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Abstract 

Shrink-fitted parts are commonly structured in mechanical systems (e.g., 
bearing-shaft coupling). This paper is to perform the theoretical study of the 
stress and displacement fields in multiple shrink-fitted elastic cylinders (tubes) 
under thermal and mechanical loads. Based on classic elasticity, the problem is 
reduced to find the interface pressures of neighboring tubes via solving a system 
of tridiagonal linear algebraic equations with the interface pressures as 
unknowns. Formal solutions are derived for the entire stress and displacement 
fields in general multiple shrink-fitted elastic tubes, which can recover the 
classic solution in the reduced cases. Numerical scaling analysis is conducted to 
examine the effects of interference, temperature change and mechanical loads 
on the stress variation in the elastic tubes. A concise computer code is 
programmed to implement the theoretical formulation for efficient and reliable 
stress analysis of an arbitrary number of shrink-fitted elastic tubes subject to 
constant temperature change and/or inner and outer pressures. As examples, 
numerical results of the radial and circumferential stresses of two, three and 
five shrink-fitted elastic tubes of different materials are demonstrated and 
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compared. The present study facilitates the theoretical stress and strength 
analysis of broad shrink-fitting problems for optimal design and manufacturing 
of various mechanical press and shrink fits. 

1. Introduction 

Press and shrink fits are commonly found in mechanical design and 
manufacturing to couple two or more typically cylindrical mechanical 
parts via interference fitting such as assembly of bearings and collars 
onto crankshafts, which offer a feasible mechanical strategy for design 
and low-cost assembly of compact, reliable shaft systems. Classic 
solutions to the interface pressure and entire stress and displacement 
fields in two shrink-fitted elastic cylinders/tubes of free thermal and 
mechanical loads are commonly utilized in mechanical designs [1], which 
were derived on the basis of the classic elasticity solution to an elastic 
tube subject to constant inner and out pressures [2]. Yet, many shrink-
fitting problems faced in engineering practices are typically more 
complicated and often involve three-dimensional (3D) effect near the 
fitting edges [3], anisotropicity of the tube materials [4,5], plastic 
deformations [6], surface defects [7], coupling of torsion and shrink-fitted 
gear-shaft system [8], interlayer effect [9], fretting wear and fatigue of 
shrink-fitted railway axles [10], among others. In addition, mechanical 
loads coupled with temperature change are also very common in many 
mechanical systems such as the bearing-crankshaft assemblies in vehicle 
gearboxes and other mechanical shaft mechanisms subject to seasonal 
temperature change in environment, while no general exact solutions are 
available in the literature for the stress and displacement fields of such 
shrink-fit problems though a few recent approaches have been made in 
the special cases with some extent of simplifications [11, 12]. Therefore, 
further study on this classic topic is still desired in order to facilitate the 
design and strength analysis of multiple shrink-fitted elastic tubes 
subject to general loads of temperature change and inner and outer 
pressures. 



STRESS ANALYSIS OF MULTIPLE SHRINK-FITTED … 53

This study is aimed to formulate a general theoretical framework and 
elasticity solutions to multiple shrink-fitted elastic tubes subject to 
temperature change and inner/outer pressures. Classic elasticity solution 
to the stress and displacement fields of an elastic tube subject to inner 
and outer pressures is first summarized as it is the theoretical basis of 
the present work. Then, the general solutions to the interface contact 
pressure and the stress and displacement fields of two arbitrary shrink-
fitted elastic tubes are derived, which will be further used for developing 
the general formal solution to the interface contact pressures of multiple 
shrink-fitted elastic tubes. The resulting system of tridiagonal linear 
algebraic equations with the interface contact pressures as the unknowns 
can be solved conveniently in a numerical manner. A few cases of two, 
three, and five shrink-fitted elastic tubes will be considered to 
demonstrate the efficiency and universality of the present method. 

