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Abstract: High interfacial stresses near the edges of bonded joints are responsible for their debonding failure. This paper reports a new semi-
analytic stress-function variational approach to the interfacial stresses of a bonded joint, which is made of a straight tension bar covered with
a reinforcing patch and subjected to mechanical loads and/or uniform change of temperature. The process introduces two interfacial shear and
normal stress functions, which are correlated via the approximately same radius of curvature of the slender adherends. All the stress components
in the joint are expressed in terms of the interfacial stress functions based on the classic Euler-Bernoulli beam theory and equilibrium equations
of elasticity. Deformation compatibility of the joint is satisfied by minimizing the complementary strain energy, which leads to a fourth-order
ordinary differential equation (ODE) of the interfacial shear stress function. The interfacial shear and normal stresses are determined explicitly
and compared with those given by the elementary beam theory and FEM, respectively. The results gained in this study are applicable to scaling
analysis of joint strength and optimization of structural design of joints. The present formalism can be extended conveniently to the mechanical
stress and thermal stress analysis of various bonded structures, including adhesively bonded joints, composite joints, and recently developed
flexible electronics. DOI: 10.1061/(ASCE)EM.1943-7889.0000803. © 2014 American Society of Civil Engineers.
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Introduction

Bonded joints are fundamental structural components that have found
broad application in load transfer and connection of separated parts.
Bonded joints typically consist of two adherends of the same or dis-
similar materials joined together via bolts, solders, or adhesives. In
engineering practice, soldered joints are extensively used in ground
vehicles and marine ships, whereas adhesively bonded joints (ABJs)
find application in aerospace structures, especially those made of
fiber-reinforced polymer matrix composites (PMCs) (Jones 1999).
For bonded joints (e.g., lap, strap, and butt joints) subjected to external
loading and/or change of environmental temperature, high interfacial
stresses are typically triggered near the free edges because of a mis-
match of Poisson’s ratios and coefficients of thermal expansion of the
adherends. These interfacial stresses are responsible for the debonding
failure of bonded joints. Without a doubt, understanding of the stress
state near the free edges of bonded joints can provide information
particularly useful in joint design, structural optimization, and failure
analysis. Yet, accurate stress analysis of bonded joints has long been
a challenging task because of the constraints of multiple boundary
conditions (BCs) and dissimilar materials, in particular when com-
bined with rate effects and material nonlinearity. As a matter of fact,
strength and failure analysis of multimaterial joints is still a priority
research field in aerospacematerials and structures as addressed in the

annual board agency announcement (BAA) of the U.S. Air Force
Office of Scientific Research (AFOSR).

The concept of free-edge stress was conceived by Timoshenko
(1925), who first considered the deflection of bimetal thermostats
subjected to uniform change of temperature. Goland and Reissner
(1944) were the first to systematically investigate the interfacial
stresses in a single-lap joint subjected to axial tension, in which the
adherends were in the state of combined in-plane tension and de-
flection. An approximate solution was gained for this practical
elasticity problem; however, except for a few specified locations,
this approach did not satisfy all the traction BCs. Meanwhile, with
the fast development of microelectronics since the 1970s, thermal
stress-induced debonding failure in electronics packaging has be-
come one of the main technical concerns and has attracted excep-
tional research in the last three decades. Among others, Chen and
Nelson (1979) and Suhir (1986, 1989) proposed two simplified
engineering solutions to the edge stress of bimaterials (chips).
Suhir’s solution (1986) did not satisfy the fundamental static equi-
librium equations of the joint and free traction BCs because of
the oversimplified formulation and introduction of multiple ad hoc
assumptions (including several coarse revisions made later). The-
oretically, because of the existence of stress singularity near the
sharp free edges, detailed finite-element analysis (FEA) shows that
the edge stresses are expected to grow rapidly with refining of the
mesh size at the free edges. More recently, with the birth of flexible
electronics based on smart deposition of rigidmicrosilicon units onto
compliant polymeric substrates (Khang et al. 2006; Sun et al. 2006;
Kim and Rogers 2008), significant efforts have been dedicated to
understanding their mechanical response and durability that highly
depend upon the interfacial stress between the free-standing silicon
islands and the flexible substrate layers (Jiang et al. 2007, 2008; Lu
et al. 2007; Yoon et al. 2007; Song et al. 2008; Khang et al. 2009). It
is expected that consistent, accurate prediction of these interfacial
stresses would benefit the structural design for sound mechanical
durability of these novel intelligent flexible electronics (e.g., flexible
displayers, intelligent rubber surgical gloves) (Gates 2009).
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On the other hand, stress analysis of bonded joints has been an
active topic of research in structural engineering and materials sci-
ence for decades owing to its technical importance to structural
durability and strength analysis. Recent representative studies in-
clude those by Yuan et al. (2004) and De Lorenzis and Teng (2007)
for the full-range mechanical behavior of joints made of fiber-
reinforced PMCs and concrete, Carpinteri et al. (2009) for the
debonding failure analysis of ABJs in RC, and Yang et al. (2004) and
Yang and Guan (2009) for the nonlinear response of adhesive single-
lap composite joints and stress distribution in adhesive tubular
torsion joints. A detailed review of the historical development and
recent progress of stress analysis of bonded joints wasmade recently
by da Silva et al. (2009a, b). Yet, when dealing with the adhesive
layer, investigations reported in the literature typically adopted the
assumption of a shear-lag model, which considers the adhesive
layers as two independent elastic springs in axial and lateral
directions, respectively. Examination of the shear-lag model shows
that this model does not satisfy the generalized Hooke’s law, nor do
the interfacial shear stresses obtained from the model satisfy the
stress-free condition at the joint edges. Thus, refined work in im-
proving the stress analysis of bonded joints and guaranteeing the
extendibility of the techniques of stress analysis for broad appli-
cations is still desired.

