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Surface coatings are broadly used in cutting tools, protective surface, and recently devel-
oped flexible electronics. This paper provides a simple semi-analytic strain energy approach
to analysis of the interfacial stresses and progressive cracking in hard coatings subjected to
mechanical and thermomechanical loads. The problem is formulated within the framework
of linear elastic fracture mechanics (LEFM). The free-edge stresses in cracked coating layers
are determined by means of an efficient semi-analytic stress-function variational method
formulated by the authors recently. Criterion for progressive cracking in the coating layers
is established in the sense of energy conservation. The crack spacing is determined as a func-
tion with respect to the geometries, material properties, and external loads. Dependencies
of the free-edge stresses and crack spacing upon the geometries and material parameters of
the coating system as well as external loads are demonstrated. Numerical results show that
given a coating system, the threshold load increases rapidly with the decrease of crack spac-
ing; the thicker and stiffer the coating layer is, the easier the progressive cracking is. A uni-
versal scaling number on progressive cracking is obtained. The model is also validated by
the results in the literature. The present phenomenological model is applicable for scaling
analysis of cracking tolerance of surface coatings, data reduction of coating experiments,
design of property-tailorable surface coating systems, etc.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

A number of surface crack patterns have been observed
in layered structures in nature and engineered materials
such as dried mud, weathered stone, and surface coatings
(Bažant, 1986; Bai et al., 2000; Bai and Pollard, 2000; Xia
and Hutchinson, 2000; Leung et al., 2001). In nature, signif-
icant cracking events are related to the surface where dry-
ing or weathering of the surface layers plays a dominate
role. For instance, water evaporation in a drying mud in-
duces a large residual tensile strain while the substrate re-
strains the free shrinking of the surface layer. In
consequence, surface cracking takes place when the resid-
ual tensile stress of the surface layer reaches its strength
(Hutchinson and Suo, 1992; Colina and Roux, 2000; Neda
et al., 2002; Lee and Routh, 2004; Mal et al., 2005; Bohn
et al., 2005a,b; Mizuguchi et al., 2005; Dufresne et al.,
2006; Nakahara and Matsuo, 2006; Singh and Tirumkudulu,
2007). In parallel, engineered surface coatings have been
widely used for the purpose of anticorrosion, solid lubrica-
tion, thermal barriers of gas turbines. Surface coatings typ-
ically belong to brittle thin-film on compliant substrate
(e.g., diamond coating on alloy tools, silicon islands on
compliant polymer films). Subjected to mechanical or ther-
momechanical loads, surface cracking or buckling delami-
nation of the brittle hard coating layers may appear in
these systems (Mei et al., 2011). In the view of fracture
mechanics, the initiation and growth of surface cracks is
dominated by the stress state near crack tip and the crack
growth criterion. The former relies on an accurate stress
analysis while the latter can be identified through con-
trolled fracture test and formulation of robust fracture
criterion.
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mailto:xiangfa.wu@ndsu.edu
http://dx.doi.org/10.1016/j.mechmat.2013.10.004
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat


h1

h1

E1, ν1

E1, ν1

E2, ν2

E2, ν2

h2

h2

M0M0

M0 M0

p0

p0

p0

p0

(a)

C

A B

A B

(b)

L

L1 L2

Fig. 1. (a) Through-thickness cracking in the coating layer of a brittle
thin-film/substrate system; (b) formation of a secondary crack at a new
locus between adjacent cracks.
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To date, quite a few efficient mechanics models have
been formulated for prediction of cracking in surface coat-
ings (Hutchinson and Suo, 1992; Kim and Nairn, 2000a,b;
Evans et al., 2001; Mishnaevsky and Gross, 2005; and Refs.
therein). Among these, the simplest crack model was based
on Cox’s shear-lag concept (Cox, 1952). In-depth studies
have been further performed with the principle of energy
conservation (Thouless, 1990; Hong et al., 1997; Kim and
Nairn, 2000a,b; Wu et al., 2008), in which the strain energy
requested to generate the crack is equal to the difference of
strain energy of the system before and after cracking, and
the crack spacing is limited by the strain energy available
in the system (Bai et al., 2000). In classic models of progres-
sive cracking in surface coatings, the corresponding strain
energy was usually calculated according to the elementary
beam theory and other reduced semi-analytic techniques.
Yet, these oversimplified models typically yield the incom-
patible stress fields that do not satisfy the traction bound-
ary conditions (BCs) at crack tips. By refining these
models, it is possible to take into more accurate estimate
of the high interfacial stresses near the crack tips while
maintaining the advantages of analytic models. Therefore,
in this study we are going to formulate a simple semi-ana-
lytic strain energy method to analyze the interfacial stres-
ses and progressive cracking in surface coatings within
the framework of linear elastic fracture mechanics (LEFM).
The free-edge stresses in the cracked coating layers are
determined by means of a stress-function variational meth-
od formulated by the authors recently (Wu and Jenson,
2011; Wu and Zhao, 2013). Criterion of progressive crack-
ing in the coating layers is established according to the
principle of energy conservation. The crack spacing is deter-
mined as a function of geometries, material properties, and
external loads. Dependencies of the free-edge stresses and
crack spacing upon the geometrical and material parame-
ters of the coating system as well as the external loads
are demonstrated via numerical experimentation. Discus-
sions of the phenomenological failure mechanisms, param-
eter dependencies, and potential applications are further
made. Conclusion of the study is addressed in consequence.
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Fig. 2. Schematic of a single-sided strap joint as a mechanics model of a
cracked surface coating system: (a) The joint consists of a slender coating
layer bonded to a slender substrate layer, (b) reduced traction boundary
conditions, and (c) schematic interfacial shear and normal stresses.
2. Problem formulation and solution

