Preliminary Examination (Math 720)

 $21 \ {\rm January} \ 2022$

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.

• In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \to S$ is a ring homomorphism, we also assume $\varphi(1_R) = 1_S$

- **1.** Let R be a commutative ring and I, J, K ideals of R. Prove that if I + J = I + K = R, then I + JK = R.
- **2.** Prove that the ring $\mathbb{Z}[i]/I$ is finite for every nonzero ideal I of $\mathbb{Z}[i]$.
- **3.** Let \mathbb{Z} be the ring of integers and let X be an indeterminate over \mathbb{Z} . How many elements does the ring $\mathbb{Z}[X]/(X^2 3, 2X + 4)$ have? Justify your answer.
- 4. Let S be an integral domain, and let R be a subring of S such that S is finitely generated as an R-module. Assume that R is a field. Prove that S is a field.
- **5.** Let I = (2, X) be the ideal generated by 2 and X in the ring $R = \mathbb{Z}[X]$. Show that the element $2 \otimes 2 + X \otimes X$ in $I \otimes_R I$ is not a simple tensor, i.e., cannot be written as $a \otimes b$ for some $a, b \in I$.
- 6. Let G be the additive abelian group $\mathbb{Z} \times \mathbb{Z}$. Prove that the quotient group $G/\langle (1,1) \rangle$ is an infinite cyclic group.
- **7.** Let R be an integral domain. Recall that an R-module N is called torsion free if Tor(N) = (0) where $Tor(N) := \{x \in N \mid rx = 0 \text{ for some } r \in R \setminus \{0\}\}.$

Prove that if M is a projective R-module then M is torsion free.