Furthermore, compared with stress analysis of bonded joints,
remarkable progress has been made in parallel studies of cracking in
bonded layers since the 1990s. Quite a few crack models have been
proposed to extract the fracture characteristics [e.g., stress intensity
factor (SIF) and crack tip opening displacement (CTOD)] of cracked
layers (Suo and Hutchinson 1990; Hutchinson and Suo 1992; Li
2001; Yu andHutchinson 2001, 2003;Wu andDzenis 2002a, b;Wu
et al. 2003a, b, 2004, 2008). In addition, a significant number of
classic SIF solutions of cracked layers have beenwell documented in
two classic SIF handbooks by Sih (1973) and Tada et al. (1973). It is
obvious that improved stress analysis of bonded joints can facilitate
the fracture analysis of bonded joints and therefore lead to in-depth
understanding of failure mechanisms and damage evolution in
bonded joints.

Since the 1990s, several improved methods for stress analysis of
bonded joints have been reported in the literature. For instance, by
expressing the interfacial shear and normal stresses in terms of
Fourier series with the coefficients determined by minimizing the
complementary strain energy of the joint, Chang (1990, 1993)
obtained the explicit expressions of joint stresses that can satisfy all
the traction BCs. Yin (1994a, b) and Wu and Dzenis (2005) de-
termined the free-edge stresses of laminated composites by using
a stress-function variational method. In this approach, interface
stress functionswere directly introduced, throughwhich all the stress
equilibrium equations and stress continuity across the laminate
interfaceswere satisfied intrinsically; deformation compatibilitywas
fulfilled via minimization of the complementary strain energy of the
laminate that led to a set of ordinary differential equations (ODE)
solved by eigenfunctions. All the free-edge traction BCs in this
approach can be completely satisfied. Compared with the free-edge
stresses of laminates predicted by detailed FEA, the stress-function
variational method can predict the accurate stress variation at
interfaces of laminates with a distance of approximately one ply
thickness out of the free edges (Wu 2009).

Along this avenue, this work introduces a new semianalytic
stress-function variational approach to the interfacial stresses of
bonded joints by directly adopting two interfacial shear and normal
stress functions. With these two stress functions, all the stress
components in the joints are approximated within the framework of
classic Euler-Bernoulli beam theory (for axial stress) and two-
dimensional (2D) elasticity (for shear and transverse normal

stress), which can satisfy all the stress equilibrium equations and
traction BCs of the joints. The governing equation of the stress
functions is obtained via minimization of the complementary strain
energy of the joints. As a result, all the stress components can be
determined in explicit expressions. Comparisons of the current
results with those based on the elementary beam theory, FEM, and
those available in the literature will be made. Potential applications
of the current study will be further addressed.

Problem Formulation and Solution

Consider a bonded joint consisting of a straight tension bar (sub-
strate) and a reinforcing patch, as illustrated in Fig. 1. Both the
tension bar and reinforcing patch are considered prismatic segments
such that the reinforcing patch has the length L, thickness h1, and
width b, and the tension bar has the thickness h2, width b, and length
much larger than L. The coordinate systems are introduced as
follows. The x-coordinate is selected from the symmetric midplane
to direct the bar axis, and y1 and y2 are the vertical coordinates with
the origins located at the centroids of cross sections of the reinforcing
patch and tension bar, respectively. The joint is subjected to uniform
tension p0 far away from the reinforcing patch and uniform change of
temperature DT relative to the reference temperature of stress-free
state. Because of the mismatch of material properties across the
interface, high interfacial shear and normal (peeling) stresses are
triggered near the patch ends, as Fig. 1(b) illustrates. These inter-
facial stresses are responsible for the failure of bonded joints, such
as interface debonding commonly observed in engineered joints.
Rigidly speaking, the patch ends are in a complicated three-
dimensional (3D) stress state due to the effect of dissimilar Pois-
son’s ratios of the adherends. To simplify the process, hereafter the
authors treat the joint in the state of either plane-stress or plane-
strain. Before applying themechanical loads or uniform temperature
change, no residual stress is assumed in the joint at the reference
temperature. In addition, the tension bar and reinforcing patch are
dealt with as isotropic, linearly thermoelastic solids. For the con-
venience of the upcoming derivations, parameters and variableswith
subscripts 1 and 2 are attached to the reinforcing patch (cover) and
the tension bar (substrate), respectively.

