Preliminary Examination (Math 720)

18 August 2021

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.
- In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi: R \rightarrow S$ is a ring homomorphism, we also assume $\varphi\left(1_{R}\right)=1_{S}$.

1. Let $R=\mathbb{Z}[X]$ and the ideal $I=\left(6, X^{2}+X+1\right)$ of R. Find all the ideals of R that contain I. (Give an explicit list of generators for each ideal.) Which of these ideals are prime? Which of these ideals are maximal?
2. Consider the subring $\mathbb{Z}[\sqrt{10}]$ of the field of real numbers. Show that 2 is irreducible but not prime in $\mathbb{Z}[\sqrt{10}]$.
3. Let $n \geq 1$ be an integer and consider the real vector space $V=\{f \in \mathbb{R}[X] \mid \operatorname{deg}(f) \leq n\}$. Let $T: V \rightarrow V$ be the linear transformation given by $T(f)=f^{\prime}$, where f^{\prime} is the derivative of f. Find the characteristic polynomial, minimal polynomial, invariant factors, elementary divisors, rational canonical form, and Jordan canonical form of the linear transformation T.
4. Prove that $(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=(0)$
5. Let R be a commutative ring.
(a) Assume that I and J are ideals of R such that $I \cap J=(0)$ and $I+J=R$. Prove that there exists $e \in R$ with $e^{2}=e$ such that $I=(e)$.
(b) Show that a principal ideal $a R$ in R is projective as an R-module if and only if $\operatorname{ann}(a):=\{r \in R \mid r a=0\}$ (the annihilator of a) is of the form $e R$ where $e=e^{2}$.
6. Let R be a commutative ring. Assume that R has a unique maximal ideal. Prove that 0 and 1 are the only idempotents in R. (An element $x \in R$ is said to be idempotent if $x^{2}=x$.)
7. Suppose I is a principal ideal in the integral domain R. Prove that the R-module $I \otimes_{R} I$ has no nonzero torsion elements.