2.1. Stress field and strain energy of a surface-cracked coating
system

In general, progressive cracking in surface coating is a
complex three-dimensional (3D) failure phenomenon. To
simplify the process, we consider a reduced two-dimen-
sional (2D) plane-strain case such that the crack penetrates
the coating surface in the transverse direction and assume
that no residual stresses exist in the initial load-free state
at a reference temperature. The temperature change in
the coating system is treated to be uniform. Besides, the
substrate and coating layers are considered as isotropic,
linear thermoelastic solids. Thus, for a compliant substrate
layer coated with a hard (brittle) surface layer subjected to
axial tension, transverse bending, and/or temperature
change to some extent, periodic cracks may appear in the
coating layer as illustrated in Fig. 1.
By assuming idealized periodicity of the surface crack-
ing, a representative element can be adopted as shown in
Fig. 2(a) for the purpose of analyzing the interfacial stress
and failure in the coating layers. Such a representative ele-
ment can be treated as a single-sided strap joint. An im-
proved analysis of the stress field and strain energy of
such a joint has been made recently by using a stress-func-
tion variational method (Wu and Jenson, 2011). This meth-
od is adopted herein for analysis of progressive cracking in
the surface layer. We start with the stress analysis of a sin-
gle-sided strap joint consisting of a slender substrate layer
and a slender coating layer (Fig. 2(a)). By adopting the
same notations by Wu and Jenson (2011), the thicknesses
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of the coating and substrate layers are designated as h1 and
h2, respectively; the length of the representative element is
L. The coordinate systems are defined as follows. The x-
coordinate is set with the origin located at the left end of
the representative segment and directs along the layer
axis; y1 and y2 are the ordinates with the corresponding
origins located at the centroids of cross-sections of the
coating and substrate layers, respectively. In this study, a
general loading condition will be considered such that
the substrate layer is treated under the combined action
of a uniform tensile stress p0, a pair of bending moments,
and a uniform temperature change DT from the reference
temperature of thermal stress-free state. Fig. 2(b) specifies
the traction BCs of the left end. Due to mismatch of the
material properties across the bonding line (i.e., Poisson’s
ratios and coefficients of thermal expansion), high interfa-
cial normal (peeling) and shear stresses are triggered near
the ends of the coating layer as illustrated in Fig. 2(c). Such
high interfacial stresses are responsible for the debonding
failure of the surface coating system. In addition, for the
convenience of derivation, parameters and variables with
subscripts 1 and 2 are attached to those of the coating
and substrate layers, respectively.

For such a coating system, the inplanar shear and nor-
mal stresses on the interface are considered as two inde-
pendent unknown functions, i.e., the interfacial shear
stress s and interfacial normal (peeling) stress r:

s ¼ f ðxÞ and r ¼ gðxÞ: ð1Þ
With the assumption that the axial stresses in the coat-

ing and substrate layers follow a linear distribution similar
to those in the elementary Euler–Bernoulli beam theory
while the shear and lateral normal stresses in the layers
exactly satisfy the stress equilibrium equations in 2D elas-
ticity (Timoshenko and Goodier, 1951; Wu and Jenson,
2011), the entire stress field in the coating and substrate
layers can be expressed in terms of the interfacial stress
functions f and g as follows.
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(2) Stress field in the substrate layer
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The interfacial stress functions f and g satisfy a system
of two coupled 4th-order ordinary differential equations
(ODEs) of constant coefficients (Wu and Jenson, 2011):

