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ABSTRACT

Li, Qun, M.S., Physics, College of Science and Mathematics, North Dakota State
University, December 2006. Theory of the Lattice Boltzmann Method for Multi-Phase
and Multicomponent Fluids. Major Professor: Dr. Alexander Wagner.

Although the lattice Boltzmann method has been employed to simulate the dynamics

of some multicomponent systems, a general lattice Boltzmann algorithm that simulates

the dynamics of an arbitrary multicomponent system with explicit thermodynamic

consistency is still needed.

In this thesis, I developed a lattice Boltzmann algorithm from a free energy approach

that simulated the dynamics of a system with an arbitrary number of components. The

thermodynamic properties, such as the chemical potential of each component and the

pressure of the overall system, were incorporated in the model. I derived a symmetrical

convection diffusion equation which was of the same form for each component. The

Navier Stokes equation and continuity equation for the overall system as well as a

convection diffusion equation for each component were recovered. The algorithm was

verified through simulations of binary and ternary systems in one-dimension. The

equilibrium concentrations of components of binary and ternary systems simulated

with my algorithm agreed well with the concentrations obtained by minimizing the free

energy.

I also studied Galilean invariance violations in lattice Boltzmann methods. The

sources of the Galilean invariance violation were analyzed from a unified perspective
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for both pressure and forcing methods. In this thesis, a measure of Galilean invariance

and corrections reducing Galilean invariance violations are presented. I validated my

analysis and compared the results of different corrections with simulations in one- and

two-phase systems.
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CHAPTER 1

INTRODUCTION

The lattice Boltzmann (LB) method is a mesoscopic lattice simulation method which

has been applied fruitfully to many research areas such as turbulence [15, 63], mesoscale

blood flow [16], interfacial waves [8], magneto-hydrodynamics [12], and multicomponent

systems [51, 65].

Historically, LB was derived from the lattice-gas automata (LGA) [17, 18, 60] in

the 1990s , although the two methods are independent [25, 26, 41, 42]. The LGA

traces particle movements on a lattice, and can recover the Navier-Stokes equations

[18], thus simulating hydrodynamics. LGA is unconditionally stable and are very good

to simulate micro-flow with large intrinsic fluctuations. However, LGA exhibits strong

Galilean invariance (GI) violations, and they are limited to small Reynolds numbers

[35]. To overcome these deficiencies, LB was developed [13, 43].

Instead of tracing the movement of particles, LB traces the evolution of a density

distribution function, which depends on position and velocity. The velocity is

discretized such that, in one time step, the densities move to the neighboring lattice sites

to which their associated velocities point. This movement is called streaming. Between

streaming steps, collisions occur at lattice sites and change the density distribution

function. Qian et al. introduced Bhatnagar, Gross and Krook (BGK)’s [5] single

relaxation time approximation to simplify the description of the collision [41]. The
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system evolves by means of one streaming and one collision per time step. The

macroscopic physical quantities mass and momentum are given by the velocity moments

of the density distribution function. Because the standard BGK model describes the

collision of ideal gases, the standard LB algorithm can only simulate ideal gas dynamics.

To simulate non-ideal fluids, the attractive or repulsive interaction among molecules,

which is referred to as the non-ideal interaction, should be included in the LB model.

There are two approaches to incorporate non-ideal interactions. One is to mimic

microscopic interaction forces directly, which is often referred to as Shan-Chen’s

approach [20, 44, 45, 46]; the other is to derive the non-ideal interaction from the

total free energy of the system and then incorporate it a posteriori [2, 38, 48, 51], which

is often referred to as the free energy approach. By using the free energy approach,

the chemical potential of each component is utilized explicitly in the simulation, but in

Shan-Chen’s approach, it is not. Therefore, a free energy approach for multicomponent

simulations is better suited to study the thermodynamics of a multicomponent system.

In this thesis, I study the free energy approach only.

Free energy approaches introduce the non-ideal interaction into LB either through

a pressure term [38, 48, 49] or a forcing term [44, 53, 55, 57]. Both approaches are

equivalent as far as the recovery of the hydrodynamic equations is concerned. They

give very similar simulation results but show a slight difference in the stability of the

algorithms. The forcing approach, however, leads to non-negligible higher order terms

for systems with large density gradients [55]. The analysis of the effect of these higher

order terms is beyond the scope of this thesis.

