Analysis Preliminary Examination January 2017

Submit six of the problems from part 1, and three of the problems from part 2. Start every problem on a new page, label your pages and write your student ID on each page.

Part 1: Real Analysis

Lebesgue measure is denoted m and unless stated otherwise (X, \mathcal{M}, μ) is a generic measure space.

1. Let μ_1^* and μ_2^* be two outer measures defined on $\mathcal{P}(\mathcal{X})$, such that $\mu_1^*(X) < \infty$ and $\mu_2^*(X) < \infty$. Let \mathcal{M}_{∞} and \mathcal{M}_{\in} be the σ -algebra of the measurable sets for μ_1^* and μ_2^* , respectively. We define

$$\mu^*(A) = \mu_1^*(A) + \mu_2^*(A), \quad \forall A \subseteq X.$$

- (a) Show that μ^* is an outer measure.
- (b) Describe the σ -algebra of measurable sets for μ^* .
- 2. Given a set $E \subseteq \mathbb{R}$, we define a measure μ by

$$\mu(E) = \sum_{n=1}^{\infty} \chi_E(1/n).$$

- (a) Show that μ is a measure defined on $\mathcal{P}(\mathbb{R})$, that is σ -finite but not finite.
- (b) Explain why μ does not coincide with any Lebesgue-Stieltjes measure dF.
- (c) Compute the integral $\int_{B} f d\mu$ for $f(x) = e^{-1/x} \chi(0, \infty)$.
- 3. Let $f_n, f: X \to \mathbb{R}$ be measurable functions.
 - (a) Give the definition of convergence of f_n to f in the L^1 -norm, and in measure.
 - (b) Prove that if f_n converges to f in the L^1 -norm, then f_n converges to f in measure.
 - (c) Give an example of a sequence $\{f_n\}$ and a function f such that f_n converges to f in measure, but not in the L^1 -norm.
- 4. Let $f_n(x) = \frac{n}{1+n^2x^2}$, for $n \in \mathbb{N}$. Show that f_n is pointwise convergent for every x > 0, but that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx \neq \int_0^\infty \lim_{n \to \infty} f_n(x) dx.$$

Which hypothesis of the Dominated Convergence Theorem is not satisfied in this case?

5. Let I_k denote the interval $\left(\frac{1}{k+1}, \frac{1}{k}\right]$, and let $g_k(x) = k(k+1)\chi_{I_k}(x)$. We define $f: (0,1] \times (0,1] \to \mathbb{R}$ by

$$f(x,y) = \sum_{k=1}^{\infty} (g_k(x) - g_{k+1}(x)) g_k(y)$$

Show that the two iterated integrals $\int_0^1 \int_0^1 f(x, y) dx dy$ and $\int_0^1 \int_0^1 f(x, y) dy dx$ exist and have different values. Explain why this does not contradict Fubini's theorem.

- 6. Let ν be a signed measure on (X, \mathcal{M}) .
 - (a) Give the definition of positive, negative and null sets for ν .
 - (b) Prove that a countable union of positive sets for ν is a positive set for ν .
- 7. Let dF be the Lebesgue-Stieltjes measure associated to the function

$$F(x) = \begin{cases} 0 & x < 0, \\ x^3, & 0 \le x < 1, \\ 1, & 1 \le x. \end{cases}$$

Show that dF is absolutely continuous with respect to Lebesgue measure, and find the Radon-Nikodym derivative dF/dm.

8. Let δ_0 be the delta measure at zero (*i.e.* $\delta_0(A) = 1$ if $0 \in A$, and $\delta_0(A) = 0$ otherwise). Let $g_h(x) = \frac{1}{2h}\chi_{[-h,h]}(x)$, and we define a measure ν_h by

$$\nu_h(A) = \int_A g_h(x) dx$$

Show that for every f continuous we have

$$\lim_{h \to 0} \int_{\mathbb{R}} f d\nu_h = \int_{\mathbb{R}} f d\delta_0.$$

Part 2: Complex and Functional Analysis

- 9. Let c be the collection of all convergent sequences of real numbers endowed with the norm $||(a_n)||_{\infty} = \sup_n |a_n|$.
 - a) State the definition of a separable normed space.
 - b) Show that $(c, || ||_{\infty})$ is separable.
- 10. Consider C[0,1] with norms $\| \|_{\infty}$ and $\| \|_1$. Define a linear functional $p: C[0,1] \to \mathbb{R}$ by p(f) = f(0).
 - a) Show that p is continuous on $(C[0,1], || ||_{\infty})$.
 - b) Show that p is not continuous on $(C[0, 1], || ||_1)$.
- 11. Let M and N be closed subspaces of a Hilbert space H. Prove that $M \oplus N$ is closed provided that $x \perp y$ for all $x \in M, y \in N$.
- 12. Let \mathcal{H} denote the set of Hermitian operators on a Hilbert space H. Prove that
 - a) \mathcal{H} is a real vector subspace of B(H).

- b) If $T \in B(H)$, then the operators $T + T^*, T^*T, TT^*$ are all in \mathcal{H} .
- 13. Let u and v be real valued harmonic functions on a domain Ω . If u and v agree on a set with a limit point in Ω , does it follow that u = v on all of Ω ? Explain.
- 14. Let f be an entire function mapping \mathbb{C} into the unit disk. Show that f is constant.
- 15. Give the power series expansion of $\log(z)$ about z=i and determine its radius of convergence.
- 16. Show that

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$$

(Hint: Deform the contour and use $\sin x = \frac{1}{2i}(e^{ix} - e^{-ix})$.)