½A�fUðIVÞg þ ½B�fU==g þ ½C�fUg þ fD ¼ f0g; ð8Þ

where

fUg ¼ fFðnÞ;GðnÞgT
; ð9Þ

FðnÞ ¼ Fðx=h2Þ ¼ �
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and the elements of [A], [B], [C], and {D} are given by Wu
and Jenson (2011) and listed in Appendix. The solution to
(8) can be expressed as

fUg ¼
X4

k¼1

½ckfWk
0g expðkknÞ þ dkfWk

0g expð�kknÞ� þ fU0g:

ð12Þ

In the above, kk and {Wk
0} (k = 1–4) are respectively the

kth eigenvalue and its corresponding eigenvector of the
characteristic equation with respect to (8):
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k4½A�fW0g þ k2½B�fW0g þ ½C�fW0g ¼ f0g: ð13Þ

ck and dk (k = 1–4) are the unknown coefficients to be
determined satisfying all the traction BCs of the cover
and substrate layers (Wu and Jenson, 2011). {U0} is the
particular solution to (8):

fU0g ¼ �½C��1fDg: ð14Þ

Once {U} is determined from (12), f and g can be ob-
tained from (10a) and (10b) as
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In addition, the strain energy of the coating system per
unit longitudinal length can be expressed as
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By utilizing the governing ODE (8), the strain energy

density (17) can be expressed as

e ¼ 1
2
fUgTfDg p2

0h2

E1=ð1� t2
1Þ
þ 6

½E2=ð1� t2
2Þ�h

3
2

M2
0

þ h2

2E2=ð1� t2
2Þ

p2
0 þ
ð1þ t2Þa2h2

2
DTp0: ð18Þ

Substitution of (12) into (18) leads to
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In expression (19), the first term is the extra strain en-
ergy density due to localized stress concentration induced
by the cracks (free ends) which is a function with respect
to the coating thickness, elastic properties and locus; the
rest is the strain energy density of an initial crack-free
coating and substrate layers denoted as e0, i.e.,

e0 ¼ �
1
2
fDgT ½C��1fDg p2

0h2

E1=ð1� t2
1Þ

þ 6

½E2=ð1� t2
2Þ�h

3
2

M2
0 þ

h2

2E2=ð1� t2
2Þ

p2
0

þ ð1þ t2Þa2h2

2
DTp0: ð20Þ
In addition, the strain energy density corresponding to a
coating system with a single crack in the coating layer
(left-half n > 0) is
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where kk (k = 1–4) are the four eigenvalues with positive
real parts, dk (k = 1–4) are determined to satisfy the trac-
tion BCs, which leads to a system of four linear algebraic
equations:
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The above system of four linear algebraic equations is
the reduced version of the case of bonded strip joints
(Wu and Jenson, 2011).

2.2. Progressive cracking analysis

2.2.1. Critical loading and temperature change for appearance
of first cracking in surface coating layers

Within the framework of linear elastic fracture mechan-
ics (LEFM), the criterion of through-thickness cracking in
the coating layer is formulated such that subjected to con-
stant loads (M0 or p0) or temperature change DT, the strain
energy increase DU due to cracking is equal to the strain
energy release DC:

DU ¼ DC ¼ Gch1; ð23Þ

where Gc is the critical strain energy release rate (ERR) of
the surface crack in the coating layer. In the present phe-
nomenological approach, we only consider the strain en-
ergy variation before and after the through-thickness
cracking in the coating layer. By using the strain energy
densities (20) and (21), the cracking criterion (23) for the
occurrence of the first cracking is

Gch1 ¼ 2
Z þ1

0
ðe1ðnÞ � e0Þdn; ð24Þ

which can be reduced as
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The left side of (25) has a quadratic term with respect
with p0, M0 and DT:
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where App, AMM, ATT, ApM, and AMT are coefficients relating
the geometries and material properties of the coating sys-
tem. Relation (26) is the general strain energy criterion for
the appearance of first cracking subjected to combined
tension, bending and temperature change. This criterion
can also be used for a reduced single loading case such as
temperature-induced surface cracking.
2.2.2. Progressive cracking and crack spacing in surface
coating layers

To study the progressive cracking in a surface coat-
ing layer, it is desirable to determine the crack density
as a function with respect to the external loads and
temperature change. Consider that an external load
(e.g., a tensile force, bending moment, or temperature
change) gradually increases its magnitude till it
reaches the threshold value, at which the next cracking
appears between two adjacent cracks with spacing L
(see Fig. 1). It is reasonable to first consider the next
cracking at an arbitrary locus C between AB. According
to the strain energy criterion (23) for surface cracking,
it reads

Gch1 ¼
Z s1

0
eðnÞdnþ

Z s2

0
eðnÞdn�

Z s

0
eðnÞdn; ð27Þ

where s1 = L1/h2, s2 = L2/h2, s = L/h2 (s = s1 + s2), and e(n) is
given by (19). The three integrals in (27) can be expressed
explicitly:

Gch1 ¼ P1 þP2 �P3; ð28Þ
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In the above, coefficients ck and dk (k = 1–4) in (29a),
(29b), (29c) are the same as given in (12) with L/h2 = s1,
s2 and s, respectively.