2. Problem Formulation and Solution 

Consider a general case of n shrink-fitted elastic tubes, in which the 
number of each tube is labelled as ni ,,2,1 …=  from the most inner tube 

to the most outside tube as shown in Figure 1. All the tubes are assumed 
to be homogeneous, isotropically elastic, and the Young’s modulus, 
Poisson’s ratio, and coefficient of thermal expansion of the i-th tube are 
designated as ,, iiE ν  and ( ),,,2,1 nii …=α  respectively. The i-th 

interface is denoted as the interface between the (i–1)-th and i-th tubes, 
and the corresponding interference at the i-th interface is assumed as 

( )1,,2,1 −=δ nii …  at reference temperature 0T  of the multiple elastic 

tubes. Hereafter, ( )niri ,,2,11 …=−  stands for the radius of the inner 

surface of the i-th tube; the radius of the outer surface of the i-th tube is 
( ).1,,2,1 −=δ+ nir ii …  The radius of the outer surface of the n-th tube 

is denoted as .nr  In the limiting cases, 00 =r  corresponds to the inner 

tube to be solid (i.e., the 1st-tube is a solid cylinder), and ∞→nr  
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corresponds to the outer n-th tube to be an infinite elastic body. The 
pressure on the i-th interface is denoted as ( ),1,,2,1 −= nipi …  and 0p  

and np  indicate the external pressures loaded on the inner surface of the 

1st-tube and the outer surface of the n-th tube, respectively. Besides the 
mechanical loads (pressures) 0p  and ,np  the elastic tubes are assumed 

subject to a constant temperature change T∆  with respect to the 
reference temperature .0T  Under the above geometries, material 

properties as well as thermal and mechanical loads, the solution to the 
nontrivial stress and displacement fields of each elastic tube is important 
to the design and failure analysis of a shrink-fitted cylinder/tube system. 

Hereafter, a brief overview is first made on the classic solution to the 
stress and displacement fields of an elastic tube subject to inner and 
outer pressures, which is treated in the planar stress state. Then, a 
general formal solution to two arbitrary shrink-fitted tubes is derived, 
which is further utilized for formulating a set of governing equations of 
general multiple shrink-fitted elastic tubes. 
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Figure 1. Schematic diagram of multiple shrink-fitted elastic tubes 
subject to constant temperature change T∆  and inner and outer 
pressures 0p  and .np  

2.1. Stress and displacement fields of an elastic tube subject to 
inner and outer pressures 

Consider a circular tube of homogeneous, isotropically elastic 
material (with the Young’s modulus E and Poisson’s ratio ν) as illustrated 
in Figure 2, in which a and b denote the inner and outer radii of the tube, 
respectively; ip  and op  stand for the pressures loaded on the inner 

surface ar =  and the outer surface ,br =  respectively. The nontrivial 

stress and displacement fields ( )rrr uand,, θθσσ  of such a classic 

axisymmetric elasticity problem are available in the literature as [2] 
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In the limiting case of ,0→a  solutions (1)-(3) reduce to the stress and 

displacement fields of a solid cylinder subject to constant pressure op  on 

the surface such that orr p−=σ=σ θθ  and ( ) .1 Erpu or ν−−=  

Besides, in the limiting case of ,∞→b  solutions (1)-(3) reduce to the 

stress and displacement fields of a circular hole cut into an infinite 
elastic body under constant inner pressure ip  and remote compressive 

traction op  as 

( ) ,2

2
oiorr p

r
app −−=σ  (4) 

( ) ,2

2
oio p

r
app −−−=σθθ  (5) 

( ) .11 2

r
appΕrpΕu ioor −+−−−= υυ  (6) 



STRESS ANALYSIS OF MULTIPLE SHRINK-FITTED … 57

 

Figure 2. A circular elastic tube subject to inner and outer pressures. 

2.2. Interface pressure and stress/displacement fields of multiple 
shrink-fitted elastic tubes subject to constant temperature 
change and inner and outer pressures 

Now let us consider two representative neighboring tubes [i.e., the       
i-th and (i +1)-th tubes] out of a system of multiple shrink-fitted elastic 
tubes as illustrated in Figure 1. The notations of these two representative 
tubes are indicated in Figure 3, in which ,,1 ii pp −  and 1+ip  stand for the 

pressures in the inner surface [i.e., ( )1−i -th interface], i-th interface, 

and outer surface [i.e., ( )1+i -th interface], respectively. When a constant 

temperature change T∆  is applied to all the tubes, the inner radii of the 
i-th and ( )1+i -th tubes become ( )Tr ii ∆α+− 11  and ( );1 1 Tr ii ∆α+ +  

correspondingly, the outer radii of the two tubes are ( ) ( )Tr iii ∆α+δ+ 1  

and ( ) ( ).1 111 Tr iii ∆α+δ+ +++  Thus, the interference at the i-th interface 

after constant temperature change ,T∆  i.e., thermal interference, is 
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( ) ( ) ( )TrTr iiiiii ∆α+−∆α+δ+=∆ +111  