The LB algorithm has been extended to simulate the thermodynamics and
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hydrodynamics of a multicomponent system. The challenge for the LB simulation of a

multicomponent system lies in the fact that momentum conservation is only valid for

the overall system but not for each component separately, and therefore diffusion occurs

between the components. In addition, for a valid simulation scheme, any representation

of the three components should give the same simulation results. That is, the scheme

should be symmetric. For a binary system of components A and B with densities ρA

and ρB, the simulation usually traces the evolution of the total density ρA+ρB and the

density difference ρA − ρB [51]. Although this scheme is successful in the simulation

of a binary system [38, 56], its generalization for the LB simulations of systems with

an arbitrary number of components is asymmetric. For instance, to simulate a ternary

system of components A, B, and C with densities ρA, ρB and ρC , the total density of

the system, ρA + ρB + ρC , should be traced, and the other two densities to be traced

may be chosen as, e.g., ρB and ρA − ρC [29]. This approach is likely to be asymmetric

because the three components are treated differently as is the case of Lamura’s model

[29]. If an LB method is not symmetric, it will lose generality although it may still be

adequate for certain applications. In this thesis, I established a manifestly symmetric

scheme which is generally valid for a simulation of a system of an arbitrary number of

components.

Several papers considering LB simulations of multicomponent systems exist in the

literature. Hudong Chen et al. successfully simulated the amphiphilic fluid with the

Shan-Chen’s approach, by treating the surfactant molecules as dipoles [11]. X. Shan

et al. [45] established a multicomponent LB model that gave the convection diffusion

equation for each component. While Shan-Chen’s approach is manifestly symmetric,
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it has the disadvantage that thermodynamic properties of the system are not easily

accessible. Lamura et al. [29] successfully simulated the amphiphilic ternary system

with a free energy approach, but they chose the density parameters in an asymmetric

way. Some researchers have discussed LB simulations of the diffusion process, which is

an intrinsic character of the dynamics of the multicomponent system, but they did not

give any ready recipe for the LB simulation of an arbitrary multicomponent system.

For example, B.Deng et al. [14] presented an LB method to simulate the convection

diffusion equation with a source term for a one-component system, but they have

not discussed the simulation of the convection diffusion process for a multicomponent

system. A. Akthakul et al. [1] developed a multicomponent free energy LB model

by using Enskog Chapman expansion and applied it to the study of the convection

diffusion process of a polymer ternary system. The convection diffusion equation they

derived cannot guarantee that the chemical potential of each component would be

strictly constant at equilibrium.

My LB model to simulate the dynamics of an arbitrary multicomponent system is

a variant of the free energy approach, and the chemical potential of each component is

incorporated explicitly. Therefore, the thermodynamic quantities in equilibrium (that

is, the overall pressure of the system and the chemical potential of each component)

should be constant macroscopically. In this thesis, a symmetric form of the convection

and diffusion equation for each component has been derived which guarantees that the

pressure and chemical potential will be constant in equilibrium. To test the validity

of the model, I simulated phase separation in binary and ternary systems and checked

that the systems reached a constant overall pressure and a constant chemical potential
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for each component in equilibrium. The theoretical value of the volume fraction of each

component in equilibrium can be obtained by numerically determining the lowest free

energy of the system (Appendix G). The simulation results showed that the volume

fraction of each component in equilibrium in LB agreed well with the value predicted

by minimizing the free energy. Therefore, my model has been validated, at least in

equilibrium. However, in my LB model each component has the same viscosity and

mobility. Therefore, an extension of the model to concentration dependent viscosity

and mobility is still needed.

I also studied the Galilean invariance (GI) of the LB algorithm. Although every

valid physical model should be Galilean invariant, the LB models, either for ideal gases

or for non-ideal fluids, are not perfectly Galilean invariant. In some applications, the

GI violation errors of LB are negligible, yet in others they cause problems. The source

of GI violation in LB for ideal gas models has been analyzed by Y. Qian et al. [40].