Fig. 1. Schematic of bonded joint: (a) bonded joint consists of a tension
bar covered with a reinforcing patch; (b) schematic interfacial shear and
normal stresses
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Static Equilibrium Equations and
Deformation Compatibility

Owing to loss of lateral symmetry, deformation of the joint is
a combination of in-plane elongation and lateral deflection. The
reinforcing patch and tension bar are considered to be slender and
therefore can be approached as Euler-Bernoulli beams. Fig. 2 shows
free-body diagrams (FBDs) of the typical segmental elements of the
reinforcing patch and tension bar, in which the stress components
and stress resultants are defined to follow the standard sign conven-
tions (Beer et al. 2009). Given a representative segmental element
of the reinforcing patch [Fig. 2(a)], the corresponding equilibrium
equations are

SFx ¼ 0: dS1
dx

¼ 2bt (1)

SFy ¼ 0:
dQ1

dx
¼ 2bs (2)

SM ¼ 0: dM1

dx
¼ Q12

h1
2
ðbtÞ (3)

Similarly, for a representative segmental element of the tension bar
[Fig. 2(b)], the relevant equilibrium equations are

SFx ¼ 0: dS2
dx

¼ bt (4)

SFy ¼ 0:
dQ2

dx
¼ bs (5)

SM ¼ 0: dM2

dx
¼ Q22

h2
2
ðbtÞ (6)

To simplify the process, the authors use an approximate deformation-
compatibility such that the slender reinforcing patch and the tension
bar have the same radius of curvature

M1

E1I1
¼ M2

E2I2
(7)

where

I1 ¼ 1
12

bh31 and I2 ¼ 1
12

bh32 (8)

Eq. (7) is used to correlate the interfacial shear and normal stresses
along the bonding line in the upcoming derivation, which signifi-
cantly simplifies the governing equation of the problem.

Stress Resultants

Define the interfacial shear stress t and normal stress s as two
unknown functions to be determined:

t ¼ f ðxÞ and s ¼ gðxÞ (9)

Symmetry of the bonded joint with respect to the midspan (y-axis)
requires that f ðxÞ be an odd function and gðxÞ be an even function,
i.e.

f ð2xÞ ¼ 2f ðxÞ and gð2xÞ ¼ gðxÞ (10)

At the patch ends, shear-free condition reads

f ð2L=2Þ ¼ f ðL=2Þ ¼ 0 (11)

Stress resultants of the adherends can be expressed in terms of f and
g as follows. Integration of Eq. (1) with respect to x from x52L=2
yields

ðx
2L=2

dS1 ¼ 2

ðx
2L=2

bf ðjÞdj (12)

With the aid of the traction-free condition at x52L=2, i.e.,
S1ð2L=2Þ5 0, the normal stress resultant (axis force) Eq. (12)
can be expressed as

S1ðxÞ ¼ 2b
ðx

2L=2

f ðjÞdj (13)

Integration of Eq. (2) with respect to x from x52L=2 leads to

ðx
2L=2

dQ1 ¼ 2

ðx
2L=2

bgðjÞdj (14)

With the shear-free condition at x52L=2, i.e., Q1ð2L=2Þ5 0, the
shear stress resultant (shear force) Eq. (14) can be rewritten as

Fig. 2. Free-body diagrams of representative segmental element of (a) slender reinforcing patch; (b) slender tension bar
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Q1ðxÞ ¼ 2b

ðx
2L=2

gðjÞdj (15)

Furthermore, integration of Eq. (3) with respect to x from x52L=2
gives

ðx
2L=2

dM1 ¼
ðx

2L=2

h
Q1ðjÞ2 h1

2
ðbtÞ

i
dj (16)

By triggering the moment-free condition at x52L=2, i.e.,
M1ð2L=2Þ5 0, the bending moment Eq. (16) becomes

M1ðxÞ ¼ 2b

ðx
2L=2

ðj
2L=2

gð§Þd§dj2 bh1
2

ðx
2L=2

f ðjÞdj (17)

By using the same procedure, integration of Eq. (4) with respect to x
from x52L=2 yields

ðx
2L=2

dS2 ¼
ðx

2L=2

bf ðjÞdj (18)

With the axial traction condition at x52L=2, i.e., S2ð2L=2Þ
5 p0bh2, the normal stress resultant (axis force) Eq. (18) can be
expressed as

S2ðxÞ ¼ p0ðbh2Þ þ b

ðx
2L=2

f ðjÞdj (19)

The shear force Q2ðxÞ and bending moment M2ðxÞ can be de-
termined correspondingly by integrating Eqs. (5) and (6) with re-
spect to x from x52L=2 and using the stress-free conditions at
x52L=2

Q2ðxÞ ¼ b
ðx

2L=2

gðjÞdj (20)

M2ðxÞ ¼ b

ðx
2L=2

ðj
2L=2

gð§Þd§dj2 bh2
2

ðx
2L=2

f ðjÞdj (21)

In addition, f and g can be correlated through the deformation
compatibility [Eq. (7)]

E2I2
E1I1

2
642 ðx

2L=2

ðj
2L=2

gð§Þd§dj2 h1
2

ðx
2L=2

f ðjÞdj

3
75

¼
ðx

2L=2

ðj
2L=2

gð§Þd§dj2 h2
2

ðx
2L=2

f ðjÞdj (22)

