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An elastoplastic fracture mechanics model is formulated for determining the fracture
toughness of adhesively bonded joints (ABJs) with large plastic deformations and elastic
springback. The analysis is made on the basis of the post-fracture configuration of double
cantilever beam (DCB) specimen consisting of two adhesively bonded thin plates of ductile
metals (e.g., thin aluminum alloy or mild steel plates). Due to the springback after large
plastic deformation, the post-fracture configuration of the adherends was noticeably differ-
ent from that at the peak loading. To model the fracture process, the ductile metal adher-
ends are treated as elastoplastic solids with power-law strain-hardening behavior, and
springback of the adherends is considered in the strain energy calculation. The present
model is capable of determining the fracture toughness of ABJs with extensive plastic
deformation. Numerical simulations are performed to evaluate the effects of material
parameters and specimen geometries on the springback and fracture toughness of the
ABJs. Compared to the experimental data available in the literature, the present model
can predict reliable fracture toughness of ABJs with large plastic deformations. The present
study is applicable for the analysis of various fracture tests of thin ductile films with large
plastic deformations and elastic springback such as peeling test, metal cutting, etc.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Adhesively bonded joints (ABJs) have been used extensively in aerospace, aeronautical and ground vehicles for bonding
and connecting thin structural parts, repairing surface defects, etc. [1–4]. A number of robust joint models have been formu-
lated and implemented for joint design and strength analysis [5–9]. Superior to traditional mechanical joints, e.g., bolted and
welded joints, a major technological advantage of ABJs is their lowmaterial and labor costs, high joining strength and fatigue
durability, efficient load-transferring capability, and noticeable weight reduction of the joining parts. In the view of struc-
tural integrity, bonding strength and fatigue durability are the dominate factors governing the mechanical performance of
ABJs. Subjected to external loading, ABJs typically exhibit complicated stress and strain state due to their complex geome-
tries and mismatch of material properties across the bonding lines of the adherends. Therefore, in-depth understanding of
the strength and failure mechanisms of ABJs is crucial to better design and more reliable and predictable performance of
engineered ABJs. So far, remarkable efforts have been dedicated to the investigation on the toughening and failure mecha-
nisms ABJs made of metals and composite materials and related structural design and strength analysis [10–13].
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Nomenclature

A material constant of a power-law nonlinear elastic solid
h adherend thickness of an adhesively bonded joint
E Young’s modulus
I moment of inertia of the cross-section area of an adherend of unit width (=h3/12)
M bending moment acting on an adherend
Mc critical bending moment to initiate yielding in adherends
n exponent of a power-law nonlinear elastic solid; strain-hardening index of a power-law hardening solid
R1, R2 radii of curvature of two post-fracture adherends after springback
y coordinate of a material point from the adherend neutral axis
yc location of the critical point between regions of plastic and elastic deformation
C fracture toughness; strain energy release rate
Dl crack growth length
DW1, DW2 work done by the bending moment acting on two adherends, i.e., DWi (i = 1,2)
DU1, DU2 strain energy stored in two adherends, i.e., DUi (i = 1,2)
De axial strain release at location y of a plastically deformed adherend after unloading [=y(1/qm-1/q)]
e axial strain of an adherend
e0 axial yield strain (=r0/E)
ep residual axial strain of a plastically deformed adherend after unloading
g axial strain at adherend surface [=h/(2q)]
gm axial strain at adherend surface at the maximum bending moment [=h/(2qm)]
q radius of curvature of the adherend neutral axis at bending moment M
q0 radius of curvature of the neutral axis of a plastically deformed adherend after unloading
qm radius of curvature of the neutral axis of a plastically deformed adherend at the maximum bending moment, i.e.,

minimum radius of curvature
r flexural stress of an adherend
r0 yield strength
ABJ adhesively bonded joint
CLS cracked lap shear
DCB double cantilever beam
ERR (strain) energy release rate
FEM finite element method
LEFM linearly elastic fracture mechanics
PMC polymer matrix composite
SSY linearly elastic facture mechanics
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In the view of structural applications, characterization and enhancement of the fracture toughness of ABJs are crucial to
improve their structural integrity and safety. Quite a few efficient and reliable mechanical characterization techniques and
related specimen designs have been formulated and standardized for evaluating the fracture toughness of ABJs, e.g., those
based on double cantilever beams (DCB), cracked lap shear specimens (CLS), four-point bending specimens, etc. [11,12].
Accordingly, substantial progress has been made in fracture mechanics of layered structures including those carrying the
geometries close to ABJs. Systematic studies of mixed-mode cracks in layered materials and composites have been per-
formed by Hutchinson and Suo [14,15] and others, in which the energy release rate (ERR) of crack initiation and propagation
and related crack mode partition have been obtained with the aid of the elementary beam theory. These fundamental inves-
tigations have been extensively utilized for the analysis of interfacial fracture and buckling delamination in broad layered
materials and structures including ABJs, surface coatings, ceramics, and laminated polymer matrix composites (PMCs). In
addition, for the purpose of accurately predicting the mixed-mode crack growth in layered materials, crack-tip elements
were formulated and integrated into conventional finite element methods (FEM) by Davidson, et al. [16–18]. The effect of
crack tip deformation on mixed-mode crack growth in bonded layers was investigated by Wang and Qiao [19]. In addition,
elasticity theories may be resorted for analyzing interfacial cracks embedded in thick beams. Yet, only a few simple cases of
interfacial cracks embedded in elastic strips can be solved in explicit forms, e.g., the cases of simple cracked strips treated by
Wu et al. [20–23], and elastic solutions to more general cases of ABJs can be obtained in high accuracy by evoking efficient
semi-analytic methods and purely numerical methods (e.g., FEM).

