Preliminary Examination (Math 720)

January 2023

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \rightarrow S$ is a ring homomorphism, we also assume $\varphi\left(1_{R}\right)=1_{S}$

1. Let $R=\mathbb{Z}[i \sqrt{5}]$.
(a) Show that 3 is an irreducible element of R.
(b) Prove that the elements 6 and $2+2 i \sqrt{5}$ do not have a greatest common divisor.
2. Let R and S be two commutative rings and let K be an ideal of the ring $R \times S$. Prove that there exist ideals I of R and J of S such that $K=I \times J$.
3. Let R be a commutative ring and let M, N be R-submodules of an R-module L. Prove that if $M+N$ and $M \cap N$ are finitely generated, then so are M and N.
4. Let R be a commutative ring and let F be a free R-module of rank n. If $x_{1}, x_{2}, \ldots, x_{n} \in F$ generate F, prove that x_{1}, \ldots, x_{n} form a basis of F.
5. Prove that there exists an isomorphism of rings

$$
\mathbb{Z}[X] /\left(X^{2}+4, X^{2}+9\right) \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

6. Let G be \mathbb{Z}-module generated by v_{1}, v_{2}, v_{3} subject to the relations

$$
\begin{array}{r}
6 v_{1}+4 v_{2}+2 v_{3}=0 \\
-2 v_{1}+2 v_{2}+6 v_{3}=0
\end{array}
$$

Prove that $G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}$.
7. Let $T: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}$ be a linear operator with characteristic polynomial

$$
c_{T}(X)=(X-7)^{3}(X-9)^{2} .
$$

Find all the possible Jordan canonical forms of T (up to a permutation of the Jordan blocks).