Differentiating at both sides of Eq. (22) yields

f ðxÞ ¼ 22
h0
h2

ðx
2L=2

gðjÞdj, (23)

where h0 5 ðe21h321 1 1Þ=ðe21h221 2 1Þ; e21 5 E2=E1; and h21
5 h2=h1. As a result, the bending moments M1ðxÞ and M2ðxÞ in
Eqs. (17) and (21) can be rewritten as

M1ðxÞ ¼ 2
bh1
2

�
12 h21

0 h21
� ðx
2L=2

f ðjÞdj (24)

M2ðxÞ ¼ 2
bh2
2

�
1þ h21

0

� ðx
2L=2

f ðjÞdj (25)

One special case needs to be mentioned: When the joint satisfies the
condition e21h221 5 1, it leads to f ðxÞ5 0 and Eq. (23) does not hold.
In the following derivation, the discussion of this trivial case is
ignored.

Stress Components

Stresses in the Reinforcing Patch
For slender adherends of the joint, axial normal stress of the rein-
forcing patch can be approached according to the flexural stress
formula of Euler-Bernoulli beams:

sð1Þ
xx ¼ S1

bh1
2

M1y1
I1

¼ 2

"
1
h1

2
6y1
h21

�
12 4

3
h21
0 h21

�# ðx
2L=2

f ðjÞdj

(26)

Shear stress tð1Þy1x
in the reinforcing patch can be determined by in-

tegrating the equilibrium equation

∂sxx

∂x
þ ∂tð1Þy1x

∂y1
¼ 0 (27)

with respect to y1 from an arbitrary location y to the top surface at
y1 5 h1=2

ðh1=2
y1

∂sð1Þ
xx

∂x
dy1 þ

ðh1=2
y1

∂tð1Þy1x

∂y1
dy1 ¼ 0 (28)

which leads to

tð1Þy1x ¼ 2

"
1
h1

�
h1
2
2 y1

�
2 3

h21

�
h21
4
2 y21

��
12 4

3
h21
0 h21

�#
f ðxÞ

(29)

Here, the traction-free condition tð1Þy1x
ðh1=2Þ5 0 has been imple-

mented. Furthermore, normal stress sð1Þ
y1y1

in the patch layer can be
calculated by integrating the equilibrium equation
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∂sð1Þ
y1y1

∂y1
þ ∂tð1Þxy1

∂x
¼ 0 (30)

with respect to y1 from an arbitrary location y to the top surface at
y1 5 h1=2 as

ðh1=2
y1

∂sð1Þ
y1y1

∂y1
dy1 þ

ðh1=2
y1

∂tð1Þxy1

∂x
dy1 ¼ 0 (31)

which yields

sð1Þ
y1y1 ¼ 2

(
1
h1

�
h1
2

�
h1
2
2 y1

�
2 1

2

�
h21
4
2 y21

�	
2 3

h21

�
h21
4

�
h1
2
2 y1

�

2 1
3

�
h31
8
2 y31

�	�
12 4

3
h21
0 h21

�)
f 9ðxÞ

(32)

Stresses in the Substrate Bar
Stress components in the tension bar can be determined using the
same approach. The axial normal stress can be approximated as

sð2Þ
xx ¼ S2

bh2
2

M2y2
I2

¼ p0 þ
"
1
h2

þ 6y2
h22

�
1þ 4

3
h21
0

�# ðx
2L=2

f ðjÞdj

(33)

Shear stress tð2Þy2x
can be obtained by integrating the equilibrium

equation

∂sð2Þ
xx

∂x
þ ∂tð2Þy2x

∂y2
¼ 0 (34)

with respect to y2 from the bottom surface y2 5 h2=2 to an arbitrary
location y2 of the tension bar

ðy2
2h2=2

∂sð2Þ
xx

∂x
dy2 þ

ðy2
2h2=2

∂tð2Þy2x

∂y2
dy2 ¼ 0 (35)

which leads to

tð2Þy2x ¼ 2

"
1
h2

�
y2 þ h2

2

�
þ 3
h22

�
y222

h22
4

��
1þ 4

3
h21
0

�#
f ðxÞ (36)

Here, the stress-free condition tð2Þy2x
ð2h2=2Þ5 0 has been used.

Furthermore, normal stresssð2Þ
y2y2

in the tension bar can be determined
by integrating the equilibrium equation

∂sð2Þ
y2y2

∂y2
þ ∂tð2Þxy2

∂x
¼ 0 (37)

with respect to y2 from the bottom surface at y2 52h2=2 to an
arbitrary location y2 such that

ðy2
2h2=2

∂sð2Þ
y2y2

∂y2
dy2 þ

ðy2
2h2=2

∂tð2Þxy2

∂x
dy2 ¼ 0 (38)

which yields

sð2Þ
y2y2 ¼

(
1
h2

�
1
2

�
y222

h22
4

�
þ h2

2

�
y2 þ h2

2

�	

þ 3
h22

�
1
3

�
y32 þ

h32
8

�
2

h22
4

�
y2 þ h2

2

�	�
1þ 4

3
h21
0

�)
f 9ðxÞ

(39)

where the traction-free condition sð2Þ
y2y2

ð2h2=2Þ5 0 has been
adopted.