Experimentally, the fracture toughness of ABJs can be determined by measuring the critical external force and displace-
ment or the work done by external forces per unit crack growth. With the fracture test data, fracture mechanics and classic
crack solutions can be utilized to extract the fracture toughness and crack mode partition. As a matter of fact, most crack
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solutions to common fracture specimens available in the literature are obtained within the framework of linearly elastic frac-
ture mechanics (LEFM), in which small-scale yield (SSY) is assumed at crack tip. Obviously, fracture of ABJs with large plastic
deformation is beyond the consideration of LEFM while the fundamental concepts of fracture mechanics are still workable.
When considering the fracture of ABJs made of thin ductile metal plates, plastic deformation in the ductile adherends con-
tributes substantially to the energy dissipation and has to be taken into account for accurate estimate of the relevant fracture
toughness [24–33]. In the special cases of nonlinear elastic solids, Atkins et al. [34] and Li and Lee [35] formulated the ana-
lytic solutions to the ERRs of DCB specimens. Yet, these crack models and solutions are not applicable for the realistic elasto-
plastic fracture with large plastic deformation and afterward elastic springback due to crack-growth induced unloading.

In their experimental studies, Thouless et al. [26] formulated an effective steady fracture test scheme for evaluating the
fracture toughness of ABJs made of thin metal plates. In the test, a symmetric configuration of the fracture specimens of ABJs
(Dimensions: 90 mm � 20 mm) was utilized, in which two identical aluminum-alloy (5754 aluminum, Alcan Rolled Products
Co.) or mild-steel (draw-quality, special-killed, cold-rolled steel, Inland Steel Co. with a nominal yield stress of 170–240 MPa)
plates were adhesively bonded, as shown in Fig. 1. Three commercially available toughened epoxies were used to bond the
ductile metal plates, i.e., adhesives A (Ciba-Geigy LMD1142), B (Ciba-Geiyy XD4600), and C (Essex 73,301), which were
curved at 180 �C for 30 min. in an air-circulating oven [26]. The bond length of the ABJ specimens was 30.0 mm, which
was established by placing a strip of Teflon tape (12.7 mm in width) across each adherend 30 mm from the ends of the
adherend. The thickness of the adhesive layer was controlled by sprinkling a few glass beads of the diameter 0.25 mm on
the adhesive. The ABJ specimens were clamped during curing, and the excess adhesives at the sides and end of the ABJs were
filed off. The steady dynamic fracture test was performed at room temperature (21 �C) on an instrumented dynamic testing
machine (Dynatup, General Research Corp., Model GRC 8250) based on a drop weight method. The testing specimen was
positioned over a hardened steel wedge with a tip radius of 1 mm and a wedge angle of 10.0�. The tip of the wedge was kept
to align with a locating mark scribed on the side surface of the ABJ specimen, 10 mm from the edge of the adhesive. The
impactor force was generated by a mass of 44.85 kg, which pushed the wedge through the ABJ specimen, resulting in the
two adherends to bend and the adhesive to fracture, as illustrated in Fig. 2. The impact speed upon striking the specimen
was 2 ± 0.2 m/s. After the fracture test, the radii of curvature of the two post-fracture metal adherends carried a small vari-
ation due to the uncontrollable factors in the fracture event. The fracture toughness was determined conveniently by using a
relation [26]:
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In above, R1 and R2 are the radii of curvature measured from two post-fracture adherends of the ABJ specimen with large
plastic deformations, h is the adherend thickness, and A and n are the material constants of the nonlinear elastic material
model:
r ¼ Aen: ð2Þ

