Preliminary Examination (Math 721) August 2021

Instructions:

- Write your student ID number at the top of each page of your exam solution.
- Write only on the front page of your solution sheets.
- Start each question on a new sheet of paper.
- In answering any part of a question, you may assume the results of previous parts.
- To receive full credit, answers must be justified.
- 1. Let H be a subgroup of a group G such that [G:H] = 2. Prove that H contains every element of G of odd order.
- 2. Recall that V_4 is the Klein 4-group, Q_8 is the quaternion group, and D_4 is the dihedral group acting on the vertices of a square. **Prove or disprove** each statement.
 - (a) $D_4 \simeq V_4 \rtimes_{\theta} \mathbb{Z}_2$ for some group homomorphism $\theta : \mathbb{Z}_2 \to \operatorname{Aut}(V_4)$.
 - (b) $Q_8 \simeq V_4 \rtimes_{\theta} \mathbb{Z}_2$ for some group homomorphism $\theta : \mathbb{Z}_2 \to \operatorname{Aut}(V_4)$.
- 3. Let *H* be a subgroup of a group *G* such that [G : H] is finite. Prove that *G* has a normal subgroup *N* such that $N \subseteq H$ and [G : N] is finite. **Hint:** Consider the left regular action $G \times \mathcal{L}_H \to \mathcal{L}_H$.
- 4. Classify all groups of order $539 = 7^2 \cdot 11$.
- 5. Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial. Prove that if $g(x) \in F[x]$ is any polynomial and p(x) is any irreducible factor of the composition f(g(x)), then $\deg(f)$ divides $\deg(p)$.
- 6. Let K be the splitting field for the polynomial $f(x) = x^8 2$ over the field \mathbb{Q} of rational numbers.
 - (a) Determine the degree $[K : \mathbb{Q}]$ of the field extension $\mathbb{Q} \subseteq K$.
 - (b) Now let $F = \mathbb{Q}(\sqrt[4]{2})$. Determine the Galois group $\operatorname{Gal}(K/F)$.
- 7. Let p < q be primes and let K be the splitting field of some irreducible polynomial $f(x) \in \mathbb{Q}[x]$. Prove that if $[K : \mathbb{Q}] = pq$, then there exists a normal field extension $\mathbb{Q} \subseteq E$ such that $[E : \mathbb{Q}] = p$.