Governing Equation of Interfacial Stress Functions

For linearly thermoelastic solids, the strain energy of the entire joint
(jxj#L=2) can be expressed as (Timoshenko and Goodier 1951;
Chang 1990, 1993; Chen and Cheng 1992; Wu et al. 2008)

U ¼ b

ðL=2
2L=2

ðh1=2
2h1=2



1
2

h
sð1Þ
xx ɛ

ð1Þ
xx þ sð1Þ

yy ɛ
ð1Þ
yy

i
þ 1þ y1

E1

�
tð1Þxy1

�2�
dxdy1

þ b

ðL=2
2L=2

ðh2=2
2h2=2



1
2

h
sð2Þ
xx ɛ

ð2Þ
xx þ sð2Þ

yy ɛ
ð2Þ
yy

i
þ 1þ y2

E2

�
tð2Þxy2

�2�
dxdy2

(40)

Here, ɛðiÞxx ði5 1, 2Þ and ɛðiÞyy ði5 1, 2Þ are the normal strains defined
by the generalized Hooke’s law of linearly thermoelastic solids. In
the plane-stress state, it reads

ɛðiÞxx ¼ s
ðiÞ
xx

Ei
2 yi

s
ðiÞ
yy

Ei
þ aiDT (41)

ɛðiÞyy ¼ s
ðiÞ
yy

Ei
2 yi

s
ðiÞ
xx

Ei
þ aiDT (42)

whereai ði5 1, 2Þ5 coefficients of thermal expansion of the cover
and substrate layers, respectively. In the case of plane-strain state,
the corresponding expressions can be obtained by replacing
the Young’s moduli Ei by Ei=ð12 y2i Þ, Poisson’s ratios yi by
yi=ð12 yiÞ, and coefficients of thermal expansion ai by ð11 yiÞai,
where i5 1, 2. The strain energy expressed in Eq. (40) is a functional
with respect to the unknown function f . According to the theorem of
minimum complementary strain energy, the complementary strain
energy of the joint reaches a stationary point at static equilibrium,
which corresponds to the necessary condition in term of variation of
the strain energy equal to zero (Chen and Cheng 1992; Wu et al.
2008):

dU ¼ 0 (43)

or
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b

ðL=2
2L=2

ðh1=2
2h1=2



1
E1

h
sð1Þ
xx dɛ

ð1Þ
xx þ dsð1Þ

xx ɛ
ð1Þ
xx þ sð1Þ

y1y1dɛ
ð1Þ
y1y1

þ dsð1Þ
y1y1ɛ

ð1Þ
y1y1

i
þ 2ð1þ y1Þ

E1
tð1Þxy1dt

ð1Þ
xy1

�
dxdy1

þ b
ðL=2

2L=2

ðh2=2
2h2=2



1
E2

h
sð2Þ
xx dɛ

ð2Þ
xx þ dsð2Þ

xx ɛ
ð2Þ
xx þ sð2Þ

y1y1dɛ
ð2Þ
y1y1

þ dsð2Þ
y1y1ɛ

ð2Þ
y1y1

i
þ 2ð1þ y2Þ

E2
tð2Þxy2dt

ð2Þ
xy2

�
dxdy2 ¼ 0 (44)

where d 5 varational operator with respect to the interfacial shear-
stress function f . By substituting Eqs. (26), (29), (32), (33), (36),
and (39) into Eq. (44) and performing several variational operations
and simplifications, the shear-stress function f in plane-strain state
satisfies a fourth-order ODE of constant coefficients:

FðIVÞðjÞ2 2pF99ðjÞ þ q2FðjÞ
þ
h
2e21

21 þ 1
2
ða12a2ÞDTE1

.
p0
i.

A11 ¼ 0 (45)

where

FðjÞ ¼ Fðx=h1Þ ¼ 2

�
1

p0h1

� ðx
2L=2

f ðxÞdx (46)

p ¼ 2A12=ð2A11Þ (47)

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22=A11

p
(48)

A11 ¼
�
1
20

2 2
15

b1 þ 13
140

b2
1

�
þ e21

21 h
3
21

�
1
20

2 2
15

b2 þ 13
140

b2
2

�
(49)

A12 ¼
�
22
3
þ b12

3
5
b2
12 y1 þ b1y1

�
þ e21

21 h21
�
22
3
þ b22

3
5
b2
22 y2 þ b2y2

�
(50)

A22 ¼
�
1þ 3b2

1

�þ e21
21 h

21
21

�
1þ 3b2

2

�
(51)

b1 ¼ 12 h21
0 h21 (52)

b2 ¼ 1þ h21
0 (53)

In addition, symmetry of the bonded joint with respect to the y-axis
requires that f is an odd function and FðjÞ is an even function. In the
case of q. p, the solution to Eq. (45) has the form

