o

þ ½B� W00

 �

þ ½C�fWg ¼ f0g; ð62Þ

fU0g ¼ �½C��1fDg: ð63Þ

To solve the system of homogenous ODEs (62), assume the general
solution {W} carrying the form:

fWg ¼ fW0g expðknÞ; ð64Þ

where k and {W0} are respectively the eigenvalue and eigenvector of
the characteristic equation corresponding to homogenous ODEs
(62):

k4½A�fW0g þ k2½B�fW0g þ ½C�fW0g ¼ f0g: ð65Þ

Eq. (65) is a generalized eigenvalue problem, which can be con-
verted into a standard eigenvalue problem by introducing

fW1g ¼ k2fW0g: ð66Þ

Thus, the eigenvalue problem (65) is converted into a standard
form:

I 0
0 A

� �
W0

W1

� �
¼ �k�2 0 �I

C B

� �
W0

W1

� �
; ð67Þ

where I is a 8 � 8 identity. This eigenvalue problem can be solved
efficiently by using well developed robust numerical algorithms
available in the literature (e.g., the eig() function provided by
Matlab™, etc.). As a result, the final expression of the general solu-
tion (61) is

fUg ¼
X8

k¼1

ckfWk
0g expðkknÞ þ dkfWk

0g expð�kknÞ
h i

þ fU0g; ð68Þ

where fWk
0g (k = 1,2, . . . ,8) are eigenvectors (the first 4 elements of

each column) attached to eigenvalues kk(k = 1,2, . . . ,8), respectively,
and ck and dk(k = 1,2, . . . ,8) are the real or complex coefficients to
be determined in satisfying the traction BCs (12a), (12b), and
(13a)-(13r). Herein, only 16 BCs are linearly independent that can
be extracted from these traction BCs for determining the unknown
coefficients ck and dk(k = 1,2, . . . ,8):

F1ð0Þ ¼ 0; ð69aÞ

F1ðL=h2Þ ¼ �1; ð69bÞ

F 01ð0Þ ¼ 0; ð69cÞ

F 01ðL=h2Þ ¼ 0; ð69dÞ

G1ð0Þ ¼ 0; ð69eÞ

G1ðL=h2Þ ¼ 1=2þ h02; ð69fÞ

G01ð0Þ ¼ 0; ð69gÞ

G01ðL=h2Þ ¼ 0: ð69hÞ

F2ð0Þ ¼ 0; ð69iÞ

F2ðL=h2Þ ¼ �1; ð69jÞ

F 02ð0Þ ¼ 0; ð69kÞ

F 02ðL=h2Þ ¼ 0; ð69lÞ

G2ð0Þ ¼ 0; ð69mÞ

G2ðL=h2Þ ¼ 1=2; ð69nÞ

G02ð0Þ ¼ 0; ð69oÞ

G02ðL=h2Þ ¼ 0: ð69pÞ

Consequently, plugging (61) and (68) into (69a)-(69p) yields a sys-
tem of 16 simultaneous linear algebraic equations:
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0 þ

X8
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dkW
k;1
0 ¼ �Uð1Þ0 ; ð70aÞ
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X8
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0 þ
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0 ¼ �Uð2Þ0 ; ð70eÞ
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X8
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In the above, Wk;1
0 , Wk;2

0 , Wk;3
0 , and Wk;4

0 (k = 1,2, . . . ,8) are respectively
the 1st–4th elements of the k-th eigenvector, and Uð1Þ0 , Uð2Þ0 , Uð3Þ0 , and
Uð4Þ0 are the 1st–4th elements of the particular solution vector {U0}.
Moreover, in the case of thermomechanical stress analysis of the
joint due to a pure temperature change, the right terms of (69b),
(69f), (69j) and (69n) should be specified as zeros, which further
influence the right terms of (70b), (70f), (70j) and (70n) accordingly.
Once ck(k = 1,2, . . . ,8) and dk(k = 1,2, . . . ,8) are determined by solv-
ing the above set of linear algebraic equations (70a)-(70p) numeri-
cally, relations (56a)-(56d) and (68) finalize the four interfacial
stress functions fi and gi(i = 1,2) as

f1ðxÞ=p0 ¼ �
X8
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ckW
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0 kk expðkkx=h2Þ þ

