Problems for Preliminary Exam
 Applied Mathematics, ODE
 January 2023

1. For which pairs of positive numbers k, ω equation

$$
y^{\prime \prime}+k^{2} y=\sin \omega t
$$

has at least one periodic solution?
2. Find all numbers a for which the Boundary Value Problem

$$
y^{\prime \prime}+a y=1, \quad y(0)=0, \quad y(1)=0
$$

has no solutions.
3. Assume y is a solution on $[a, b]$ of equation

$$
y^{\prime \prime}+q(t) y=0
$$

with $q(t) \leq 0$ for all t. Assume $y(a)=0$. Prove that function y^{\prime} does not change sign on $[a, b]$.
4. Consider a linear system

$$
\begin{aligned}
& \dot{x}_{1}=a_{11}(t) x_{1}+a_{12}(t) x_{2} \\
& \dot{x}_{2}=a_{21}(t) x_{1}+a_{22}(t) x_{2},
\end{aligned}
$$

where functions $a_{1}, a_{12}, a_{21}, a_{22}$ are continuous. Assume $a_{11}(t)+a_{22}(t) \rightarrow b>0$ as $t \rightarrow \infty$. Prove that system is unstable.
5. Find all values of numbers a, b for which equation

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+4 y^{\prime \prime}+a y^{\prime}+b=0
$$

is asymptotically stable.
6. Find the smallest positive number T such that equation

$$
\ddot{y}-2 \dot{y}=8 \sin ^{2} t
$$

has a solution satisfying boundary conditions $\dot{y}(0)=-1, \dot{y}(T)=-1$.
7. Does there exist an unbounded on $[0, \infty)$ solution of equation

$$
\ddot{y}=4 y-4 y^{3} ?
$$

