Algebra Preliminary Examination June 2013

Directions: Show all work for full credit. Unless otherwise stated, R denotes a commutative ring with identity and M denotes a unital R-module. Good luck and just do the best you can.

1. Let G be a group of order 108. Show that G has a normal subgroup of order 27 or a normal subgroup of order 9 .
2. Suppose that N is a normal subgroup of G. Prove that if G / N and N are both solvable groups, then G is a solvable group.
3. Find the invariant factor direct sum decomposition of a finitely generated abelian group G with generators $\{x, y, z\}$ subject to the relations

$$
\begin{array}{r}
x+2 y+5 z=0 \\
3 x+3 y+9 z=0
\end{array}
$$

4. Let R be a ring and let Σ be the set of all proper ideals of R that consist only of zero-divisors.
(a) Prove that Σ has maximal elements with respect to inclusion.
(b) Prove that every maximal element of Σ is a prime ideal.
5. Let s be an element of the ring R and let $S=\left\{s^{n}: n \geq 0\right\}$. Let $R[x]$ be the polynomial ring in one variable over R. Prove that there exits a ring isomorphism $S^{-1} R \simeq R[x] /(s x-1)$.
6. Let M be a Noetherian R-module and let $\varphi: M \rightarrow M$ be an R-module homomorphism. Prove that if φ is surjective, then φ is bijective.
7. Let P be a finitely generated projective R-module. Prove that $\operatorname{Hom}(P, R)$ is a finitely generated projective R-module.
8. Let V be a finite dimensional vector space over the field \mathbb{C} of complex numbers and let $\theta \in \operatorname{Hom}(V, V)$.
(a) Prove that if $\theta^{3}=I$, then θ is diagonalizable.
(b) Does the result in (a) hold if the field \mathbb{C} is replaced by \mathbb{Q} ? Justify your answer.
9. Consider the polynomial $p(x)=x^{3}+x+1$ in $\mathbb{F}_{2}[x]$ and let α be a root of $p(x)$ in some extension of \mathbb{F}_{2}.
(a) Prove that $p(x)$ is irreducible over \mathbb{F}_{2}.
(b) Prove that $\mathbb{F}_{2}(\alpha)$ is a field with 8 elements.
(c) Prove that $\mathbb{F}_{2}(\alpha)$ is a Galois extension of \mathbb{F}_{2} and compute $\operatorname{Gal}\left(\mathbb{F}_{2}(\alpha) / \mathbb{F}_{2}\right)$.
10. Suppose that $f \in \mathbb{Q}[x]$ with $\operatorname{deg}(f)=5$. Let K / \mathbb{Q} be the splitting field of f and suppose that $\operatorname{Gal}(K / \mathbb{Q})=A_{5}$. Does there exist a field L between \mathbb{Q} and K such that $[L: \mathbb{Q}]=2$? Justify your answer.
