Problems for Preliminary Exam Applied Mathematics January 2023

Partial Differential Equations

1. Solve

$$xu_x + yu_y + zu_z = 1,$$

with the condition

 $u = 0 \quad \text{on} \quad x + y + z = 1.$

For which x, y, z the solution is defined?

2. Does there exist positive harmonic u in the unit ball in \mathbb{R}^3 such that

$$u(0,0,0) = 1, \quad u(0,0,1/2) = 10?$$

3. Formulate and prove the weak maximum principle for the heat equation

$$u_t = u_{xx}, \quad x \in (A, B), \quad t \in (0, T).$$

4. Solve the Laplace equation in the square $\Omega = \{x, y \mid 0 < x, y < 1\}$ with the boundary conditions

$$\begin{split} u(x,0) &= \sin \pi x, \quad 0 < x < 1, \\ u(x,1) &= 0, \quad 0 < x < 1, \\ u(0,y) &= \sin \pi y, \quad 0 < y < 1, \\ u(1,y) &= 0, \quad 0 < y < 1. \end{split}$$

5. Solve

$$u_{tt} = u_{xx} + u_{yy},$$

with the initial conditions

$$u(0, x, y) = x^2 + y^2, \quad u_t(0, x, y) = 0.$$

(Please justify each step.)

6. Let $M(t) = \int_{\Omega} u(x,t) \, dx$, where u satisfies the heat equation

$$u_t - \Delta u = 0$$
 in $\Omega \times (0, \infty)$

with the Neumann boundary conditions

$$\partial_{\mathbf{\hat{n}}} u = 0 \quad \text{on } \partial\Omega \times (0, \infty).$$

Show that M is constant in time.

7. Let u solve $u_{x_1x_1} = u_{x_2x_2}$ in \mathbb{R}^2 and u(x) = 0 for all $x \in B_1(0)$ (ball with center at the origin and radius 1). Find the largest set in \mathbb{R}^2 on which u is necessarily zero.