For a specified single load or combined loads with
constant ratio, relation (28) determines the threshold
loads. Without loss of generality, the locus C of next
cracking can be assumed to be a stochastic variable. In this
case, it is favorable to introduce a probability density func-
tion p to describe the site of the next cracking. The ex-
pected value of the external threshold load Pc (either
tensile traction p0, bending moment M0, or uniform tem-
perature change DT) to induce the next cracking in the
coating layer which already contains cracks with the crack
density d (=1/L) is.
E½PcðsÞ� ¼ h2

Z s

0
pðnÞPcðnÞdn: ð30Þ

The choice of the probability density function is crucial
to determine the mean threshold load E[Pc(s)] (Wu et al.,
2008).
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3. Numerical examples and discussions

3.1. Interfacial stresses in cracked surface coatings

Within the framework of the refined beam theory
above, the explicit solutions to interfacial shear and normal
stresses in a coating system are the same as those of
bonded strip joints. In the special case of a single
through-thickness crack in a coating layer, the correspond-
ing interfacial shear and normal stresses right to the sur-
face crack can be determined by (12) with ck = 0 (k = 1–4)
and dk (k = 1–4). The latter can be determined by solving
the set of linear algebraic equations in (22a), (22b), (22c),
(22d).

In the view of failure and durability analysis of a coating
system, it is useful to examine the effects of geometric
parameters and material properties on the stress distribu-
tion in the system. To illustrate these effects, as an exam-
ple, we consider a hard coating system is loaded with a
constant tensile traction p0 and a bending moment M0.
The loads p0 and M0 ensure no transverse deflection (i.e.,
uniaxial tension) prior to cracking and maintain the same
loading configuration after surface cracking. Figs. 3 and 4
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tio). In addition, the modulus ratio can appreciably influ-
ence the distribution of the interfacial stresses: when
E1/E2 = 1.0, these stresses are localized within the domain
�1.5h2; however, when E1/E2 = 5.0, the stress field spreads
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In addition, in the case of periodic cracks in a coating
system subjected to external loads as specified above, the
interfacial shear and normal stresses between two adja-
cent cracks with spacing L are plotted against the dimen-
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thickness and modulus ratios in Figs. 5 and 6, respectively.
Similar to those predicted in the single crack model above,
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to the substrate can suppress the magnitude of the interfa-
cial stresses.

3.2. Crack density in hard coating layers

Now let us consider the progressive cracking phenome-
non in hard coating systems. For a gradually increasing
external load (e.g., a tensile traction, bending moment, or
temperature change), the initial cracking occurs in the
coating layer once the criterion (24) is reached. After initial
cracking, progressive cracking commences with the grow-
ing loads according to (28). Herein, variation of the dimen-
sionless crack spacing with the dimensionless critical load
p0h2

2=Gch1 is considered in the case of uniaxial tension prior
to single cracking (i.e., constant axial traction) as studied in
the above section. The critical load is taken to be the pre-
dicted value corresponding to the next cracking that is as-
sumed to occur equidistant from the existing cracks at a
spacing L/h2 [Eq. (27) with L1 = L2]. Fig. 7 plots the dimen-
sionless crack spacing over the dimensionless critical load
at five thickness ratios (h1/h2 = 0.01, 0.02, 0.05, 0.1 and 0.2)
and two modulus ratios (E1/E2 = 2.0 and 7.0) in linear and
logarithm coordinates, respectively. From Fig. 7(a) and
(c), it can be observed that given a crack spacing, a thicker
coating layer corresponds to a lower threshold load, mean-
while a stiffer coating layer (with a larger Young’s modu-
lus) also accords to a lower threshold load compared to
those with a lower stiffness. These observations are in an
agreement with those of interfacial stresses predicted
above: thicker and stiffer coating layers result in not only
the higher interfacial shear and normal stresses (typically
responsible for debonding failure) but also a lower resis-
tance to progressive cracking in the coating layers. The lat-
ter can be understood in the view of the principle of energy
conservation such that highly stressed stiff, thick surface
layers would provide sufficient strain energy release to
maintain the spontaneous crack growth. This conclusion
also holds for surface coatings on curved substrates such
as circular torsion shafts (Wu et al., 2008). Thus, the pres-
ent research also indicates that ultrathin hard surface coat-
ings (e.g., ultrathin diamond films used for cutting tools)
are favorable to resist surface cracking. In addition,
Fig. 7(b) and (d) indicates that there exists a simple linear
relationship between the logarithm dimensionless
critical load ln½p0h2