The sources of GI violation in LB for free energy based non-ideal fluid LB models have

been analyzed, and corrections have been suggested by several groups [21, 22, 31, 57].

In this thesis, the sources of GI violation for an ideal gas and a non-ideal fluid are

analyzed from a unified perspective. A formula was presented that can check whether

or not an LB model is Galilean invariant and can identify, to the lowest order, the terms

that cause the GI violation. LB simulations of sound waves and phase separation are

performed in one dimension to validate my analysis and to compare different correction

methods. The content of the second part of this thesis has been published [57].
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CHAPTER 2

FUNDAMENTAL HYDRODYNAMIC EQUATIONS AND

THERMODYNAMICS OF PHASE SEPARATION

2.1. Hydrodynamic Equations

Three fundamental equations govern the hydrodynamic processes in a fluid [30, 28].

The continuity equation describes the conservation of mass:

∂tρ+ ∇ · J = 0, (2.1)

where t is time, J is the mass flux which is defined as J ≡ ρu, ρ is the mass density

of the fluid, and u is the macroscopic velocity of the fluid. The Navier-Stokes equation

describes the conservation of momentum:

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ + ∂βσαβ + ρFα, (2.2)

where σαβ is the stress tensor, Fα is the component α of an external force on a unit

mass in a unit volume, and the Einstein summation convention is used. For Newtonian

fluids, the stress tensor is given by [39]

σαβ = η

(

∂βuα + ∂αuβ −
d

2
δαβ∇ · u

)

+ µBδαβ∇ · u, (2.3)
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where η is the shear viscosity, and µB is bulk viscosity; Pαβ is the pressure tensor; and

d is the spacial dimension of the system. The energy equation (commonly called the

heat equation) describes energy conservation [28]:

ρ∂te+ ρuα∂αe = −∂α(k∂αT ) − Pαβ(∂βuα) + σαβ(∂βuα), (2.4)

where e is the internal energy per unit mass of the fluid and k is the thermal

conductivity. For a perfect gas e = CV T , where CV is the specific heat at constant

volume and T is the temperature. However, in this thesis, I only studied isothermal

processes during which the system can freely exchange heat energy with an external

environment. The heat transfer process was replaced with a constant temperature

condition in the simulations. Therefore, the simulations satisfy Eq. (2.1) and Eq. (2.2)

but do not satisfy Eq. (2.4).

For a multicomponent system, besides the overall macroscopic fluid flow, diffusion

also contributes to the mass transport process. The next section is devoted to the

discussion of the diffusion process in a multicomponent system.

2.2. Diffusion Processes

In multicomponent systems, there are two mechanisms for mass transport:

convection and diffusion. Convection is the flow of the overall fluid, while diffusion

occurs where the average velocities of components are different. The velocity of the

overall fluid is a macroscopic quantity because it is conserved, but the average velocities

of the components are not. The macroscopic velocity of the fluid u can be expressed
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in terms of the density ρσ and velocity uσ of each component in the form of

u ≡
∑

σ ρ
σuσ

∑

σ ρ
σ
. (2.5)

With the notation

∆uσ ≡ uσ − u, (2.6)

the flux of each component can be divided into a convection part and a diffusion part.

Jσ ≡ ρσuσ = ρσ(u + ∆uσ) = Jσc + Jσd, (2.7)

where Jσc is the convection part and Jσd is the diffusion part. Because mass

conservation still holds for each component, the continuity equation for each component

is valid:

∂tρ
σ + ∇ · Jσ = 0. (2.8)

Substituting Eq. (2.7) into Eq. (2.8), the convection diffusion equation for a component

can be obtained.

∂tρ
σ + ∇ · Jσc = −∇ · Jσd. (2.9)

From Eqs. (2.5) and (2.6), I see that

∑

σ

Jσd = 0, (2.10)
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which is a constraint for all diffusion fluxes of the components. I will elaborate further

on the diffusion flux of each component. Eq. (2.10) indicates that diffusion is a mixing

process that has no contribution to the convection of the fluid, so when two components

are mixing with each other, the particles of the two kinds exchange their positions.

