Problems for Preliminary Exam
 Applied Mathematics
 August 2022

Ordinary Differential Equations

1. Show that every integral curve of

$$
\dot{x}=\sqrt[3]{\frac{x^{2}+1}{t^{4}+1}}, \quad x(t) \in \mathbb{R}
$$

has two horizontal asymptotes.
2. Is there a bounded solution to (here $x(t) \in \mathbb{R}$)

$$
\dot{x}-x=\cos t-\sin t ?
$$

3. Let

$$
\dot{x}=f(x), \quad x(t) \in \mathbb{R}^{n}, \quad f \in C^{1}, \quad f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}, \quad f(\hat{x})=0, \quad \hat{x} \in \mathbb{R}^{n} .
$$

Give a definition for \hat{x} to be Lyapunov stable, asymptotically stable, or unstable. Formulate the definition for a differentiable $V: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ to be a Lyapunov function for \hat{x}, a strict Lyapunov function for \hat{x}.

Formulate and prove Lyapunov's theorem on (Lyapunov, asymptotic) stability of \hat{x} by direct Lyapunov method (i.e., by assuming existence of a (strict) Lyapunov function).
4. Sketch the phase portrait of

$$
\ddot{x}=1+2 \sin x, \quad x(t) \in \mathbb{R} .
$$

5. For which α the trivial equilibrium of

$$
\begin{aligned}
& \dot{x}_{1}=\alpha x_{1}-x_{2}, \\
& \dot{x}_{2}=\alpha x_{2}-x_{3}, \\
& \dot{x}_{3}=\alpha x_{3}-x_{1},
\end{aligned}
$$

is Lyapunov stable, asymptotically stable, unstable?
6. Find Green's function for

$$
y^{\prime \prime}+y=f(x), \quad y(0)=y(\pi), \quad y^{\prime}(0)=y^{\prime}(\pi) .
$$

7. Show that the problem

$$
\dot{x}=2 \sqrt[3]{t x}, \quad x(0)=0
$$

has more than one solution passing through the origin. For the full credit describe all the solution to this problem.

Which condition(s) of the existence and uniqueness theorem fail?