FðjÞ ¼ C1 coshðbjÞcosðgjÞ þ C2 sinhðbjÞsinðgjÞ
þ
h
e21
21 2 1

2
ða12a2ÞDTE1=p0

i.�
q2A11

�
(54)

where b5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp1 qÞ=2p

; g5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq2 pÞ=2p

; and C1 and C2 are two
unknown constants to be determined. Thus, stress function f can be
determined as

f ðxÞ ¼ 2p0h1
dFðjÞ
dx

¼ 2p0½ðC1bþ C2gÞsinhðbx=h1Þcosðg=h1Þ þ ð2C1g

þ C2bÞcoshðbx=h1Þsinðgx=h1Þ� (55)

With the shear-free condition at x5 6L=2, C1 and C2 can be
correlated as

k ¼ C1

C2
¼ g sinh½bL=ð2h1Þ�cos½gL=ð2h1Þ� þ b cosh½bL=ð2h1Þ�sin½gL=ð2h1Þ�

g cosh½bL=ð2h1Þ�sin½gL=ð2h1Þ�2b sinh½bL=ð2h1Þ�cos½gL=ð2h1Þ� (56)

As a result, f and F can expressed as

f ðxÞ ¼ 2C2p0½ðkbþ gÞsinhðbx=h1Þcosðgx=h1Þ þ ð2kg þ bÞcoshðbx=h1Þsinðgx=h1Þ� (57)

and

FðxÞ ¼ C2½k coshðbx=h1Þcosðgx=h1Þ þ sinhðbx=h1Þsinðgx=h1Þ� þ
h
e21
21 2 1

2
ða12a2ÞDTE1=p0

i.�
q2A11

�
(58)

Constant C2 can be determined by the conditions of free axial traction and bending moment at x56L=2

C2 ¼

h
2e21

21 þ 1
2
ða1 2a2ÞDTE1=p0

i.�
q2A11

�
k cosh½bL=ð2h1Þ�cos½gL=ð2h1Þ� þ sinh½bL=ð2h1Þ�sin½gL=ð2h1Þ� (59)
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Moreover, in the case of p. q, the solution to Eq. (45) has the form

FðjÞ ¼ C1 coshðbjÞ þ C2 coshðgjÞ
þ
h
e21
21 2 1

2
ða12a2ÞDTE1=p0

i.�
q2A11

�
(60)

where b5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 2 q2

pq
; g5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 2 q2

pq
; and C1 and C2

are again two unknown coefficients to be determined. In this case, f
can be expressed as

f ðxÞ ¼ 2p0h1
dF
dx

¼ 2p0½C1b sinhðbx=h1Þ þ C2g sinhðgx=h1Þ�
(61)

By considering the shear-free and traction-free conditions at
x5 6 L=2, C1 and C2 can be determined and f can be expressed as

f ðxÞ ¼ 2C2p0½kb sinhðbx=h1Þ þ g sinhðgx=h1Þ� (62)

where

k ¼ C1

C2
¼ 2

g sinh½gL=ð2h1Þ�
b sinh½bL=ð2h1Þ� and

C2 ¼

h
2e21

21 þ 1
2
ða1 2a2ÞDTE1=p0

i.�
q2A11

�
k cosh½bL=ð2h1Þ� þ cosh½gL=ð2h1Þ�

(63)

Consequently, the stress functiongðxÞ can be determined by Eq. (23)
as

gðxÞ ¼ 2
h2
2h0

f 9ðxÞ (64)

Examples and Discussions

Interfacial Stresses in a Bonded Joint due to
Mechanical Loads

In the “Problem Formulation and Solution” section, interfacial shear
and normal stresses of a bonded joint are determined explicitly using
Eqs. (57), (62), and (64). To validate the presented solutions, the
authors first examine the shear force transferred by the interface of
the left-half portion of the reinforcing patch. This shear force should
be equal to the axial force of the reinforcing patch at the midspan
y5 0 according to static equilibrium and Eq. (13)

S10 ¼ 2b

ð0
2L=2

f ðxÞdx (65)

In addition, for a slender joint, the axial force S10 at the midspan
(y5 0) of the cover should be approximately equal to that given by
the elementary beam theory as follows. Consider the half-joint and
corresponding FBDs shown in Fig. 3. By using the transformed
section technique of composite beams (Beer et al. 2009), if letting the
reinforcing patch be the reference material, the location of the joint
centroid C0 in the cross section [see Fig. 3(a)] is

y ¼ h1ðh1=2þ h2Þ þ e21h22

2

h1 þ e21h2
(66)

The effective areamoment of inertia of the transformed cross section
is

Ieffective ¼ bh31
12

þ bh1ðh1=2þ h22 yÞ2 þ e21bh32
12

þ e21bh2ðh2=22 yÞ2 (67)

and the effective bending moment acting at the centroid C0 is

M0 ¼ p0ðbh2Þðy2 h2=2Þ (68)

Thus, flexural stress in the reinforcing patch can be expressed as

sð1Þ
xx ¼ p0h2

h1 þ e21h2
2

M0y
Ieffective

(69)

Substitution of Eqs. (66)–(68) into Eq. (69) and then integrating with
respect to y over the cross section of the cover layer leads to the
effective axial force

