Analysis Preliminary Examination Spring 2012

Unless a problem states otherwise m will denote Lebesgue measure, m^* will denote Lebesgue outer measure, and \mathcal{L} will denote the Lebesgue measurable sets. Please justify your answers.

Part I: Measure Theory: Complete five of the following six questions.

I.1 Let μ^* be an outer measure on the set X.

- a) State what it means for a set $A \subseteq X$ to be μ^* -measurable.
- b) If we let \mathcal{M} denote the set of μ^* -measurable sets, show that \mathcal{M} is closed with respect to complements and finite unions.
- c) Show that if $\mu^*(A) = 0$ then $A \in \mathcal{M}$.
- I.2 Let $\{f_n\}$ be a sequence of positive valued measurable functions on \mathbb{R} .
 - a) State the Monotone Convergence Theorem.
 - b) If we define $f = \sum f_n$ use the Monotone Convergence Theorem to show that $\int f \, dm = \sum \int f_n \, dm$.
- I.3 Let $F : \mathbb{R} \to \mathbb{R}$ be bounded and increasing.
 - a) Prove that F is of bounded variation.
 - b) Determine $T_F(x)$ where T_F is the total variation function of F.
- I.4. a) Give the definition of a measurable function $f: E \to \mathbb{R}$, where E is a measurable subset of \mathbb{R} .
 - b) Show that if f an extended real-valued measurable function and g is a continuous function on $(-\infty, \infty)$ then $g \circ f$ is measurable.
 - c) If g is also a measurable function on $(-\infty, \infty)$, would it follow that $g \circ f$ is a measurable function? Yes or No.
- I.5. a) Show that a measurable function f is integrable function over a measurable set E if and only if |f| is integrable over E.
 - b) Is it possible to have a non-integrable function f with |f| is integrable? If so, provide an example.
- I.6. Let $f : X \to \mathbb{R}$ be a μ -integrable function and $g : Y \to \mathbb{R}$ be a ν -integrable function. If h(x,y) = f(x)g(y) for every $x \in X$ and $y \in Y$, show that

$$\int_{X \times Y} h \ d\mu \times d\nu = (\int_X f d\mu) (\int_Y g d\nu).$$

Part II: Complex and Functional Analysis: Complete **three** of the following six questions. Be sure to clearly mark which problems you want graded for this section.

- II.1 Consider the measure space $([0, 1], \mathcal{L}, m)$.
 - a) State Hölder's inequality.
 - b) Use Hölder's inequality to prove Minkowski's inequality for 1 .
- II.2 Let $T \in B(\mathcal{H})$, where \mathcal{H} is a Hilbert space. Prove that $||T||^2 = ||T^*T|| = ||T^*||^2$.
- II.3 Let X be a Banach space, and $T: X \to Y$ be bijective.
 - a) State the Open Mapping Theorem.
 - b) Use the Open Mapping Theorem to prove that if T is continuous then so is T^{-1} .
- II.4 Let f = u + iv be a holomorphic function on a domain Ω . Prove that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ on Ω .
- II.5 Let f be holomorphic on a bounded domain Ω and continuous on $\overline{\Omega}$.
 - a) State the maximum modulus theorem for f.
 - b) Show that if $|f(z)| \ge \max\{|f(w)| : w \in \partial\Omega\}$ for some $z \in \Omega$ then f is a constant.
- II.6 Let f be a function defined on the open unit disc such that $f(\frac{1}{n}e^{2\pi \frac{i}{n}}) = 0$ for each n and $f(-\frac{i}{2}) = 1$ explain why f is not holomorphic.