 ( ) ( ),11 TTr iiiii ∆α+δ+∆α−α= +  (7) 

where 1,,2,1 −= ni …  corresponding to each of the ( )1−n  interfaces of 

the shrink-fitting problem with n elastic tubes. When =∆=∆ iT ,0  .iδ  

For a general shrink-fitting problem, the thermal interference i∆  at each 

interface results in a deformation compatibility condition. In the present 
case, ( )1,,2,1 −=∆ nii …  is equivalent to the difference of radial 

deformations of the inner and outer tubes at i-th interface 
( )1,,2,1 −= ni …  subject to inner and outer pressures at the current 

temperature ,TT ∆+  i.e., the i-th tube is loaded with 1−ip  and ip  while 

the ( )1+i -th tube is loaded with ip  and 1+ip  at their inner and outer 

surfaces, respectively, as shown in Figure 3. Therefore, the corresponding 
deformation compatibility condition at the i-th ( )1,,2,1 −= ni …  

interface can be expressed as 
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is the radial displacement of the inner surface of the ( )1+i -th tube, and 
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is the radial displacement of the outer surface of the i-th tube. 
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Figure 3. Two representative neighboring tubes in multiple shrink-fitted 
elastic tubes subject to constant temperature change T∆  and inner and 
outer pressures 1−ip  and .1+ip  

Substitution of (9) and (10) into (8) leads to a representative algebraic 
equation relating the interfacial pressures ,,1 ii pp −  and 1+ip  to the 

thermal interference i∆  as 

,11,,11, iiiiiiiiii papapa ∆=++ ++−−  (11) 

where ,, ,1, iiii aa −  and iia ,1+  are coefficients as 
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and 1,,2,1 −= ni …  represents the i-th interface of n shrink-fitted 

elastic tubes. As a result, relation (11) leads to a system of tridiagonal 
algebraic equations of the order ( )1−n  for n shrink-fitted elastic tubes as 
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which can be expressed in a well-formatted, concise matrix form: 
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Solving Equation (16) results in pressure ( )1,,2,1 −= nipi …  at ( )1−n  
interfaces of n shrink-fitted elastic tubes, which can be further used for 
determining the stress and displacement fields in each elastic tube via 
triggering the elasticity solutions (1)-(3) of an elastic tube subject to inner 
and outer pressures. Within the framework of elasticity, the present 
solutions to the interface pressures of multiple shrink-fitted tubes are 
exact. In addition, it needs to be mentioned that a similar set of 
governing equations of the same system was obtained by Qiu and Zhou 
[11] in the case of some extent of approximations. In particular, 
temperature change induced radius variations in the elastic tubes were 
ignored. 
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3. Case Studies and Scaling Analysis of  
Shrink-Fitted Elastic Tubes 

3.1. Stress and displacement fields of two shrink-fitted elastic 
tubes subject to constant temperature change and inner and 
outer pressures 

This is the special case of two elastic tubes in shrink-fitting as 
studied in Subsection 2.2. Rewriting Equation (11) with 02 =δ  (as 2r  is 

the outer radius of the outer tube based on the present symbol 
convention) leads to 

,122,111,100,1 ∆=++ papapa   (17) 

where coefficients 2,11,10,1 ,, aaa  and 1∆  are determined as 
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Thus, the interface pressure 1p  can be solved from (17) as 

( ) ,/ 1,122,100,111 apapap −−∆=   (22) 
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where 0p  and 2p  are the external pressures acting on the inner and 

outer surfaces as given in the problem. Plugging 0p  and 1p  as well as 

1p  and 2p  into (1)-(3), respectively, leads to the solutions to the 

nontrivial stress and displacement fields in the inner and outer elastic 
tubes. In the case of the two shrink-fitted tubes free of inner and outer 
pressures and subject to constant temperature change ,T∆  Equation (22) 

leads to the interface pressure 1p  as 
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In the limiting case of constant temperature, i.e., ,0=∆T  and further 

ignoring the small effect of the interference 1δ  on the radius ,1r  

Equation (23) is further simplified as 
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which is the commonly used shrink-fit formula for predicting the 
interface pressure of two shrink-fitted cylinders in mechanical design [1]. 
The comparison of the accuracies of the interface pressure 1p  and the 

stress field ( )θθσσ andrr  based on the present exact solution (23) and 

the commonly used formula (24) at varying temperature change T∆  and 
interference 1δ  will be made in Subsection 3.3. 
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3.2. Stress and displacement fields of three shrink-fitted elastic 
tubes subject to constant temperature change and inner and 
outer pressures 