Thouless et al. [26] indicated that data reduction of the ABJ fracture tests based on relation (1) might result in the

extracted fracture toughness only half the experimental values obtained in other control fracture tests. Kinloch andWilliams
[36,37] attributed such a large deviation of fracture toughness to the root rotation of the adherends during crack advance,
which is incompatible with the steady fracture test method [38]. Further examination of the derivation of fracture toughness
(1) shows that two potential factors may noticeably influence the extraction of the fracture toughness from the fracture test
data as addressed in the late discussions [28,29,36–38]. First, Thouless et al. [26] used a nonlinear elastic material model to
approach the material property of the well-ductile metals employed in their steady dynamic fracture tests. In fact, elastic
springback of the fracture specimens after elastoplastic deformation was ignored in their calculation, which noticeably
altered the radii of curvature of the adherends R1 and R2 as used in relation (1) by Thouless et al. [26]. The actual radii of
curvature of the adherends at the maximumworking moment (with the largest elastoplastic deformation) were much smal-
ler than the ones measured from the post-fracture adherends after elastic springback, especially for those ABJs made of very
thin ductile metal plates which bore very large plastic deformations and afterward large elastic springback. Thus, the theo-
retical simplification for the convenience of data reduction by Thouless et al. [26] might have noticeably underestimated the
steady working moment that was consequently utilized for determining the fracture toughness of the ABJs. Second, due to
Adhesive
90.0 mm

30.0mm

40.0mm
Teflon tape

Wedge tip location

Metal plates

Schematic configuration of a fracture specimen used by Thouless et al. [26] consists of two 90-mm length metal coupons of identical thickness,
ely bonded with toughened epoxy over 30 mm at one side. The tip of the wedge is positioned at the left end of the Teflon tape at the beginning of the
ic test.
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Fig. 2. Experimental configuration of the instrumented impact fracture test, in which the fracture ABJ specimen was split by being driven over a wedge
under the low-speed moving hammer, and large elastoplastic deformation and afterward elastic springback exhibited.
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the large elastic springback in the thin ductile adherends of the ABJs, the actual strain energy stored in the post-fracture
adherends is appreciably lower than that calculated without elastic springback. Such a combined effect is expected to sub-
stantially underestimate the fracture toughness of the ABJs by using relation (1).

With the above knowledge of the fracture of ABJs with large plastic deformations, the goal of the present study is aimed to
reinvestigate and resolve the large deviation between the experimental results and existing theoretical approach by adopt-
ing an elastoplastic material model with elastic springback to approach the loading and unloading mechanical behavior of
ABJs made of thin metal plates in the fracture tests. During the procedure, based on the radii of curvature of the adherends
measured from the post-fracture specimens, the adherend radii of curvature at the maximum working moment are to be
determined via springback analysis of the adherends. The strain energy stored in the elastoplastically deformed adherends
can be calculated in three terms, i.e., the linearly elastic portion, the strain-hardening portion, and the unloading portion. The
proposed elastoplastic fracture mechanics model will be utilized to extract the fracture toughness of ABJs with large plastic
deformations based on the experimental fracture data reported in the literature [26]. Numerical experimentation will be per-
formed to examine the elastic springback effect on the fracture toughness of ABJs with varying Young’s modulus, yield stress,
strain hardening index, and the specimen geometries. Discussions on the present fracture mechanics model and its compar-
ison with those available in the literature will be further made.

2. Model formulation of ABJs with large plastic deformations and springback under pure bending

The analysis of steady dynamic fracture test of ABJs performed by Thouless et al. [26] was based on the work done by a
wedge and the strain energy stored in the ABJ adherends after large nonlinear elastic deformation. In their model, the mea-
sured radii of curvature of the two elastoplastically deformed adherends of the ABJs were not corresponding the maximum
working bending moment due to elastic springback. In addition, a substantial portion of the strain energy release was
ignored due to the springback of the post-fracture adherends. As a result, the fracture toughness of the ABJs was determined
by calculating the nonlinear elastic strain energy of the ABJs. Herein, both the large elastoplastic deformation and elastic
springback of the ductile adherends of the ABJ specimens are to be considered. During the fracture event, both adherends
of the ABJ specimens underwent loading and unloading. Large elastoplastic deflection happens at the bending root (crack
tip) under the action of the working moment exerted by the wedge. The measured radii of curvature of the adherends
are the ones after substantial elastic springback due to unloading. Springback results in the fact that the radii of curvature
measured from the post-fracture adherends are much larger than the ones at the instant of the maximum working moment
which drives the fracture event. Such a steady fracture scenario was ignored in extracting the fracture toughness of the
tested ABJs made of thin ductile metal plates in the previous studies such that the actual steady elastoplastic fracture of ABJs
was simplified as a process of nonlinear elastic process without obvious elastic springback [26,27,33,36–38]. Hereafter, for
the purpose of the present modeling, the material properties of ABJs made of thin aluminum and steel plates are assumed to
be elastoplastic solids following a power-law strain-hardening law [39]:
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where E is the Young’s modulus, r0 the yield strength for both tension and compression, and n is the strain-hardening index.
The representative strain-stress curve is illustrated in Fig. 3. For n ? 1, the material model covers that of linearly elastic
materials, while n?1, the material model covers that of idealized elastoplastic materials.