S109 ¼ b
ð
Ai

sð1Þ
xx dy ¼

p0h1h2
h1 þ e21h2

2
M0

Ieffective

ðh1þh22y

h22y

ydy

¼ p0h2

�
h1

h1 þ e21h2
2

h2ðy2 h2=2Þð2h1 þ h22 2yÞ
2Ieffective

	
(70)

To compare Eqs. (65) and (70), the authors consider a bonded joint
made of an aluminum tension bar (E2 5 70 GPa, y2 5 0:34) rein-
forced with a steel patch (E1 5 200 GPa, y1 5 0:29). Assume the
geometrical ratios of the joint are h1=h2 5 1=4, L=h2 5 20. From the
previous section, the corresponding parameters of interfacial stress
functions f and g are p5 0:430357; q5 1:06882; b5 0:865787;
g5 0:565005; and k522:47821. Eqs. (55) and (64) yield

Fig. 3. Free-body diagrams of the half-joints for stress resultants at midspan: (a) stress resultants at centroid of cross section; (b) stress resultants of
individual adherends at midspan
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f ðxÞ ¼ 7:24913� 10216p0½2:26599 coshð0:865787xÞsinð0:565005xÞ2 1:58059 sinhð0:865787xÞcosð0:565005xÞ� (71)

gðxÞ ¼ 27:12512� 10217p0½20:0881639 coshð0:865787Þcosð0:565005xÞ þ 2:85491 sinhð0:865787xÞsinð0:565005xÞ� (72)

SubstitutionofEq. (71) into Eq. (65) gives the transferred shear force
by the reinforcing patch as

S10 ¼ 0:580789ðp0h1Þ (73)

whereas the transformed section technique [Eq. (70)] predicts the
axial force at the midspan of the reinforcing patch is

S109 ¼ 0:580789ðp0h1Þ (74)

The results here indicate an exact convergence of the axial tensile
force achieved by the present method at the midspan of a relatively
long patch layer using an approach different from the classic beam
theory.

In addition, the authors use Eqs. (57), (62), (65), and (70) to
further examine the effect of length ratio on the transferred axial
force based on the presented approach. Table 1 lists the relative
deviations of axial force at the midspan of the reinforcing patch at
several length ratios. In the calculation, except for the change of
patch length, other parameters are selected from the steel-aluminum
joint. Table 1 shows that for short reinforcing patches, a relatively
large deviation exists because the classic beam theory does not work
well, whereas for a long reinforcing patch, the current method can
cover the classic beam theory in calculating the axial force verywell.
This also validates the accuracy of the present method in the limiting
case.

Moreover, to validate the analytic solutions presented earlier, the
authors examine the interfacial shear and normal stresses of the
steel-aluminum joint subjected to uniform tension in the case of
plane-stress state based on the present method and commercial FEM
code (ANSYS 12.0.1), respectively. The joint being treated is made
of a slender aluminum substrate layer (E2 5 70 GPa, y2 5 0:34)
reinforced with a steel patch (E1 5 200 GPa, y1 5 0:29). The adher-
ends carry the samewidth, andother geometries are:h1 5 2 mm (steel);
h2 5 4 mm (aluminum); and L5 40 mm (see Fig. 1). The uniform
axial tensile stress of the substrate is assumed to be p0 5 1 MPa. In
the linear stress analysis of the joint using ANSYS, four-node ele-
ments (PLANE182) and mapped uniform quadrilateral meshes are
used. Owing to the existence of stress singularity near the free
edges, four FEM mesh sizes (i.e., 0:43 0:4 mm, 0:23 0:2 mm,
0:13 0:1 mm, and 0:053 0:05 mm) are used sequentially to cap-
ture the characteristics of the varying free-edge stresses with respect
to the mesh size. Figs. 4(a and b) plot variations of the interfacial
shear and normal stresses with the distance from the right edge, and

Figs. 4(c and d) plot the stress variations in the zoomed range close
to the adherend end. The stress comparison shows that the present
model can reasonably predict the stress variations along the inter-
face, although the stress values are lower near the adherend end than
those predicted by refined FEM results because of the use of lower-
order approach.

Owing to the existence of stress singularity near the free edge,
interfacial stresses predicted by FEM increase rapidly with de-
creasing mesh size at the free edges. Similar to other analytic models
in the literature, the present model cannot predict such stress sin-
gularity. However, the good fitting to the interfacial stress variation
trends predicted by FEM indicates the validity of the present method
that can be used for scaling analysis, design, and optimization of
joint structures, etc.

Interfacial Stresses in a Bimaterial Thermostat due to
Thermal Loads

Thermal stress analysis of a bonded joint, as shown in Fig. 1, in-
duced by pure temperature change is equivalent to that of a bima-
terial thermostat. In the following, we consider the thermal stresses
in an aluminum/molybdenum thermostat as studied by Suhir (1986,
1989), Eischen et al. (1990) and Ru (2002). In terms of the symbol
system used in this work, the system parameters are E1 5 70 GPa;
y1 5 0:345; a1 5 23:63 1026=�C; h1 5 2:5 mm; E2 5 325 GPa;
y2 5 0:293; a2 5 4:93 1026=�C; h2 5 2:5 mm; L5 50:8 mm; and
DT5 240�C. Plane-strain state is assumed in the present simulation.
The resulting interfacial shear stress t and normal stress s can be
expressed explicitly by Eqs. (62) and (64):

t ¼ 6:60932� 1029�2:33459 sinhð0:933937xÞ
2 1:04659� 1029 sinhð1:7813xÞ�ðMPaÞ (75)

s ¼ 5:24334� 1029�2:18013 coshð0:933937xÞ
2 1:86429� 1029 coshð1:7813xÞ�ðMPaÞ (76)

