Preliminary Examination (Math 720)

August 2022

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \rightarrow S$ is a ring homomorphism, we also assume $\varphi\left(1_{R}\right)=1_{S}$

1. Let R be an integral domain. Prove that if every descending chain

$$
\left(r_{1}\right) \supseteq\left(r_{2}\right) \supseteq\left(r_{3}\right) \supseteq \ldots
$$

of principal ideals in R stabilizes, then R is a field.
2. Let R be an integral domain and let $\pi \in R$ be an irreducible element that is not prime.
(a) Prove that there exists an element $r \in R$ such that the 2-generated ideal (π, r) is not a principal ideal. Hint: There exist elements $a, b \in R$ such that $a b \mid \pi$ but $\pi \nmid a$ and $\pi \nmid b$.
(b) Construct a 2-generated ideal in the ring $\mathbb{Z}[\sqrt{-5}]$ that is not principal.
3. Suppose that $g, h \in \mathbb{Q}[X]$. Use Gauss's Lemma to prove that if $f=g h$ belongs to $\mathbb{Z}[X]$, then the product of any coefficient of g with any coefficient of h belongs to \mathbb{Z}.
4. Let A, B be finite rings with at least two elements and let $R=A \times B$. Hence, A is an R module via the natural ring homomorphism $R \rightarrow A$ projecting onto the first coordinate. Prove or disprove each statement:
(a) A is a projective R-module.
(b) A is a free R-module.
5. Let R be an integral domain with field of fractions K and let I be an ideal of R. Prove that $(R / I) \otimes_{R} K=0$ if and only if $I \neq 0$.
6. Let F be a field and let U, V, W be finite dimensional F-vector spaces with linear transformations $S: U \rightarrow V$ and $T: V \rightarrow W$. Prove that

$$
\operatorname{dim}_{F}(\operatorname{ker}(T \circ S)) \leq \operatorname{dim}_{F}(\operatorname{ker} T)+\operatorname{dim}_{F}(\operatorname{ker} S)
$$

7. Let $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ be the field with two elements and let V be an \mathbb{F}_{2}-vector space such that $\operatorname{dim}(V)=3$. Find all possible rational canonical forms for a linear transformation $T: V \rightarrow V$ satisfying $T^{6}=1$.
