Problems for Preliminary Exam Applied Mathematics, ODE January 2023

1. For which pairs of positive numbers k, ω equation

$$y'' + k^2 y = \sin \omega t$$

has at least one periodic solution?

2. Find all numbers a for which the Boundary Value Problem

$$y'' + ay = 1,$$
 $y(0) = 0, y(1) = 0$

has no solutions.

3. Assume y is a solution on [a, b] of equation

$$y'' + q(t)y = 0$$

with $q(t) \leq 0$ for all t. Assume y(a) = 0. Prove that function y' does not change sign on [a, b].

4. Consider a linear system

$$\dot{x}_1 = a_{11}(t)x_1 + a_{12}(t)x_2 \dot{x}_2 = a_{21}(t)x_1 + a_{22}(t)x_2,$$

where functions $a_1, a_{12}, a_{21}, a_{22}$ are continuous. Assume $a_{11}(t) + a_{22}(t) \rightarrow b > 0$ as $t \rightarrow \infty$. Prove that system is unstable.

5. Find all values of numbers a, b for which equation

$$y'''' + 2y''' + 4y'' + ay' + b = 0$$

is asymptotically stable.

6. Find the smallest positive number T such that equation

$$\ddot{y} - 2\dot{y} = 8\sin^2 t$$

has a solution satisfying boundary conditions $\dot{y}(0) = -1$, $\dot{y}(T) = -1$.

7. Does there exist an unbounded on $[0,\infty)$ solution of equation

$$\ddot{y} = 4y - 4y^3?$$