Figs. 5(a and b) show the distribution of the thermal shear and normal
stresses along the interface due to a uniform change of temperature.
From thefigure, high concentrations of shear and normal stresses can
be detected near the free edges, and the stress variations along the
interface are close to those given by Eischen et al. (1990) and Ru
(2002). Specifically, the peak value of interfacial normal stress
smax 5 103:7 MPa is close to the one predicted by Eischen et al.
(1990) (smax 5 102:8 MPa), and tmax 5 36:07 MPa appears at a
distance close to L=25 from the free edges that is slightly lower than
those given in the literature.

In addition, it needs to be mentioned that introduction of the
approximate deformation compatibility [Eq. (7)] dramatically sim-
plifies the process and makes it possible to gain the explicit expres-
sions of interfacial stresses along the bonding line. Yet, the accuracy
of these interfacial stresses is lower than those obtained by FEM
based on fine meshes. Furthermore, Wu and Jenson (2011), Wu and
Zhao (2013), and Wu et al. (2014) also performed the study to treat

Table 1. Comparison of Relative Deviation of theMidspanAxial Forces in
the Reinforcing Patch Based on the Present Method and Classic
Transformed Section Technique

Length ratio (L=h2) Relative deviation (%)

2 3.57
3 1.47
4 0.332
5 3:493 1023

10 7:023 1026
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Fig. 4.Comparison of interfacial shear and normal stresses predicted by the present method with those by FEM (ANSYS): (a) interfacial shear stress t;
(b) interfacial normal stresss (axial tensile stress of the substrate layer: p0 5 1 MPa); (c) zoomed interfacial shear stress t of case (b) near adherend end;
(d) zoomed interfacial normal stress s of case (b) near adherend end

Fig. 5. Interfacial shear and normal stresses of bimaterial thermostat subjected to uniform change of temperature: (a) shear stress t; (b) normal stress s
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the two interfacial stress functions f ðxÞ and gðxÞ as independent
functions by eliminating the assumption in Eq. (7). As a result, the
accuracy of interfacial stresses improved although the process was
much more complex and no explicit expressions of these interfacial
stresses were available. In the case of the same bonded joint
subjected to the same change of temperature, the high-order
solution by Wu and Jenson (2011) gave the peak interfacial
shear and normal stresses as tmax 5 69:32 MPa and smax

5 117:70 MPa, respectively. It can be observed that the peak in-
terfacial normal stress is accurately predicted by the present low-
order method whereas the interfacial shear stress is underestimated.
Furthermore, the present method predicts that the profiles of in-
terfacial shear and normal stress distributions are very similar to
those predicted by the high-order method (Wu and Jenson 2011).
Thus, in the view of scaling analysis, the present semianalytic so-
lution to the interfacial stresses in bonded joints have advantages due
to their simplicity and explicit expressions of the stress components.

Based on the formulas developed earlier, a wide stress spectrum
of bonded joints with varying material composition as well as length
and thickness ratios can be determined conveniently in closed form
following the presented approach. The stress distribution gained
from this process could be used for strength analysis and structural
optimization of bonded joints. The stress expressions obtained in
this study can be used for efficient scaling analysis such as exami-
nation of the effect of a specific material and geometrical parameter
of adherends on the stress distribution. Moreover, the formalism
proposed in this study can be conveniently generalized for stress
analysis of broad bonded joints involving more general loading
cases such as the typical single/double adhesively bonded lap and
strap joints as well as multilayered composite joints subjected to
combined mechanical and thermal loads.

Concluding Remarks

A new semianalytic stress-function variational approach has been
formulated to the interfacial stresses of bonded joints subjected to
axial tension and uniform change of temperature. In the process, all
the stress components were approximated in terms of two unknown
interfacial shear and normal stress functions f and g based on the
classic beam theory and 2Delasticity. The interfacial stress functions
f and gwere correlated through the deformation compatibility of the
joint. Minimization of the complementary strain energy of the joint
resulted in a fourth-order ODE of the interfacial shear stress f .
Advantages of the current interfacial stress solutions include that all
the stresses are determined in explicit expressions, all the BCs are
satisfied, and all the material and dimensional parameters have been
incorporated into the solutions. Thus, the present model gives
a refined understanding of the scaling behavior of stress variation in
bonded joints. The current stress solutions can recover those given
by the elementary beam theory in the limiting case. Validity of the
present model made by FEA and comparisonwith results reported in
the literature guarantees the application of the present model for
scaling analysis of stresses in bonded joints subjected to mechanical
and thermomechanical loads.

The analytic approach developed in this work can be conve-
niently generalized for a variety of bonded structures and materials
where the interfacial edge stresses dictate the strength and durability
of the structures and components of interest.
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