2=ðGch1Þ� and logarithm cracking spacing
ln(L/h2):

ln½p0h2
2=ðGIch1Þ� � �

3
2

lnðL=h2Þ þ C; ð31Þ

where C is a constant. This scaling law largely agrees with
that predicted by using bond-network model (Handge
et al., 2000) and statistical models (Andersons et al.,
2000, 2007), and is also close to the recent experimental
observations (Ahmed et al., 2011; Bao et al., 2013).

In reality, the failure mode observed in actual surface
coatings is a result of several competing factors relating
the materials and external loads. For instance, interfacial
debonding is a common failure mode in surface coating
systems with weak interface strength. Also, it needs to be
mentioned that the actual cracking phenomenon in surface
coatings is much more complex than the idealized case as
studied in work. In the above, we only phenomenologically
adopted the concept of ERR Gc, which is a material property
depending upon the crack mode in measurements. More-
over, this study has revealed the general planar stress state
in a coating layer, thus the through-thickness cracking in
the coating layer is actually mixed-mode with varying
crack-mode mixture ratio; therefore, the corresponding
Gc used for crack growth criterion should also be mode-
mixture ratio dependent. As a simple strain energy ap-
proach, the ERR Gc adopted in this work can be understood
as an average value.

4. Concluding remarks

In this study, semi-analytic solutions have been formu-
lated for the interfacial free-edge stresses and progressive
cracking criterion of hard coating systems subjected to
tensile traction, bending moment, or/and temperature
change. Within the framework of LEFM, a phenomenolog-
ical strain energy criterion for progressive cracking in sur-
face coatings has been established. This failure criterion
has been demonstrated in predicting the density of pro-
gressive cracking in surface coating layers. Effects of
thickness and modulus ratios on the free-edge stress dis-
tribution and the spacing of progressive cracking have
been examined. The results gained in the present study
indicate that coating layers of larger thickness and modu-
lus are more pliant to cracking than those of thinner and
compliant coating layers. Thus, the present model pro-
vides informative guidelines useful to rational surface
coating design and cracking prediction, specifically for
quantitative comparison between different coating
systems.

Appendix A

The elements of matrix [A], [B], [C] and {D} are deter-
mined by the principle of minimum complementary strain
energy of the coating system (Wu and Jenson, 2011) as
follows

A11 ¼
1

105
ðh3

12 þ e12Þ; ðA1Þ

A12 ¼
11

210
ðh2

12 � e12Þ; ðA2Þ

A22 ¼
13
35
ðh12 þ e12Þ; ðA3Þ

B11 ¼ �
4

15
ðh12 þ e12Þ; ðA4Þ

B12 ¼
1
5
�½1� 5t1=ð1� t1Þ� þ ½1� 5t2=ð1� t2Þe12�f g;

ðA5Þ

B22 ¼ �
12
5

h�1
12 þ e12

� 	
; ðA6Þ

C11 ¼ 4ðh�1
12 þ e12Þ; ðA7Þ
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C12 ¼ 6ðh�2
12 � e12Þ; ðA8Þ

C22 ¼ 12ðh�3
12 þ e12Þ; ðA9Þ

D1¼

e12� 6M0

p0h2
2
� 1

2p0
½a1ð1þt1Þ�a2ð1þt2Þ�DTE1=ð1�t2

1Þ

ðfor combined mechanical and thermal loadsÞ
e12� 6M0

p0h2
2
ðfor pure mechanical loadÞ

� 1
2p0
½a1ð1þt1Þ�a2ð1þt2Þ�DTE1=ð1�t2

1Þ
ðfor pure thermal loadÞ

8>>>>>>>><
>>>>>>>>:

ðA10Þ

D2 ¼
e12

12M0

p0h2
2
; ðfor pure mechananical or combined

mechanical and thermal loadsÞ
0; ðfor pure thermal loadÞ

8>><
>>:

ðA11Þ

h12 ¼ h1=h2; ðA12Þ

e12 ¼ ½E1=ð1� t2
1Þ�=½E2=ð1� t2

2Þ�: ðA13Þ
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