## Analysis Preliminary Exam Measure Theory and Integration

Submit six of the following problems. Start every problem on a new page, label your pages, and write your student ID on each page.

1. Let $\mu_{F}$ be the Lebesgue-Stieltjes measure associated to the function

$$
F(x)= \begin{cases}0, & x \leq 0 \\ 1, & x>0\end{cases}
$$

(a) Describe the largest $\sigma$-algebra on the real line on which the measure $\mu_{F}$ is defined.
(b) Is $\mu_{F}$ absolutely continuous with respect to the Lebesgue measure $m$ ? Justify your answer.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function on all points in $\mathbb{R}^{n} \backslash A$, where $A$ is a set with zero Lebesgue measure. Prove that $f$ is a measurable function.
3. Compute the following integral, and justify your answer using appropriate convergence theorems.

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\cos n x}{1+n \sqrt{x}} d x
$$

4. Study whether the function $f(x, y)=\frac{1}{x^{2}+y^{2}}$ is Lebesgue integrable in $\mathbb{R}^{2}$. Justify your answer.
5. Give an example of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of non-negative functions on the interval $[0,1]$ that satisfies the following properties:
(i) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0$.
(ii) $f_{n}$ is continuous for all $n \geq 1$.
(iii) The sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ does not converge for any $x \in[0,1]$.
6. Answer the following questions, justifying your answers (give a counterexample or a proof, as needed):
(a) If a sequence of functions converges in norm (in the integral) does this imply that the sequence converges pointwise?
(b) If a sequence of functions converges in norm (in the integral) does this imply that a subsequence of the given sequence converges pointwise?
7. Let $(X, \mu)$ be a (not necessarily finite) measure space. Assume that $f, f_{n}: X \rightarrow$ $[0, \infty)$ are non-negative functions such that $f_{n}$ converges to $f$ almost everywhere, $\int_{X} f d \mu<+\infty, \int_{X} f^{4} d \mu<+\infty, \int_{X} f_{n} d \mu \rightarrow \int_{X} f d \mu$, and $\int_{X} f_{n}^{4} d \mu \rightarrow \int_{X} f^{4} d \mu$.
Prove that $\int_{X} f_{n}^{2} d \mu \rightarrow \int_{X} f^{2} d \mu$.
Hint: Consider the subsets of $X$ where $f$ is greater than 1 or less than 1 .
8. Let $\left\{f_{n}\right\}$ be a sequence of absolutely continuous functions on $[0,1]$, such that $\left\{f_{n}\right\}$ converges to a $f$ in $L^{1}$ and $\left\{f_{n}^{\prime}\right\}$ is a Cauchy sequence in ${\underset{\sim}{\sim}}^{1}$. Prove that there exists an absolutely continuous function $\tilde{f}$ on $[0,1]$ such that $\tilde{f}=f$ almost everywhere.