X8
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0 kk expð�kkx=h2Þ;

ð71aÞ
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X8
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0 k2
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X8
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0 k2
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0 kk expð�kkx=h2Þ;
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g2ðxÞ=p0 ¼
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0 k2

k expðkkx=h2Þ þ
X8

k¼1
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k

� expð�kkx=h2Þ: ð71dÞ

Consequently, with the four interfacial stress functions fi and
gi(i = 1,2) given in (71a)-(71d), all the planar stresses in the adher-
ends and adhesive layer of the ABJ can be determined according to
the expressions formulated in Section 2.3. It needs to be mentioned
that except the expressions of the stress resultants and BCs of the
adhesively single-sided strap joint, all the derivations above are
actually independent of the specific configuration of the joint.
Thus, the governing Eq. (54) and system matrices (57a)-(57c) are
applicable to other statically equivalent ABJs such as adhesively
bonded single-lap joints.
3. Model validation, parameter studies and discussions

3.1. Interfacial stresses in adhesively single-sided strap joints due to
mechanical loads

Let us first consider the interfacial shear and normal stresses at
the upper and lower surfaces of the adhesive layer of an adhesively
single-sided strip joint subjected to uniform axial tension in the
plane-stress state. Commercial FEM software package (ANSYS™)
is used to validate the interfacial stresses predicted by the current
semi-analytic method. When ignoring the adhesive layer, i.e., a
bonded single-sided strap joint, our recent study (Wu and Jenson
2011) has showed that the stress-function variational method
based on two interfacial stress functions can accurately predict
the interfacial shear and normal stresses, which have been vali-
dated by our FEM simulation and other recently developed models
in the literature (e.g., Yousefsani and Tahani, 2013a,b). In the pres-
ent case as shown in Fig. 2, the ABJ is assumed to be made of a steel
cover layer (E1 = 210 GPa, t1 = 0.293) and two identical aluminum
substrate layers (E2 = 70 GPa, t2 = 0.345), which are adhesively
bonded together with an epoxy-type adhesive layer (E0 = 10 GPa,
t0 = 0.40). The adherends and adhesive layer have the same width;
other geometries of the joint are: h1 = 2.0 mm (steel), h2 = 2.0 mm
(aluminum), h0 = 0.2 mm (adhesive), and L = 20 mm (see Fig. 2). A
uniform tensile traction with the unit magnitude p0 = 1 MPa is ap-
plied to the substrate layers. During the stress analysis based on
ANSYSTM, four-node elements (PLANE182) and mapped uniform
quadrilateral meshes are utilized. In an attempt to track the trend
of the singular stresses at free edges of the adherends, two refined
mesh sizes (i.e., quadrilateral elements with the dimensions of
0.05 � 0.05 mm and 0.01 � 0.01 mm, respectively) are employed
at the two free-edge corners of the adherends. Variations of the
interfacial shear and normal stresses at the upper and lower adhe-
sive surfaces with the distance from the mid-span to the right
adherend end are plotted in Fig. 4(a) and (b). Due to the existence
of the bending moment resultant at the mid-span of the joint (see
Fig. 1), both the high interfacial shear and normal stresses are ob-
served at the mid-span free-edge. This high normal (peeling) stress
is responsible mainly for the debonding failure of the ABJ, while the
high shear stress further enhances the effective failure stress, e.g.,
von Mises stress, near the free edges of the adherend at the
mid-span. Furthermore, stress comparisons in Fig. 4(a) and (b)
can conclude that the present model can accurately predict both
the interfacial shear and normal stresses of ABJs, especially for
the interfacial normal stresses. Also, the predicted interfacial shear
stresses exactly satisfy the shear-free condition at the free edges.