Let us treat both the symmetric adherends of the ABJs as Euler-Bernoulli beams and the flexural strain in the beam cross-
section of each adherend is linearly varying for both elastic and elastoplastic deformations:
e ¼ y=q; ð4Þ

where q is the radius of curvature of the neutral axis of each deflected adherend, and y is the distance from a material point
of interest in the adherend cross-section to its neutral axis (i.e., the mid-plane of the adherend), as shown in Fig. 4. The crit-
ical bending moment per unit specimen width to initiate the plastic deformation in each adherend is
Mc ¼ r0h
2
=6: ð5Þ
Thus, given an external bending moment M >Mc, plastic deformation initiates and elastic springback is triggered once
crack grows and unloading at crack tip happens.

Hereafter, we first determine the relationship between the bending moment M acting at one adherend and the corre-
sponding radius of curvature q of the neutral axis of the adherend in the case of pure bending (loading and unloading). Based
on the assumption of Euler-Bernoulli beam, the axial strain in the adherend linearly varies following relation (4), and the
stress distribution follows relation (3). The locus yc of the critical point, at which plastic deformation initiates, can be deter-
mined as
yc ¼ qe0; ð6Þ

where e0 = r0/E is the yield strain. With the aid of the constitutive relation of the material as shown in Eq. (3), the relation-
ship between the loading moment M (per unit width) and the resulting radius of curvature of the neutral axis is
MðqÞ
EI=q

¼ 1� 3
nþ2

� �
g
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� ��3
þ 3

nþ2
g
e0
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: ð7Þ
where I is the moment of inertia of the adherend cross-section (per unit width) such that I = h3/12 (rectangular cross-section)
and g = h/(2q). As a check, in the limiting case g = e0, relation (7) recovers the critical bending moment Mc in relation (5).
Given an arbitrary working bending moment M, the radius of curvature q of the adherend can be determined by solving the
nonlinear Eq. (7) numerically with respect to 1/q as to be demonstrated in Section 4, and the corresponding maximum axial
strain at the top and bottom surfaces of the adherend is h/(2q).

After complete unloading due to crack growth as illustrated in Fig. 3, elastic springback happens in the post-fracture
adherends of the ABJs. Thus, the radii of curvature measured from the post-fracture adherends (after elastic springback)
become larger than those at the maximumworking moment. By assuming the radius of curvature of an adherend after com-
plete elastic springback (i.e., complete unloading) to be q0, the recovered elastic strain is
De ¼ y
1
qm

� 1
q0

� �
; ð8Þ
where qm is the radius of curvature of the neutral axis of the adherend at the maximum working moment. Therefore, for a
material point of location y at a strain-hardening state (r, e) such that r > r0 and e > e0, the residual plastic strain ep can be
determined according to the strain-stress relation in Fig. 3:
ε
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E

Unloading

Loading

Loading

Unloading

. 3. Schematic diagram of the stress-strain relation of elastoplastic materials with power-law strain-hardening under loading and unloading.
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Fig. 4. Adhesively bonded double cantilever beam (DCB) under the action of pure bending moment M: (a) Specimen loading configuration and (b)
Schematic strain and stress distributions across the beam thickness.
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ep ¼ y
qm

� 1
en�1
0

y
qm

� �n

: ð9Þ
In the limiting case of linearly elastic material, i.e., n = 1, it leads to ep = 0 as expected. After complete unloading, the net
bending-moment resultant in any cross-section of the adherends must be zero as the result of bending-moment self-
equilibrium at each cross-section, i.e.,
Z yc

�yc

Eeydyþ 2
Z h=2

yc

Eðe� epÞydy ¼ 0; ð10Þ
where yc is the critical location specified in Eq. (6) for qm, and e is the linear axial (flexural) strain:
e ¼ y=q0: ð11Þ

It can be observed from relation (10) that after complete unloading, the elastic region near the neutral axis of the adher-

ends still keeps the similar stress state though the stress level diminishes. However, the elastoplastic region far from the
elastic region switches the stress direction to maintain the global bending moment-free of the adherend cross-section.