By following the same taken in Subsection 3.1, rewriting Equation 
(11) for 1=i  and 2 with 03 =δ  leads to a set of simultaneous linear 

algebraic equations as 
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where coefficients 1,21,10,1 ,, aaa  and 1∆  are given according to (12)-(14) 

and (7) as 
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( ) ( ) ( )TrTr ∆α+−∆α+δ+=∆ 211111 11  

( ) ( ),1 11211 TTr ∆α+δ+∆α−α=  (32) 

( ) ( ) ( )TrTr ∆α+−∆α+δ+=∆ 322222 11  

   ( ) ( ).1 22322 TTr ∆α+δ+∆α−α=  (33) 

The solution to (25) leads to the formal solution of interface pressures 1p  

and 2p  as 
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With the interface pressures 1p  and 2p  solved in (34) and (35), the 

stress and displacement fields in the three shrink-fitted elastic tubes can 
be determined conveniently by using Equations (1)-(3). Yet, the detailed 
expansions of solutions (34) and (35) are inconvenient in practical use. In 
reality, it is more convenient to formulate the symbolic elements of the 
coefficient matrix and right column vector in Equation (16) based on   
(12)-(14) and (7) and then to solve Equation (16) numerically to obtain all 
the interface pressures ( )1,,2,1 −= nipi …  of the multiple shrink-

fitted elastic tubes. Consequently, with the interface pressures 
( ,,2,1 …=ipi  ),1−n  the stress and displacement fields in each elastic 

tube can be determined exactly by Equations (1)-(3) as to be 
demonstrated in Subsection 3.3. 



XIANG-FA WU et al. 66

3.3. Scaling analysis of dependencies of interface pressure and 
stresses upon temperature change and interferences in multiple 
shrink-fitted elastic tubes 

3.3.1. Two shrink-fitted elastic tubes 

Herein, comparative study is made to examine the effects of 
temperature change T∆  and interference δ  on the interface pressure 1p  

and stress fields ( )θσσ rrr and  in two shrink-fitted elastic tubes based on 

the present exact solution (23) and the literature formula (24). Assume 
an aluminum-alloy tube and a steel tube to be shrink-fitted at reference 
temperature 0T  as shown in Figure 4. The material properties and 

geometries of the tubes are tabulated in Table 1, where δ  is considered 
as a variable for the purpose of scaling analysis. 

Based on (23) and (24), Figure 5 shows the variation of the interface 
pressure 1p  with respect to δ  ranging from 0 to 1.6mm at four constant 

temperature changes of − 200°C, 0°C, 200°C, and 400°C, respectively, from 
,0T  in which the literature solution (24) is only used for the case of        

∆T = 0°C. From Figure 5, it can be observed that as a general principle, 
the value of 1p  increases with increasing .δ  At ∆T = 0°C, 1p  predicted by 

the present solution (23) is slightly higher than that predicted by (24); 
the difference between the values of 1p  predicted by (23) and (24) 

increases with increasing .δ  Besides, the δ−1p  relation is linear in (24) 

while it becomes nonlinear in the present solution (23). As a matter of 
fact, the literature solution (24) can be regarded as the linearization of 
the present solution (23) in the case of small δ  compared to the tube 
radii. 

In addition, given the value of ,δ  Figure 5 shows that the value of 1p  

predicted by (23) increases nearly linearly with increasing T∆  in a large 
range from − 200°C to 400°C though 1p  given in (23) is nonlinear with 

respect to .T∆  The increasing tendency of 1p  with T∆  is due to the 
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configuration of two shrink-fitted tubes such that the inner tube 
(aluminum-alloy) has a higher coefficient of thermal expansion than that 
of the outer tube (steel). Thus, the inner tube has a larger radial 
expansion than the outer tube at temperature increase ,T∆  i.e., a higher 

interface pressure. If the materials of the two tubes are reversed in the 
shrink-fitting assembly, 1p  will decrease with increasing .T∆  

Table 1. Material properties and geometries of shrink-fitted aluminum-
alloy and steel tubes 

Materials Aluminum alloy (inner) Carbon steel (outer) 

Young’s modulus MPa107.71 3
1 ×=AE  MPa10207 3×=stE  

Poisson’s ratio 333.01 =υA  292.0=υst  

Coefficient of thermal expansion C109.23 6
1

D−×=αA  C108.10 6
st

D−×=α  

Outer radius δ+= mm0.40or  mm0.50=oR  

Inner radius mm0.30=ir  mm0.40=iR  

 

