Problems for Preliminary Exam
 Applied Mathematics
 August 2022

Partial Differential Equations

1. Consider the following problem:

$$
\begin{aligned}
u_{t t} & =u_{x x}, \quad x>0, \quad t>0 \\
u(0, x) & =f(x-2), \quad x>0 \\
u_{t}(0, x) & =0, \quad x>0 \\
u(t, 0) & =0, \quad t>0
\end{aligned}
$$

where

$$
f(x)= \begin{cases}0, & x<-1 \\ x+1, & -1 \leq x \leq 0 \\ 1-x, & 0<x \leq 1 \\ 0, & x>1\end{cases}
$$

Sketch the solution to this problem at different (representative) time moments and justify your sketches (you are not asked to actually compute the analytical formulas for the solution).
2. Let

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1, y>0\right\}
$$

Solve

$$
\begin{aligned}
\Delta u & =0 \quad \text { in } \Omega \\
u(r, 0) & =u(r, \pi)=0 \\
u(1, \theta) & =\theta(\theta-\pi)
\end{aligned}
$$

where r, θ are polar coordinates on the plane.
What is

$$
\max _{\bar{\Omega}} u ?
$$

Here, as usual, $\bar{\Omega}=\Omega \cup \partial \Omega$.
3. Find all u harmonic in \mathbb{R}^{2} for which

$$
u_{x}(x, y)<u_{y}(x, y)
$$

for all $(x, y) \in \mathbb{R}^{2}$.
4. Give a definition of a well-posed problem. Show that the following problem is not well posed.

Let u be the solution to the problem

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad 0<x<\pi, \quad 0<t<T \\
u(x, T) & =g(x) \\
u(0, x) & =u(\pi, x)=0
\end{aligned}
$$

1. Make the variable change $t=T-s$.
2. Solve (formally) the obtained initial-boundary value problem by separation of variables. Specify which hypotheses on g guarantee that the expression you found is indeed a solution.
3. Show the solution does not depend continuously on the initial data, by taking the sequence of the problems with $g_{n}(x)=\frac{1}{n} \sin n x$. (Hint: We have here that $g_{n} \rightarrow 0$ uniformly, you need to show that the corresponding solutions at time T do not converge uniformly to 0 .)
4. Write down the integral representation of the solution to the heat equation $u_{t}=u_{x x}, x \in$ $\mathbb{R}, t>0$ with the initial condition $u(0, x)=x^{2}$. Find this solution explicitly.
Hint: You may do it directly, by computing the required integral, which is, however, time consuming and prone to arithmetic mistakes. Instead you may first show that $v=u_{x x x}$ solves the heat equation with the zero initial condition and therefore (why?) $u(t, x)=A(t) x^{2}+B(t) x+C(t)$, where A, B, C can be found by direct substitution.
5. Solve

$$
u_{t}+u u_{x}=0, \quad x \in \mathbb{R}, \quad t>0
$$

with the initial condition

$$
u(0, x)=-x .
$$

Sketch the (projected) characteristics.
For which values of t the classical solution to this problem exists?
7. Consider the wave equation in \mathbb{R}^{3} :

$$
u_{t t}=c^{2} \Delta u, \quad x \in \mathbb{R}^{3}, \quad t \in(0, \infty),
$$

with the initial conditions $u(x, 0)=g(x), u_{t}(x, 0)=h(x)$. Suppose that g, h have support contained in $B_{\rho}(0)$ (i.e., in the ball of radius ρ with the center at the origin). Describe the support of the solution at each time moment $t>0$.