Substitution of Eqs. (9) and (11) into Eq. (10) yields the relation for determining the radius of curvature q0 of the neutral
axis of the adherends after elastic springback as
g0

gm
¼ 1� 1� 3

nþ 2

� �
gm

e0

� ��3

� 3
nþ 2

gm

e0

� �n�1

; ð12Þ
where gm = h/(2qm) and g0 = h/(2q0). As a check, in the limiting case of linearly elastic material, i.e., n = 1, it leads to gm/g0

? 0, i.e., q0 ? 1, and the ABJ adherends recover their initial straight state after purely elastic unloading. The radius of cur-
vature q0 in Eq. (12) is measured from each post-fracture adherend after complete elastic springback. Given a radius of cur-
vature q (qm < q < q0) in the unloading process, the corresponding bending moment per unit width can be determined
similar to relation (7) as
MðqÞ
EI=qm

¼ g
gm

� 1
� �

þ 1� 3
nþ 2

� �
gm

e0

� ��3

þ 3
nþ 2

gm

e0

� �n�1

; ð13Þ
where g = h/(2q). In the limiting case of linearly elastic material, i.e., n = 1, it reads
MðqÞ ¼ Eh3

12q
; ð14Þ
as expected. With the measured radius of curvature q0 of the fractured adherends after complete springback, relation (12)
can be employed for determining the radius of curvature qm at the maximum working moment implicitly, and relations (7)
and (13) are the moment-curvature relations during loading and unloading processes, respectively.

3. Fracture toughness of plastically deformed ABJs

Based on the fracture testing configuration, the fracture toughness of an elastoplastically deformed ABJ can be expressed
as
C ¼ DW1 þ DW2 � DU1 � DU2

Dl
; ð15Þ
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where DWi and DUi (i = 1, 2) are the work done by the external working moment M and the strain energy stored in each
adherend of the ABJ per unit width, respectively, for a crack growth Dl. Since the impact fracture test is a steady dynamic
process, the maximum working moment can be determined by Eq. (7) for q = qm. Thus, in relation (15), the work DW done
by the working moment M in each adherend (per unit width) for a crack growth Dl is
Fig. 5.
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Schematic diagram of the loading and unloading moment-curvature relation of the elastoplastic ABJ adherends in a steady dynamic fracture test.
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Correspondingly, the strain energy DU stored in each adherend of the ABJs (per unit width) after complete elastic spring-
back due to crack growth Dl can be expressed as
Fig. 7.
adheren
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where q0 = h/(2e0) is the critical radius of curvature to initiate plastic deformation in the adherends, e0 = r0/E is the yield
strain of the adherends, and M(qm) is the working moment at the minimum radius of curvature qm, i.e., the maximum work-
ing moment to drive the facture event. The strain energy integration (17) is illustrated in Fig. 5, in which the 1st term is the
strain energy stored in the linearly elastic loading region, the 2nd term is the strain energy stored in the strain-hardening
loading region withM(q) specified in relation (7), and the 3rd term is the strain energy release in the springback region with
M(q) specified in relation (13). These three terms correspond to the entire elastoplastic deformation process of the cross-
section of the ABJ adherends during the crack growth in the steady dynamic fracture test. Substitution of relations (7)
and (12) into Eq. (17) yields the total strain energy DU stored in the each adherend of the ABJs per unit width after complete
elastic springback as
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wheregm = h/(2qm),g0 = h/(2q0), and q0 is the radius of curvature of the fractured adherend that is measured from the post-
fracture adherend after complete elastic springback. Substitution of relations (16) and (18) for both adherends into Eq. (15)
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yields the fracture toughness of the ABJs, which is the energy dissipated by the adhesive layer to generate a unit-area crack
growth. In the particular case of the ABJs made of two identical adherends, the fracture toughness (15) can be recast as
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which is the improved version of the fracture toughness (1) after taking into account the power-law hardening material
model (3) and complete elastic springback after unloading.

Compared to the fracture toughness (1) formulated by Thouless et al. [26], the present fracture toughness (19) carries
multiple terms due to the use of a piecewise power-law strain-hardening material model (3) and taking into account the
entire loading and unloading path of the elastoplastic materials. The present expression (19) is expected to improve the
accuracy for extracting the fracture toughness of ABJs of thin ductile plates with large plastic deformation and elastic spring-
back. To apply relation (19) for fracture data reduction, it is needed to first solve the nonlinear algebraic equation (12) to
determine the minimum radius of curvature qm at the steady working moment M, i.e., the maximum working moment,
based on the radius of curvature q0 measured from the post-fracture adherends after complete springback. Eq. (12) can
be solved conveniently by evoking the numerical algorithms for solving single nonlinear algebraic equations such as the
e toughness of aluminum-bonded adhesives A (LMD1142), B (XD3600) and C (Esses 73,301). Test data of the adherend thickness, strain-hardening index
adii of the aluminum adherends after tests were from [26].

