Problems for Preliminary Exam
 Applied Mathematics
 January 2022

Ordinary Differential Equations

1. Consider the following IVP

$$
\dot{x}=\max \{1, x\}, \quad x(t) \in \mathbb{R}, \quad x(0)=0 .
$$

Show that the solution to this problem exists and unique. After it find this solution.
2. Let

$$
\dot{x}=a(t) x, \quad x(t) \in \mathbb{R},
$$

where a is a continuous periodic function with minimal period $T>0$. Define

$$
\lambda=e^{\int_{0}^{T} a(s) d s} .
$$

Formulate the definitions for the trivial solution to be Lyapunov stable, asymptotically stable, and unstable.

After this prove that if $\lambda=1$ then the trivial solution is Lyapunov stable, if $\lambda<1$ then it is asymptotically stable, if $\lambda>1$ then it is unstable.
3. Show that $(0,0)$ is an asymptotically stable equilibrium of the system

$$
\begin{aligned}
& \dot{x}=y, \\
& \dot{y}=-x-\left(1-x^{2}\right) y,
\end{aligned}
$$

and that the basin of attraction of $(0,0)$ contains the unit disk.
4. List a basis of the space of solutions to

$$
x^{(\mathrm{iv})}-2 x^{\prime \prime}+x=0 .
$$

5. For which real parameters a, b the trivial solution to

$$
\begin{aligned}
& \dot{x}=x+a y+y^{2}, \\
& \dot{y}=b x-3 y-x^{2},
\end{aligned}
$$

is asymptotically stable? (Do not analyze the non-hyperbolic case.)
6. For which real a the BVP

$$
y^{\prime \prime}+a y=f(x), \quad y(0)=y(1)=0
$$

admits existence of Green's function?
7. Consider the IVP

$$
\dot{x}=t^{3}-x^{3}, \quad x(t) \in \mathbb{R}, \quad x\left(t_{0}\right)=x_{0}
$$

Prove that for any $\left(t_{0}, x_{0}\right) \in \mathbb{R}^{2}$ the solution to this problem can be always extended to $\left[t_{0},+\infty\right)$ and there exist solutions that cannot be extended to $\left(-\infty, t_{0}\right]$.
8. Let

$$
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & -4
\end{array}\right]
$$

Is it possible to find a two by two real matrix B such that

$$
A=e^{B} ?
$$