Figure 4. An aluminum-alloy tube shrink-fitted into a steel tube. 
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Figure 5. Variation of the interface pressure 1p  with respect to the 

interference δ  of an aluminum-alloy tube shrink-fitted into a steel tube 
with pressure-free inner and outer surfaces and temperature change .T∆  

Figure 6 shows variations of the radial stress rrσ  and 

circumferential stress θθσ  with respect to the tube radius r of an 

aluminum-alloy tube shrink-fitted into a steel tube with mm5.0=δ  and 
∆T = 200°C. The inner and outer surfaces are assumed to be pressure-
free. It is observed that the compressive rrσ  reaches its peak value at the 

interface, which is the interface pressure and reaches to zero at the inner 
and outer surfaces due to the pressure-free surface conditions. θθσ  in the 

inner aluminum-alloy tube is compressive and its peak value occurs at 
the inner surface; in contrast, θθσ  in the outer steel tube is tensile and 

its peak value occurs at the interface. In addition, the value of θθσ  has a 

jump across the fitting interface due to the interference as well as the 
mismatch of the material properties across the interface. It needs to be 
mentioned that even in the case of two elastic tubes of identical material 
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in shrink-fitting, the jump of θθσ  across the interface still exists due to 

the discontinuity of the circumferential strain across the interface that is 
induced by .δ  

 

Figure 6. Variations of the radial stress rrσ  and circumferential stress 

θθσ  with respect to the radius r of an aluminum-alloy tube shrink-fitted 

into a steel tube with interference mm5.0=δ  and temperature change 
∆T = 200°C (with pressure-free inner and outer surfaces). 

3.3.2. General numerical scheme for stress analysis of multiple 
shrink-fitted elastic tubes 

Based on the theoretical formulation in Subsection 2.2, efficient 
computer code can be programmed for fast and reliable analysis of the 
stress and displacement fields in multiple shrink-fitted elastic tubes 
subject to constant temperature change T∆  as well as inner and outer 
pressures 0p  and .np  For the numerical process, a concise Matlab® code 

is programmed to demonstrate the numerical procedure according to 
Equations (11)-(16) in the follows. 
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To evidence the effectiveness of this numerical approach, Figures 7(a) 
and 7(b) show two examples of the numerical solutions to the stress 
variations in three and five shrink-fitted elastic tubes subject to only      
∆T = 200ºC and combination of ∆T = 200ºC, MPa,500 =p  and 

MPa,1005 =p  respectively. Interferences at two interfaces of the three 

shrink-fitted elastic tubes are assumed to be identical as mm5.0=δi        

(i = 1 and 2), while the interferences at the four interfaces of the five 
shrink-fitted tubes are also assumed to be identical as mm.25.0=δi  As 

shown in Figure 7, the material properties of the aluminum-alloy and 
steel tubes are given in Table 1, and the material properties of the copper 
tube are: Young’s modulus: GPa,119=CuE  Poisson’s ratio: ,326.0=νCu  

and coefficient of thermal expansion: .101.17 6−×=αCu  By following the 

symbol convention defined in Section 2, the nominal radii of the three 
shrink-fitted tube in Figure 7(a) are taken as ,mm40,mm30 21 == rr  

,mm503 =r  and mm604 =r  (i.e., the inner radii of the tubes and the 

outer radius of the outer tube), and the nominal radii of the five shrink-
fitted tubes in Figure 7(b) are taken mm,50,mm40,mm30 321 === rrr  

,mm70,mm60 54 == rr  and .mm806 =r  
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(a) 

 
(b) 

Figure 7. Configurations of three and five shrink-fitted elastic tubes.     
(a) Loaded with constant temperature change ∆T = 200°C (interferences: 

mm5.021 =δ=δ ); (b) Loaded with constant temperature change           
∆T = 200°C, inner surface pressure MPa500 =p  and outer surface 
pressure MPa1005 =p  (interferences: mm25.04321 =δ=δ=δ=δ ). 
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Figure 8 shows the variations of rrσ  and θθσ  with respect to r of the 

three shrink-fitted elastic tubes subject to constant temperature change 
∆T = 200°C. It can be found that rrσ  is compressive and continuously 

varying in the tubes while reaching zero at the inner and outer surfaces 
due to the pressure-free surface conditions, and the value of rrσ  reaches 

its peak value at the aluminum/steel interface. θθσ  is compressive in the 

inner aluminum-alloy tube while tensile in the steel and copper tubes; 

θθσ  jumps across the two interfaces as also observed in the case of two 

shrink-fitted elastic tubes. The value of θθσ  reaches its peak value at the 

two interfaces and the outer surface. 