In addition, as shown in Fig. 4, though both the interfacial nor-
mal and shear stresses at the upper and lower surfaces of the adhe-
sive layer carry the very similar varying trends along the interfaces,
the variations of these stresses from the upper to the lower surface
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Fig. 4. Validation of the stress-function variational method for prediction of the interfacial shear and normal stresses at the upper and lower surfaces of the adhesive layer
(plane-stress) by finite element analysis (ANSYS™): (a) interfacial shear stress s and (b) interfacial normal stress r. Material properties: upper adherend: aluminum with
E1 = 70 GPa, t1 = 0.345 and h1 = 2.0 mm; lower adherends: Steel with E2 = 210 GPa, t2 = 0.293 and h2 = 2.0 mm; epoxy-type adhesive: E0 = 10 GPa, t0 = 0.4, h0 = 0.2 mm.
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of the adhesive layer could be noticeably large near the free edges,
especially the interfacial normal stress. Such an observation seems
to conflict with the common assumptions adopted in many ABJ
models in the literature such that the shear and normal stresses do
not change significantly across the adhesive layer due to the thin
thickness of the adhesive layer. To interpret such an important
observation, let us consider the static equilibrium of a segmental
element (with the length Dx) of the adhesive layer near the free-
edge as illustrated in Fig. 5, the static equilibrium equation along
y-direction reads

�r
h0
2

yy � �r�
h0
2

yy

� �
Dx� sxyh0 ¼ 0; ð72Þ

where �r
h0
2

yy and �r�
h0
2

yy are the average normal stresses at the upper and
lower adhesive surfaces over the layer length Dx, respectively. Thus,
the difference of the average normal stress across the adhesive layer
can be estimated from (72) as

Dryy ¼ �r
h0
2

yy � �r�
h0
2

yy ¼ sxy
h0

Dx
: ð73Þ

Near the free edges of the adherends, the shear stress becomes
very large. When Dx is selected to be comparable to or smaller
than the thickness of the adhesive layer h0, Dryy could become
large, even significant depending on the interfacial shear stress.
In addition, such a stress difference decays rapidly with the
increasing distance from the free edge. Therefore, in the classic
ABJ models, the assumption of approximately constant normal
and shear stresses across the thin adhesive layer is questionable
at the region very close to the free ends of the adherends.

Furthermore, due to the nature of Williams-type stress singu-
larity (singular wedge stress field) near the free-edges of bonded
Δx

h0 

x

0

2

h

yyσ

0

2

h

yyσ

Sx

τxy

x

Fig. 5. Free-body diagram of a representative adhesive layer segment near the
adherend end.
materials, the interfacial stresses predicted by FEA increase rapidly
with decreasing mesh size. Like most analytic models available in
the literature, the present model is unable to predict such singular-
ity. However, the very good fitting into the interfacial stress trends
predicted by FEA validates the present model for stress analysis of
ABJs, which can be exploited for scaling analysis, structural design
and optimization of ABJs, etc.
3.2. Thermomechanical stresses in adhesively bonded thermostats

