Preliminary Examination (Math 720) 18 August 2021

INSTRUCTIONS:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper. Each question is worth 10 points.
- In answering any part of a question, you may assume the results in previous parts.
- To receive full credit, answers must be justified.

• In this exam "ring" means "ring with identity" and "module" means "unital (unitary) module". If $\varphi : R \to S$ is a ring homomorphism, we also assume $\varphi(1_R) = 1_S$.

- **1.** Let $R = \mathbb{Z}[X]$ and the ideal $I = (6, X^2 + X + 1)$ of R. Find all the ideals of R that contain I. (Give an explicit list of generators for each ideal.) Which of these ideals are prime? Which of these ideals are maximal?
- 2. Consider the subring $\mathbb{Z}[\sqrt{10}]$ of the field of real numbers. Show that 2 is irreducible but not prime in $\mathbb{Z}[\sqrt{10}]$.
- **3.** Let $n \ge 1$ be an integer and consider the real vector space $V = \{f \in \mathbb{R}[X] \mid \deg(f) \le n\}$. Let $T : V \to V$ be the linear transformation given by T(f) = f', where f' is the derivative of f. Find the characteristic polynomial, minimal polynomial, invariant factors, elementary divisors, rational canonical form, and Jordan canonical form of the linear transformation T.
- **4.** Prove that $(\mathbb{Q}/\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z}) = (0)$
- **5.** Let R be a commutative ring.
 - (a) Assume that I and J are ideals of R such that $I \cap J = (0)$ and I + J = R. Prove that there exists $e \in R$ with $e^2 = e$ such that I = (e).
 - (b) Show that a principal ideal aR in R is projective as an R-module if and only if $ann(a) := \{r \in R \mid ra = 0\}$ (the annihilator of a) is of the form eR where $e = e^2$.
- 6. Let R be a commutative ring. Assume that R has a unique maximal ideal. Prove that 0 and 1 are the only idempotents in R. (An element $x \in R$ is said to be idempotent if $x^2 = x$.)
- 7. Suppose I is a principal ideal in the integral domain R. Prove that the R-module $I \otimes_R I$ has no nonzero torsion elements.