Analysis Premilinary Exam January 24, 2009

- 1. Let (X, \mathcal{M}, μ) and, for every $n \geq 1$, let $f_n : X \to \mathbb{R}$ be measurable functions. Prove that $\limsup_{n\to\infty} f_n$ is measurable.
- 2. Let f be an integrable function on \mathbb{R} with Lebesgue measure m. Prove that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $\int_{E} |f| \, dm < \epsilon$ whenever $m(E) < \delta$.
- 3. Let $h_n(x) = n \sin\left(\frac{x}{n}\right), 0 \le x \le \pi, n \ge 1$. Find

$$\lim_{n \to \infty} \int_0^{\pi} h_n(x) \, dx.$$

Hint: Use properties of the function $\frac{\sin y}{y}$.

- 4. Let X=Y=[0,1], with Lebesgue measure m on X and the counting measure ν on Y. In the product space $(X\times Y, m\otimes \nu)$ we consider the set $V=\{(x,y): x=y\}.$
 - (a) Show that the iterated integrals of χ_V have different values.
 - (b) Does the result in (a) contradict Tonelli's Theorem? (Justify.)
- 5. Let $p \in (1, \infty)$ and $f \in L^p[0, 1]$. Show that

$$\lim_{y \to 0^+} y^{\frac{1-p}{p}} \int_0^y f(x) \, dx = 0.$$

- 6. Let μ be a signed measure on $[0, \infty)$ given by $\mu(\Lambda) = \sum_{n \in \Lambda \cap \mathbb{N}} \frac{(-1)^n}{n^2}$, where the sums are taken in the natural order on \mathbb{N} .
 - (a) Show that μ can be decomposed as $\mu = \nu \tau$, where ν and τ are positive measures.
 - (b) Explain why the decomposition in (a) does not work for the function $\gamma(\Lambda)=\sum_{n\in\Lambda\cap\mathbb{N}}\frac{(-1)^n}{n}$