 

Figure 8. Variations of the radial stress rrσ  and circumferential stress 

θθσ  with respect to the radius r of three shrink-fitted elastic tubes of 

aluminum-alloy, steel and copper at interference mm5.0=δ  and 
temperature change ∆T = 200°C (pressure-free inner and outer surfaces). 
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Furthermore, Figure 9 shows the variations of rrσ  and θθσ  with 

respect to the radius r of five shrink-fitted elastic tubes subject to 
constant temperature change ∆T = 200°C and inner and outer surface 
pressures MPa500 =p  and MPa.1005 =p  It can be found that rrσ  is 

compressive and continuously varying in the tubes while reaching              
− 50MPa at the inner surface and − 100MPa at the outer surface as 
designated by the problem, and the value of rrσ  reaches its peak value at 

the inner aluminum/steel interface. In addition, θθσ  is compressive in 

the four inner tubes while tensile in the most outer steel tubes due to 
specific tube assembly, interferences, temperature change, and pressures 
on the inner and outer surfaces; θθσ  jumps across the four interfaces as 

also observed in two and three shrink-fitting elastic tubes 
aforementioned. The peak value of θθσ  appears at the interfaces and the 

outer surface in this particular shrink-fitting problem. 
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Figure 9. Variations of the radial stress rrσ  and circumferential stress 

θθσ  with respect to the radius r of five shrink-fitted elastic tubes of 

aluminum-alloy, steel, copper, aluminum-alloy and steel at interference 
mm25.0=δ  and constant temperature change ∆T = 200°C, inner surface 

pressure MPa500 =p  and outer surface pressure MPa.1005 =p  

From the above scaling analysis of two, three and five shrink-fitting 
elastic tubes, the following conclusions can be drawn. rrσ  is compressive 

in multiple shrink-fitted elastic tubes with constant temperature change 
and pressure-free or compressive inner and outer surfaces; its peak value 
appears at one of the interfaces. θθσ  is compressive in the most inner 

tube while θθσ  in the outside tubes may be compressive or tensile 

depending on the tube assembly, interference ( ),1,,2,1 −=δ nii …  

temperature change ,T∆  and pressures 0p  and np  on the inner and 

outer surfaces, respectively; its peak value appears at one of the 
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interfaces or the outer surface. Therefore, for multiple shrink-fitted 
elastic tubes with identical interference, the peak stress level may appear 
at the first inner interface or the outer surface, and it is highly possible 
that material cracking or yielding happens at the first inner interface or 
the outer surface. 

It needs to be emphasized that the present study is based on purely 
linear elasticity analysis of multiple shrink-fitted elastic tubes with 
several simplifications as aforementioned. For instance, the surface 
roughness, material nonlinearity, and plasticity of the tubes are not 
considered yet. Furthermore, in a typical shrink-fitting assembly in 
reality, the stress and deformation analysis will be 3D as the common 
configuration of such an assembly is usually in the form of a short tube 
(ring) shrink-fitted onto a long elastic cylinder, or coaxial cylinders. 
Nevertheless, the present theoretical formulation and related numerical 
scheme based on assumption of axisymmetric deformation provide the 
quick, reliable understanding of the stress variations in such idealized 
shrink-fitting tube systems, which is valuable in their design and 
strength estimate. 

4. Concluding Remarks 

Shrink-fitting cylindrical (tubular) systems are commonly utilized in 
various mechanical mechanisms. For the purpose of fast, reliable stress 
and deformation analysis of such systems, a theoretical framework and 
related numerical approach have been successfully formulated. It has 
been shown herein that the stress analysis of such multiple shrink-fitted 
elastic tubes can be reduced to solving a governing system of tridiagonal 
linear algebraic equations with the interface pressures as the unknowns. 
Once these interface pressures are extracted from solving the resulting 
set of linear algebraic equations, the stress analysis of the elastic tubes 
can be further determined one tube by one tube with the assistance of the 
classic elasticity solution of an elastic tube. To demonstrate the efficiency 
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and effectiveness of the present method, a concise computer code has 
been programmed and used for high-efficiency, accurate stress analysis of 
two, three and five shrink-fitted elastic tubes of different materials 
subject to constant temperature changes and inner and outer pressures. 
The present theoretical formulation and numerical scheme extend the 
stress and strength analysis of broad shrink-fitting problems consisting 
of an arbitrary number of elastic tubes of varying elastic materials, 
interferences, and inner and outer pressures. 
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