m) Strain-hardening index n Rp (mm) C (kJ/m2) [26] C (kJ/m2) [36] C (kJ/m2) (Present Model)

sive A
0.271 10 1.69 ± 0.25 3.2 3.77 ± 0.09
0.227 27 1.97 ± 0.30 4.8 4.39 ± 0.10
0.238 60 1.94 ± 0.29 4.6 4.97 ± 0.28

sive B
0.271 13 1.33 ± 0.20 2.4 3.08 ± 0.16
0.227 36 1.36 ± 0.21 3.0 3.36 ± 0.09
0.238 78 1.43 ± 0.21 3.1 4.09 ± 0.17

sive C
0.271 18 0.83 ± 0.12 1.4 2.19 ± 0.07
0.227 32 0.89 ± 0.13 1.7 2.52 ± 0.08
0.238 111 0.92 ± 0.20 1.8 3.13 ± 0.20

p is the weighted mean radius used by Thouless et al. [26] and Williams [27]. The fracture toughness (15) based on the present model is calculated
using the measured radii of curvature of the aluminum-alloy adherends with r0 = 113 MPa and E = 69 GPa. The C deviation in the present model is
d by analyzing all the sample data in each test case [26].

e toughness of steel-bonded adhesives A (LMD1142), B (XD3600) and C (Esses 73,301). Test data of the adherend thickness, strain-hardening index n,
ii of the steel adherend after tests were from [26].

m) Strain-hardening index n Rp (mm) C (kJ/m2) [26] C (kJ/m2) [27] C (kJ/m2) (Present model)

sive A
0.158 12 1.14 ± 0.17 2.7 2.23 ± 0.09
0.131 16 1.14 ± 0.17 3.4 2.15 ± 0.10
0.124 22 1.33 ± 0.20 4.4 2.26 ± 0.09

sive B
0.152 11 0.71 ± 0.11 1.5 1.45 ± 0.09
0.131 21 0.83 ± 0.12 2.2 1.73 ± 0.07
0.124 37 0.79 ± 0.12 2.0 1.63 ± 0.10

sive C
0.094 10 0.33 ± 0.05 0.8 0.55 ± 0.02
0.158 28 0.42 ± 0.06 0.7 1.11 ± 0.05
0.124 75 0.34 ± 0.10 0.7 1.28 ± 0.13

p is the weighted mean radius used by Thouless et al. [26] and William [27]. The fracture toughness (15) based on the present model is calculated
using the measured radii of curvature of steel adherends with r0 = 205 MPa and E = 200 GPa. The C deviation in the present model is obtained by

ng all the sample data in each test case [26].
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popular Newton-Raphson method. With available qm and q0, the work DW done by the working moment M and the strain
energy DU stored in each adherend after crack growth Dl can be determined by relations (16) and (18), respectively.

4. Model applications for experimental data reduction and scaling analysis of ABJ fracture

Let us first examine the dependency of the loading and unloading moment-curvature diagrams upon the material prop-
erties and ABJ geometries at a fixed maximum curvature 1/qm. To do so, adherends of aluminum alloy (Young’s modulus E =
69 GPa, yield stress r0 = 113 MPa, strain-hardening index n = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, and adherend thickness h = 1, 2, 3,
and 4 mm) and mild steel (E = 200 GPa, r0 = 205 MPa, n = 0.0, 0.05, 0.1, 0.2, 0.25, and 0.35, and h = 0.5, 1, 2, and 3 mm) with
unit width are considered. The minimum radius of curvature qmin of the ABJ adherends at the maximum bending momentM
(qmin) is assumed as 25 mm. These material and geometrical parameters as well as the loading level in term of qmin are in the
range of the experimental studies as reported in the literature [26]. Numerical simulations are made by using the loading and
unloading moment-curvature relations (7) and (13).

Figs. 6 and 7 show the moment-curvature diagrams of aluminum-alloy and mild-steel adherends, respectively. It can be
observed that both types of adherends have the similar graphical moment-curvature relations, each of which consists of
three ranges, i.e., the linearly elastic loading, nonlinear loading, and linearly elastic unloading (elastic springback). Given
the strain-hardening index n, the bending moment M increases rapidly with increasing adherend thickness h at a fixed
adherend curvature 1/q. In addition, given the value of h, M decreases rapidly with decreasing n at a fixed 1/q, which is
due to the softening of the material with decreasing n. In particular, when n = 0, i.e., in the case of an idealized elastoplastic
material, M tends to constant after initial yielding. Furthermore, after complete unloading, the springback effect decreases
with decreasing n, i.e., a larger value of n corresponds to a relatively larger elastic springback and strain energy release in
the elastic unloading stage.

