ANALYSIS EXAM

QUESTIONS.

1. a) Show that every closed set on the real line can be represented as an intersection of a countable collection of open sets (in other words, show that every closed set is a G_{δ}-set).
b) Give an example of a $G_{\boldsymbol{\delta}}$-set which is neither open, nor closed.
2. a) Give a definition of a measurable function on the real line.
b) Let f be a real-valued function on the real line. Which of the following statements are true? Justify your answers.
(i) If f is measurable, then f^{2} is measurable.
(ii) If f^{2} is measurable, then f is measurable.
3. a) Let E denote the set of all irrational numbers on the interval $[0,1]$. What is the Lebesgue measure of E ? Justify your answer.
b) Let E be the same as in part a) of this problem. Does there exist a closed set F of positive Lebesgue measure such that $F \subseteq E$? In other words, is there a closed set F on $[0,1]$ of positive Lebesgue measure, which consists only of irrational numbers?
4. a) State Dominated Convergence Theorem.
b) Let $\left\{f_{n}\right\}$ be a sequence of real-valued integrable functions on $[0,1]$ such that $0 \leq f_{n+1} \leq f_{n}$ a.e. for all $n \geq 1$. Show that $f_{n} \downarrow 0$ a.e. holds if and only if $\int_{[0,1]} f_{n} d m \downarrow 0$ (here m denotes the Lebesgue measure).
5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function Riemann integrable on every closed subinterval of $[0, \infty)$. Let $\int_{[0, \infty)} f(x) d x$ denote the Lebesgue integral of f on $[0, \infty)$ and $\int_{0}^{\infty} f(x) d x$ denote the improper Riemann integral of f. Prove or disprove:
a) If $\int_{0}^{\infty} f(x) d x$ exists, then so does $\int_{[0, \infty)}|f(x)| d x$.
b) If $\int_{0}^{\infty}|f(x)| d x$ exists, then $f \in L_{1}[0, \infty)$.
6. a) Prove that $L_{p}[0,1] \subset L_{1}[0,1]$ for $1 \leq p \leq \infty$.
b) Is the inclusion $L_{2}[0,1] \subset L_{1}[0,1]$ proper? Justify your answer.
7. a) Give the definition of a function of bounded variation on the interval $[0,1]$.
b) Show that if f and g are functions of bounded variation on $[0,1]$, then so is $f g$.
8. a) Give the definition of an absolutely continuous function on the interval $[0,1]$.
b) Let $f(x)=\sqrt{x}$. Is f an absolutely continuous function on the interval $[0,1]$?

Justify your answer.
9. a) State Stone-Weierstrass Theorem.
b) If $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $\int_{0}^{1} x^{n} f(x) d x=0$ for $n=0,1,2, \ldots$, then show that $f(x)=0$ for all $x \in[0,1]$.
10. a) Give a definition of a bounded linear functional on a Banach space X.
b) Describe the general form of a bounded linear functional on the space $L_{p}[0,1], 1 \leq p<\infty$.