Thermomechanical stress analysis of an adhesively single-sided
strap joint (see Fig. 2) due purely to a uniform temperature change
is equivalent to that of an adhesively bonded thermostat. Thermo-
mechanical stress analysis of a bonded biomaterial thermostat
(e.g., aluminum–molybdenum) has been extensively studied by a
number of investigators such as Suhir (1989), Eischen et al.
(1990) and Ru (2002), etc. Our recent work has demonstrated the
reliability of stress-function variational method for solving such
type of problems (Wu and Jenson, 2011). To demonstrate the pres-
ent semi-analytic method for determining the thermomechanical
stresses in adhesively bonded thermostats, we introduce a thin
adhesive layer into the aforementioned aluminum–molybdenum
thermostat. In the present symbolic system, the parameters of
the thermostat considered in prior studies are: h1 = 2.5 mm,
E1 = 70 GPa, t1 = 0.345, a1 = 23.6 � 10�6/�C, h2 = 2.5 mm,
E2 = 325 GPa, t2 = 0.293, a2 = 4.9 � 10�6/�C, L = 50.8 mm and
DT = 240 �C. The properties of the adhesive layer in this study are
assumed as E0 = 10 GPa, t0 = 0.40, and a0 = 73.8 � 10�6/�C, and
two thicknesses of the adhesive layer are sampled: h0 = 0.25 mm
and 1.0 mm, respectively. In addition, the adhesively bonded
thermostat is assumed in the plane-strain state as used in the
previous studies.

For the purpose of comparison, Fig. 6(a) and (b) show the distri-
butions of thermomechanical shear and normal stresses along the
interface of a bimaterial thermostat, respectively, in our recent
study based on the stress-function variational method (Wu and
Jenson, 2011). These stress predictions are very close to those pre-
dicted by Suhir (1989), Eischen et al. (1990) and Ru (2002), etc.
Fig. 6(c)–(f) plot the shear and normal stress variations at the upper
and lower surfaces of the adhesive layer at two different thick-
nesses (h0 = 0.25 mm and 1.0 mm) in the adhesively bonded ther-
mostat based on the present method. In the case of an adhesively
bonded thermostat with a relatively thin adhesive layer
(h0 = 0.25 mm), both the shear and normal stresses at the upper
and lower surfaces of the adhesive layer carry very similar varying
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Fig. 6. Comparison of thermomechanical interfacial shear and normal stresses between an adhesively bonded aluminum/molybbdenum thermostat and an aluminum/
molybbdenum bimaterial thermostat subjected to uniform temperature change (DT = 240 �C) (plane-strain). Material properties: aluminum: E1 = 70 GPa, t1 = 0.345,
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thermostat length: L = 50.8 mm.
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trends to those of the bimaterial thermoset above (Fig. 6(a) and
(b)). The peak values of both the shear and normal stresses at the
lower surface of the adhesive layer are nearly 40% higher than
those of the bimaterial thermostat with the same geometries,
material properties, and temperature change. In contrast, at the
upper surface of the adhesive layer, the peak values of both the
shear and normal stresses are lower than those of the bimaterial
thermostat. Specifically, the peak value of shear stress is decreased
�20%, while the peak value of normal stress is decreased around
two-thirds. By examining the system, the adhesive layer exhibits
a very large thermal expansion compared to either the upper or
lower adherend. Such a large thermal expansion in the adhesive
interlayer is responsible for the higher interfacial stresses at the
lower surface of the adhesive layer, which is constrained by a stif-
fer adherend. Compared to the stiffer lower adherend, the compli-
ant upper adherend is more pliable to deform under the
inconsistent thermal expansion via deflection, corresponding to
the lower shear and normal stresses on the upper surface of adhe-
sive layer.

Furthermore, in the case of a thick adhesive layer (h0 = 1.0 mm),
both the shear and normal stresses (Fig. 6(e) and (f)) at the lower
surface of the adhesive layer carry a slight decrease compared to
the case of a thinner adhesive layer (Fig. 6(c) and (d)). This obser-
vation can be understood such that the large thickness and low
modulus of the adhesive layer could accommodate relatively large
mismatched deformations between the upper and lower adher-
ends due to the inconsistent thermal expansion. In contrast, at
the upper surface of the adhesive layer, the directions of both the
shear and normal stresses are altered, corresponding to the change
of the characteristic deflection of the upper adherend induced by
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the varying adhesive layer thickness. In this case, compared to the
case of a thinner adhesive layer, the peak value of interfacial shear
stress at the upper interface decreases nearly half, while the peak
value of interfacial normal stress nearly doubles.

