Preliminary Examination (Math 720) August 2022

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.

• In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \to S$ is a ring homomorphism, we also assume $\varphi(1_R) = 1_S$

1. Let R be an integral domain. Prove that if every descending chain

$$(r_1) \supseteq (r_2) \supseteq (r_3) \supseteq \dots$$

of principal ideals in R stabilizes, then R is a field.

- **2.** Let R be an integral domain and let $\pi \in R$ be an irreducible element that is not prime.
 - (a) Prove that there exists an element $r \in R$ such that the 2-generated ideal (π, r) is not a principal ideal. **Hint**: There exist elements $a, b \in R$ such that $ab \mid \pi$ but $\pi \nmid a$ and $\pi \nmid b$.
 - (b) Construct a 2-generated ideal in the ring $\mathbb{Z}[\sqrt{-5}]$ that is not principal.
- **3.** Suppose that $g, h \in \mathbb{Q}[X]$. Use Gauss's Lemma to prove that if f = gh belongs to $\mathbb{Z}[X]$, then the product of any coefficient of g with any coefficient of h belongs to \mathbb{Z} .
- 4. Let A, B be finite rings with at least two elements and let $R = A \times B$. Hence, A is an R-module via the natural ring homomorphism $R \to A$ projecting onto the first coordinate. Prove or disprove each statement:
 - (a) A is a projective R-module.
 - (b) A is a free R-module.
- 5. Let R be an integral domain with field of fractions K and let I be an ideal of R. Prove that $(R/I) \otimes_R K = 0$ if and only if $I \neq 0$.
- **6.** Let F be a field and let U, V, W be finite dimensional F-vector spaces with linear transformations $S: U \to V$ and $T: V \to W$. Prove that

$$\dim_F(\ker(T \circ S)) \le \dim_F(\ker T) + \dim_F(\ker S)$$

7. Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be the field with two elements and let V be an \mathbb{F}_2 -vector space such that $\dim(V) = 3$. Find all possible rational canonical forms for a linear transformation $T: V \to V$ satisfying $T^6 = 1$.