In addition, the fracture toughness (19) developed in the present study is further used to extract the fracture toughness of
plastically deformed ABJs based on the fracture test data reported in the literature [26], in which extensive steady dynamic
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Fig. 8. Variation of the minimum radius of curvature qmin with respect to the radius of curvature q0 after springback of aluminum-alloy adherends with
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fracture tests of ABJs made of both thin aluminum-alloy and mild-steel plates were performed as aforementioned. Yet, model
parameters of power-law strain-hardening solids according to the constitutive law (3) are not exhausted for the particular
aluminum-alloy and mild-steel plates used in these fracture tests. In the following, the mechanical properties of the
aluminum-alloy plates are selected as Young’s modulus E = 69 ± 5 GPa and yield stress r0 = 113 ± 3 MPa, which were used
for the fracture analysis of the same ABJs in the literature [26,40], and the strain-hardening index nwas directly selected from
the nonlinear elastic material model (2) by fitting the test data [26]. Such a choice is due to lack of original experimental data
to fit themodel parameters of the present elastoplastic material model (3) andmay not lead to appreciable deviation between
material model (3) and the nonlinear elastic material model (2) in the loading range. For cold-rolledmild-steel plates, E = 200
GPa, r0 = 170–240 MPa, and n was also selected from the nonlinear elastic material model (2) in the literature [26].

Based on the available radii of curvature of the two individual adherends of the ABJ specimens after complete springback,
relation (12) is used to determine the minimum radius qm of curvature of each adherend at the maximum working moment
M(qm); relation (19) is used to extract the fracture toughness of the ABJs. The values of fracture toughness for the ABJs made
of thin aluminum-alloy and mild-steel plates with varying adherend thickness are tabulated in Tables 1 and 2, in which the
fracture toughness (19) is determined by using the mean values of the mechanical properties of the aluminum-alloy (r0 =
113 MPa and E = 69 GPa) and mild-steel plates (r0 = 205 MPa and E = 200 GPa) and all the measured radii of curvature of the
adherends after springback by Thouless et al. [26]. For the purpose of comparison, Williams’s corrections by assuming a root
rotation at the adherend end were also listed in Tables 1 and 2 [27,36,37]. It is worthy to mention that similar to those
reported by Thouless et al. [26], Williams’s corrections were also based on the nonlinear elastic material model (2). It can
be found in Tables 1 and 2 that the present model predicts quite a few values of fracture toughness close to Williams’s cor-
rections, nearly double the values of fracture toughness reported by Thouless et al. [26], which are considered as the true
fracture toughness of the ABJs with Thouless’s argument [26] and also used as references for the purpose of comparison
in this study. In particular, the present model predicts the values of fracture toughness of adhesives A and B based on ABJs
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Fig. 9. Variation of the minimum radius of curvature qmin with respect to the radius of curvature q0 after springback of mild-steel adherends with varying
thickness and material strain-hardening index n (Dashed line represents the diagonal for reference).
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made of thin steel plates, as listed in Table 2, very close to double the values of fracture toughness provided by Thouless et al.
[26] and even closer than those provided by Williams’s corrections [27,36,37].

Yet, the present model also predicts a few obvious overshot values of the fracture toughness of the three adhesives based
on aluminum-alloy ABJs. For example, in Table 1 the present model predicts the values of fracture toughness with the max-
imum deviations for adhesives A, B and C based on ABJs made of 3 mm thick aluminum-alloy adherends as 4.97 ± 0.28 kJ/m2,
4.09 ± 0.17 kJ/m2, and 3.13 ± 0.20 kJ/m2, respectively, which are 28%, 43%, and 70% higher than double the values of the frac-
ture toughness reported in the literature [26]. Such large deviations might be related to the deviation of selected model
parameters in the present material model (3) for the aluminum alloy sheets as such model parameters were not available
in the literature. For example, due to lack of the experimental stress-strain diagrams of aluminum alloy and steel plates,
the exponent n of the nonlinear elastic material model (2), which was fitted from experimental data [26], was directly used
as the strain-hardening index n of the present material model (3). Noticeable deviations may exist for the parameter n
between the two material models. As an example, here a brief investigation is made on the parameter dependency of the
fracture toughness of the ABJs made of 1 mm thick aluminum-alloy sheets. In this case, if slightly scaling down the param-
eter n from 0.271, which was obtained by fitting the experimental data based on the material model (2) in the literature [26]
and was used in the present material model (3) to generate the results in Table 1, to 0.271/1.08 = 0.251, the present model
(19) predicts the values of fracture toughness of adhesives A, B and C as 3.33 ± 0.08 kJ/m2, 2.73 ± 0.14 kJ/m2,
1.96 ± 0.06 kJ/m2, which are much close to double the values of fracture toughness obtained in the steady dynamic fracture
tests [26] as also listed in Table 1.