3.3. Scaling analysis of interfacial stresses

A compact, efficient computational code is designed to imple-
ment the present stress-function variational method for stress
analysis of ABJs. This code can be used to examine the dependen-
cies of the interfacial shear and normal stresses upon all the geo-
metrical and material parameters of the ABJs including the layer
thickness ratios h0/h2 and h1/h2, length ratio L/h2, modulus ratios
E0/E2 and E1/E2, Poisson’s ratios t0, t1 and t2, and coefficients of
thermal expansion a0, a1 and a2. In our recent study of single-sided
strap joints (Wu and Jenson, 2011), substantial scaling studies have
been conducted to examine the effects of adherend thickness ratio
h1/h2, length ratio L/h2 and modulus ratio E1/E2 on the shear and
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Fig. 7. Comparison of interfacial shear and normal stresses at the upper an
normal stress variations along the interface. In the following, we
are going to examine the effects of the thickness and modulus of
the adhesive layer on the interfacial shear and normal stresses.
In addition, it needs to be mentioned that the present ABJ model
is established within the framework of linear elasticity. Therefore,
the stress field in ABJs triggered by combined mechanical loads and
temperature change can be treated separately based on method of
superposition.

3.3.1. Scaling analysis of interfacial stresses due to mechanical loads
To examine the effects of thickness and modulus of the adhesive

layer on the interfacial shear and normal stresses in the present
ABJ, the adherend length and modulus ratios are fixed as L/h2 = 5
and E1/E2 = 3, and Poisson’s ratios of the upper and lower adher-
ends are fixed as t1 = 0.293 (steel) and t2 = 0.345 (aluminum).
For the adhesive layer, three thickness ratios (h0/h2 = 0.2, and 0.5)
and two modulus ratios (E0/E2 = 1/20 and 1/10) are adopted, and
the Poisson’s ratio is fixed at t0 = 0.4 (thermosetting epoxy) in
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the calculations. The joint is treated in the state of plane-stress. Figs.
7–10 show variations of the dimensionless upper and lower inter-
facial shear stress s/p0 and normal (peeling) stress r/p0 with the
dimensionless distance x/h2 from the joint mid-span to the right
adherend end at five adherend thickness ratios (h1/h2 = 0.5, 0.75,
1.0, 1.5, and 2.0), two adhesive thickness ratios (h0/h2 = 0.2 and
0.5), and two adhesive modulus ratios (E0/E2 = 1/10 and 1/20),
respectively. For the purpose of comparison, the interfacial shear
and normal stresses of a bonded single-sided strap joint without
the adhesive layer are also simulated using the reduced method
developed recently (Wu and Jenson, 2011) as shown in Fig. 7(a)
and (b). In all the simulations, the shear stress components satisfy
the shear-free condition at the adherend ends.

It can be observed from Fig. 7 that high interfacial shear and
normal stress concentrations exist near the interior edges of the
adherends. For both types of joints with and without the adhesive
layer, due to the existence of a bending moment at the mid-span,
as illustrated in Fig. 2(b), the peak value of interfacial normal stress
at the interior edges is much larger than that of the shear stress in
all the cases under this study, which is also validated by FEM in a
special case as shown in Fig. 4. In addition, the peak value of the
shear stresses at both the upper and lower surfaces of the adhesive
layer decreases with increasing adherend thickness ratio h1/h2. Ex-
cept for the case of h1/h2 = 0.5, the shear stresses at the upper and
low surfaces of the adhesive layer have close variation along the
interface. Also, the peak value of the normal stresses at the upper
and lower interfaces have very close varying trend; these interfa-
cial normal stresses increase rapidly with the decrease of adherend
thickness ratio h1/h2. Such observation implies that a thicker upper
adherend (i.e., the cover layer with larger flexural rigidity) can sup-
press the joint deflection and flexural stress and therefore suppress
the debonding failure. The larger normal stress at the upper surface
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Fig. 8. Comparison of interfacial shear and normal stresses at the upper an
of the adhesive layer implies that the debonding failure would be
pliable to start along the upper adherend/adhesive interface.

