Preliminary Examination (Math 726)

August 2022

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \rightarrow S$ is a ring homomorphism, we also assume $\varphi\left(1_{R}\right)=1_{S}$

1. Let $R=\mathbb{Z} / 4 \mathbb{Z}$, and consider $M=\mathbb{Z} / 2 \mathbb{Z}$ as an R-module.
(a) Write a projective resolution of M.
(b) Compute $\operatorname{Tor}_{R}^{i}(M, M)$ for all $i \geq 0$.
(c) Compute $\operatorname{Ext}_{R}^{i}(M, M)$ for all $i \geq 0$.
2. Let R be a commutative noetherian ring and M a finitely generated R - module. Prove that there exists a projective resolution of M in which all modules are finitely generated.
3. Let R be a noetherian commutative ring and M a finitely generated R-module. Let a_{1}, a_{2} be an M-regular sequence such that $I=\left(a_{1}, a_{2}\right) \subseteq \operatorname{Jac}(R)$. Prove that a_{2} is an M-regular element.
4. Let R be a commutative ring, M an R-module, and x an M-regular element. Assume that we have an exact sequence of R-modules

$$
N_{2} \rightarrow N_{1} \rightarrow N_{0} \rightarrow M \rightarrow 0
$$

Prove that the induced sequence

$$
N_{2} / x N_{2} \rightarrow N_{1} / x N_{1} \rightarrow N_{0} / x N_{0}
$$

is also exact.
5. Let R be a commutative ring, M an R-module and $x \in R$ an element that is both R-regular and M-regular. Prove that

$$
\operatorname{pd}_{R / x R} M / x M \leq \operatorname{pd}_{R} M .
$$

