Problems for Preliminary Exam
 Applied Mathematics
 January 2023

Partial Differential Equations

1. Solve

$$
x u_{x}+y u_{y}+z u_{z}=1,
$$

with the condition

$$
u=0 \quad \text { on } \quad x+y+z=1
$$

For which x, y, z the solution is defined?
2. Does there exist positive harmonic u in the unit ball in \mathbb{R}^{3} such that

$$
u(0,0,0)=1, \quad u(0,0,1 / 2)=10 ?
$$

3. Formulate and prove the weak maximum principle for the heat equation

$$
u_{t}=u_{x x}, \quad x \in(A, B), \quad t \in(0, T) .
$$

4. Solve the Laplace equation in the square $\Omega=\{x, y \mid 0<x, y<1\}$ with the boundary conditions

$$
\begin{aligned}
& u(x, 0)=\sin \pi x, \quad 0<x<1, \\
& u(x, 1)=0, \quad 0<x<1, \\
& u(0, y)=\sin \pi y, \quad 0<y<1, \\
& u(1, y)=0, \quad 0<y<1 .
\end{aligned}
$$

5. Solve

$$
u_{t t}=u_{x x}+u_{y y},
$$

with the initial conditions

$$
u(0, x, y)=x^{2}+y^{2}, \quad u_{t}(0, x, y)=0 .
$$

(Please justify each step.)
6. Let $M(t)=\int_{\Omega} u(x, t) d x$, where u satisfies the heat equation

$$
u_{t}-\Delta u=0 \quad \text { in } \Omega \times(0, \infty)
$$

with the Neumann boundary conditions

$$
\partial_{\hat{\mathbf{n}}} u=0 \quad \text { on } \partial \Omega \times(0, \infty)
$$

Show that M is constant in time.
7. Let u solve $u_{x_{1} x_{1}}=u_{x_{2} x_{2}}$ in \mathbb{R}^{2} and $u(x)=0$ for all $x \in B_{1}(0)$ (ball with center at the origin and radius 1). Find the largest set in \mathbb{R}^{2} on which u is necessarily zero.