The observed varying trends of both the interfacial shear and
normal stresses hold for all the cases under this investigation. Fur-
thermore, by comparison of stresses in Fig. 7 with those in Figs. 8-
10, it can be concluded that when letting only one parameter vary
and fixing the rest parameters, both the interfacial shear and nor-
mal stresses decrease noticeably with increasing thickness of the
adhesive layer and also decrease slightly with decreasing elastic
modulus of the adhesive layer for the parameters utilized in this
study. This observation can be understood that the thicker and
more complaint adhesive layer could provide larger deformation
to accommodate the mismatching deformations between the
upper and lower adherends and therefore decreases the interfacial
stresses.

Therefore, the above scaling analysis could provide a clear pic-
ture on how the joint geometries and material properties influence
the interfacial shear and normal stresses of the ABJs. These scaling
results can be used to guide reliable and rational structural design
and strength and failure analysis of ABJs. Furthermore, based on
the interfacial stress functions (71a)-(71d), though approximately,
the entire stress field in the ABJs can be determined in high accu-
racy using the relations formulated in Section 2.3. Consequently, it
needs to be emphasized that the theoretical formulation of the
present stress-function variational method is based on Euler–Ber-
noulli beam theory and linear elasticity, and no further assump-
tions are introduced in the above process. The only limitation of
the present ABJ model is that the axial stresses in the adherends
and adhesive should be linearly varying. Therefore, the present
theoretical modeling of stress field in ABJs is theoretically self-con-
sistent; accuracy of the stress field of ABJs based on the present
model only relies on the numerical process in solving the resulting
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Fig. 9. Comparison of interfacial shear and normal stresses at the upper and lower adherend/adhesive interfaces with E2/E0 = 10 and h0/h2 = 0.2.
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Fig. 10. Comparison of interfacial shear and normal stresses at the upper and lower adherend/adhesive interfaces with E2/E0 = 10 and h0/h2 = 0.5.
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set of 16 simultaneous algebraic Eqs. (70a)-(70p), independent of
the adhesive thickness and length.

4. Concluding remarks

A novel, general, self-consistent stress-function variational
method has been successfully established for stress analysis of ABJs
subjected to mechanical or thermomechanical loads. The modeling
process was demonstrated in a special case of adhesively single-
sided strap joint. During the theoretical formulation, at each adher-
end/adhesive interface of the ABJ, two unknown interfacial shear
and normal stress functions were introduced. Therefore, the entire
stress filed of the ABJ can be expressed consistently into such four
interfacial stress functions on the two interfaces within the frame-
work of Euler–Bernoulli beam theory and linear elasticity. The gov-
erning set of four ODEs has been obtained by evoking the theorem
of minimum complementary strain energy and solved by eigen-
function method successfully. Such a set of governing ODEs can
be considered as the characteristic equations for all ABJs made of
three layers, which, by slightly modifying the traction BCs, can also
be conveniently broadened for determining stresses in a wide fam-
ily of three-layer systems including adhesively bonded single-lap
joints, composite joints, etc. The advantages of the present formu-
lation include its generality and the stress-field solution satisfying
all the multiple traction BCs at the adherend ends and across the
interfaces. The present work has been validated by FEA, and the
scaling analysis of the present study has indicated very useful
guidelines in stress analysis and structural design of ABJs.

In addition, though dealing with a classic engineering mechan-
ics problem in ABJs, the present study can improve the efficiency
and accuracy of stress analysis in ABJs and therefore has practical
applications in engineering. Consequently, the theoretical formal-
ism of stress-function variation developed in the present work
can be conveniently generalized to solve a variety of strength
and mechanical durability problems of adhesively bonded struc-
tures and layered materials including recently developed flexible
electrics, etc.
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