Algebra Preliminary Examination

January 2011

- Begin each question on a new sheet of paper.
- In answering any part of a question, you may assume the results in previous PARTS

All rings have identity and all modules are unitary (unital).

1. Find the minimal polynomial of $\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.
2. Let $F \subseteq K$ be a field extension such that every irreducible polynomial in $F[X]$ remains irreducible in $K[X]$. Show F is algebraically closed in K.
3. Let G be the group of automorphisms of $\mathbb{Q}(\sqrt{5}, i)$.
(a) Find all the subgroups of G.
(b) Find all the subfields of $\mathbb{Q}(\sqrt{5}, i)$.
4. Show that every group of order 12 has a normal Sylow subgroup and hence is not simple.
5. Prove that every group of order 45 is abelian.
6. Let D be a commutative integral domain and F a subring of D. Assume that F is a field and D has finite dimension as a vector space over F. Prove D is a field.
7. (a) Prove that the ring $R=\mathbb{Z}[\sqrt{-2}]$ is Euclidean.
(b) Prove that that $R /(3+2 \sqrt{-2})$ is a field with 17 elements.
8. Let M be a module over the integral domain D. A submodule N of M is said to be pure if the following holds: whenever $y \in N$ and $a \in D$ are such that there exists $x \in M$ with $a x=y$, then there exists $z \in N$ with $a z=y$.
If N is a direct summand of M, prove that N is pure in M.
9. Let R be a commutative ring, M an R-module, and N a submodule of M. Denote $i: N \rightarrow M$ the natural inclusion map.
(a) Show that if M / N is free, then the map

$$
i^{*}: \operatorname{Hom}_{R}(M, R) \rightarrow \operatorname{Hom}_{R}(N, R)
$$

is surjective, where $i^{*}(f)=f \circ i$.
(b) Give an example that shows that i^{*} need not be surjective if M / N is not free.
10. Give an example of a commutative ring A and an ideal I in A such that I cannot be generated by finitely many elements of A. (Make sure that you prove that your ideal cannot be generated by finitely many elements.)

