Analysis Qualifying Exam, September 2015

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1 - Real Analysis

Lebesgue measure is denoted by m.

- **1.** Prove that if $f: X \to \mathbb{R}$ satisfies that the sets $f^{-1}(r, \infty)$ are measurable for every $r \in \mathbb{Q}$, then f is measurable.
- **2.** Let $f \in L^1(0,1)$, and let $h(x,t) = \frac{f(t)}{t} \chi_{\{x \le t\}}(x,t)$, where $(x,t) \in (0,1) \times (0,1)$. Prove that $h \in L^1((0,1) \times (0,1))$.
- **3.** Let $f_n:[1,\infty)\to\mathbb{R}$ be defined by $f_n(x)=\frac{1}{x}\chi_{\{n,\infty)\}}(x)$. Use one of the convergence theorems to study the convergence of this sequence of functions. State the theorem that you are using.
- 4. (a) State the definition of absolutely continuous measure and give an example.
 - (b) State Radon-Nikodym's theorem.
- **5.** Let (X, \mathcal{M}, μ) be a measure space. Prove that there is a σ -algebra $\overline{\mathcal{M}}$ that contains \mathcal{M} and a measure $\overline{\mu}$ on the σ -algebra so that $(X, \overline{\mathcal{M}}, \overline{\mu})$ is complete and $\overline{\mu}|_{\mathcal{M}} = \mu$.
- **6.** Prove using the definition of Lebesgue outer measure that the Lebesgue outer measure is translation invariant (i.e. $m^*(E) = m^*(E + \lambda)$ for any fixed λ in \mathbb{R} .
- 7. If $f \in L^1$ prove that $\{x : f(x) \neq 0\}$ is σ -finite.
- 8. Suppose that $f_n \to f$ in measure and $g_n \to g$ in measure. Prove that if $\mu(X) < \infty$ then $f_n g_n \to f g$ in measure. Provide an example to show that the condition that $\mu(X) < \infty$ is necessary.

Part 2 - Complex and Functional Analysis

1. Suppose that f is an entire function and for every a the power series

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

there is c_k equal to zero. Prove that f is a polynomial.

- **2.** Let $P(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ be a polynomial over the complex numbers. Use the maximum modulus theorem to prove that P(z) has a zero at some point in \mathbb{C} .
- 3. Let γ be the positively oriented unit circle and compute

$$\frac{1}{2\pi i} \int_{\gamma} \frac{e^z - e^{-z}}{z^4} \, dz.$$

4. Let $f \in L^p(0,1)$ for $1 \leq p < \infty$. For $F \in L^\infty(0,1)$, we define the multiplication operator, M_F by

$$M_F(f) = F \cdot f$$
,

where \cdot denotes the usual multiplication of functions. Show that $M_F \parallel$ is a bounded operator from $L^p(0,1)$ to $L^p(0,1)$ and compute its operator norm.

5. (a) Let B be a Banach space and $T: B \to B$ a bounded operator. State the definition of the adjoint of T.

- (b) Consider the shift operator $S: \ell^2 \to \ell^2$, defined by $S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$. Find its adjoint.
- (c) Is S a compact operator?
- **6.** (a) State the Uniform Boundedness Principle.
 - (b) Let X be a Banach space over \mathbb{R} , and let $A \subset X$. If for every $f \in X^*$ the set $f(A) = \{f(x) : x \in A\}$ is bounded, show that A is a bounded subset of \mathbb{R} .