Analysis Preliminary Examination January 2025

Submit six of the following problems. Start every problem on a new page, number your pages and write your student ID on each page. **Do not** write your name.

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

1. Consider the measure space $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}), \nu)$ where ν is the counting measure. Define for $A \subset \mathbb{Z}$,

$$\mu^*(A) = \nu(A)^{1/3}.$$

Prove that μ^* is an outer measure, and that the only measurable sets are \emptyset and \mathbb{Z} .

- 2. Let $\{F_{\alpha}\}$ be an infinite (countable or uncountable) family of closed subsets of [0, 1]. Assume that the Lebesgue measure of every finite intersection $F_{\alpha_1} \cap \cdots \cap F_{\alpha_n}$ is at least 1/2. Prove that the Lebesgue measure of the full intersection $\cap_{\alpha} F_{\alpha}$ is also at least 1/2.
- 3. Prove that a finitely additive set function is a measure iff it is continuous from below.
- 4. a) Let {f_n}_n ⊂ L⁺[0,1] be a sequence of functions such that f_n ↓ f pointwise. Prove that, if ∫ f₁dm < ∞, then ∫ fdm = lim_n ∫ f_ndm.
 b) Is the assertion valid when the assumption ∫ f₁dm < ∞ is removed? Justify your answer.
- 5. a) State Chebychev's Theorem. b) Show that if $f \in L_1(\mathbb{R})$ and $E_n = \{x \in \mathbb{R} : |f(x)| > n\}$, then

$$\lim_{n} \int_{E_n} f(x) dm = 0.$$

6. Let $f, g \in L^1(m)$, where m is Lebesgue measure on [0, 1]. Let

$$G(x) = \int_0^{\sqrt{1-x^2}} g(y) dm(y) \ F(y) = \int_0^{\sqrt{1-y^2}} f(x) dm(x).$$

Use Fubini's theorem to prove that

$$\int_{0}^{1} f(x)G(x)dm(x) = \int_{0}^{1} F(y)g(y)dm(y).$$

7. Let $f_n, g_n : [0, 1] \to [0, \infty)$ be measurable functions. Assume that f_n converges in measure to zero on the set [0, 1], and that for every $n \in \mathbb{N}$,

$$\int_{[0,1]} g_n < 1$$

Prove that $f_n g_n$ converges in measure to 0 on the set [0, 1].

8. a) Justify the identity

$$\int_0^1 \left[\sum_{n=0}^\infty (-x)^n\right] dm = \sum_{n=0}^\infty \int_0^1 (-x)^n \ dm$$

b) Prove that $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \ln 2$.

9. a) Give the definition of a function of bounded variation.b) Provide an example of a continuous function on [0,1] which is not a function of bounded variation.