Therefore, the present model is capable of extracting reliable fracture toughness from steady dynamic fracture tests of
ABJs with large plastic deformations, provided that the materials behave following power-law strain-hardening solids (3)
and sufficient experimental data are available to fit the model parameters E, r0 and n. Other potential influencing factors
responsible for the deviations between the present model predictions and experimental data could be the test data collec-
tion, failure mechanisms out of the assumption of pure bending, friction between the wedge and adherends, or the strain
energy dissipation not fully used for driving crack growth such as heat and kinetic energy, among others.
Fig. 10. Variation of the fracture toughness Cwith respect to the radius of curvature q0 after springback of ABJs of thin aluminum-alloy plates with varying
thickness and material strain-hardening index n.
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Moreover, the present model is further used for scaling analysis of the springback and fracture toughness of ABJs made of
thin aluminum-alloy and mild-steel plates with varying strain-hardening index n at varying q0. Figs. 8 and 9 are the varia-
tions of the minimum radius qm at the maximumworking momentM(qm) with respect to q0 of the ABJ adherends after com-
plete springback, in which the material properties and geometries are selected as the same as those employed in Figs. 6 and
7. The general varying tendencies are similar for both types of ABJs. Given the values of q0 and the adherend thickness h, qm

decreases with decreasing n. This is due to the fact that a lower value of n indicates a more plastically deformed ABJ, i.e., a
lower value of qm. In addition, at the fixed values of q0 and n, qm increases with increasing h, i.e., thicker elastoplastic spec-
imens tending to more noticeable springback. In the limiting case of idealized elastoplastic materials (n = 0), the minimum
springback exhibits. In contrast, in the limiting case of linearly elastic materials (n = 1) or nonlinear elastic materials, the
adherends completely recover the original configurations after unloading, i.e., the maximum springback.

Figs. 10 and 11 are the corresponding variations of the fracture toughness C with respect to the radius q0 for ABJs of thin
aluminum-alloy and mild-steel plates, respectively, in which the material properties and geometries are selected as the same
as those considered in Figs. 8 and 9 and the two adherends of the ABJ specimens are treated to be identical. The general vary-
ing tendencies are similar to both types of the ABJs. In each case, C decreases rapidly with increasing q0. In addition, given
the values of q0 and h, C decreases with decreasing n. This is due to the fact that a larger value of n (stiffer) implies that a
larger M(qm) is needed to generate the given q0. Moreover, given the values of q0 and n, C increases rapidly with increasing
h, i.e., a thicker elastoplastic ABJ specimen tends to a higher fracture toughness C due to a larger M(qm) needed to derive the
crack growth. It is worthy to mention that such a scaling comparison is based on the assumption that the fracture toughness
C is a material constant, which is independent of external loads and specimen geometries, and the scaling properties of C in
above represents the possible experimental observation of fracture tests of ABJ specimens made of materials with varying
fracture toughness and geometries such as varying adherend thickness h.
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5. Concluding remarks

An elastoplastic fracture mechanics model has been formulated for determining the fracture toughness of aluminum-
alloy and mild-steel ABJs with large plastic deformations and elastic springback. Based on the present model, the maximum
curvature (1/qm) and corresponding maximumworking bending momentM(qm) can be determined explicitly from the mea-
sured radius of curvature (1/q0) of the ABJ specimens after complete elastic springback, which are appreciably different from
those based only on nonlinear elastic material model (2) without springback. The stored strain energy in the ABJ adherends
has been determined in explicit form, which consists of the strain energy stored in the entire stage of loading and unloading,
i.e., the linearly elastic loading, nonlinear loading, and linearly elastic unloading range. Without additional ad hoc assump-
tions and simplifications beyond the elastoplastic constitutive law (3) of power-law strain-hardening materials and linearly
varying axial strain across the adherend thickness (i.e., Euler-Bernoulli beam), the present model is capable of extracting the
reliable fracture toughness of ABJs with large plastic deformations from steady dynamic fracture test data. This present
model has its advantages: (1) The elastoplastic power-law strain-hardening material model is more general and close to
the mechanical performance of many practical ductile metals extensively used in engineering including aluminum alloys
and mild steels; (2) The maximum working moment M(qm) to drive the crack growth in ABJs is determined accurately with
taking into account the elastic springback of the ABJ adherends; (3) The effect of elastic springback after complete unloading
has been considered for determining the maximum curvature (1/qm), corresponding to the maximum working bending
moment M(qm) and the maximum strain energy stored in the plastically deformed ABJs.

Furthermore, the present model has also been utilized for detailed scaling analysis to examine effects of the mechanical
properties and joint geometries on the elastic springback and fracture toughness of ABJs at varying loading level, which is
useful to explore the effects of governing parameters on the fracture behavior of plastically deformed ABJs and design of
metal ABJ specimens for better testing and fracture data reduction. The present model can be used for the analysis of broader
fracture and adhesive failure events of thin beams and film structures of ductile metals with large plastic deformations and
elastic springback such as peeling tests in coatings, fracture tests of ductile metals, and machine cutting of ductile metals,
among others.
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