Therefore, the diffusion process between two components is related to the difference of

the chemical potential of the two components, which is also called the exchange chemical

potential [23]. Recognizing that the gradient of the exchange chemical potential

determines the diffusion processes, I obtain a first order approximation for the diffusion

flux of one component into all other components as

Jσd = −
∑

σ′

Mσσ′∇(µσ − µσ
′

), (2.11)

where σ and σ′ enumerate the components; µσ and µσ
′

are the chemical potentials of

components σ and σ′; and Mσσ′

is a symmetric positive definite mobility tensor.

A simple model for the diffusion process assumes that a diffusion flux between

two components is proportional to the overall density and the concentration of each

component. Then Mσσ′

can be expressed as

Mσσ′

= kσσ
′

ρ
ρσ

ρ

ρσ
′

ρ
= kσσ

′ ρσρσ
′

ρ
, (2.12)

where kσσ
′

is the constant diffusion coefficient between components σ and σ′. It depends

on components but is independent of the total densities and concentration of each
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component. Substituting Eq. (2.12) into Eq. (2.11),

Jσd = −
∑

σ′

kσσ
′ ρσρσ

′

ρ
∇(µσ − µσ

′

). (2.13)

Substituting Eq. (2.13) into Eq. (2.9), the general form of a convection diffusion

equation is obtained as

∂tρ
σ + ∇ · (ρσu) = ∇

(

∑

σ′

kσσ
′ ρσρσ

′

ρ
∇(µσ − µσ

′

)

)

. (2.14)

2.3. Basic Phase Separation Theory

Free energy, chemical potential, and pressure are key thermodynamic concepts to

understand the phase behavior of a system. The total free energy of a multicomponent

system is composed of the bulk part and the interfacial part. In its simplest form it is

known as a Landau free energy and can be expressed as

F =

∫

dr

(

ψ(n1, n2, · · · , ns) +
s
∑

σ=1

s
∑

σ′=σ

κσσ
′∇nσ · ∇nσ′

)

, (2.15)

where ψ is the bulk free energy density, σ and σ′ are the superscripts for components;

and n1, n2, · · · , ns are the number densities of s different components; κσσ
′

is an

interfacial free energy parameter which is responsible for the introduction of the surface

tension. In this expression, the contribution from the higher order terms of the density

gradients is neglected [32].

The chemical potential of each component can be obtained by a functional derivative
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as

µσ =
δF
δnσ

, (2.16)

where µσ is the chemical potential of component σ; nσ is the number density of

component σ; and F is the total free energy of the system.

The pressure in a bulk phase in equilibrium is given by

p =
∑

σ

nσµσ − ψ. (2.17)

The pressure tensor is determined by two constraints: Pαβ = pδαβ in the bulk and

∆Pαβ =
∑

σ n
σ∇µσ everywhere. A more detailed analysis is shown in Appendix D.

The total free energy of a system is at its minimum in equilibrium. This requires

that the chemical potential for each component is constant, and the pressure tensor

is divergence free. A system may separate into two phases to minimize the total free

energy of the system.

Figure 2.1 illustrates the phase separation mechanism of a one component system.

The total free energy of a one-component system, from Eq. (2.15), is given by

F =

∫

dr
(

ψ(n, θ) +
κ

2
(∇n)2

)

, (2.18)

where κ is a coefficient related to the surface tension of the interface of the two phases

after phase phase separation. The chemical potential of a one-component system, using

Eq. (2.16), is given by

µ =
∂ψ

∂n
− κ∇2n. (2.19)
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ψ
nn1 n n2

ψA

ψB

A

B

−p

Figure 2.1. The phase separation of a system is determined by the
shape of its bulk free energy density function. An initial homogeneous
system of density n and bulk free energy density ψA separates into two
phases of density nA and nB with the average bulk free energy density
ψB to minimize the total free energy of the system. The pressure of the
system in equilibrium is p.

The bulk pressure tensor of a one-component system in equilibrium, using Eq. (2.17),

is given by

p = nµ− ψ. (2.20)

Eq. (2.19) indicates that in equilibrium, for a bulk phase, the chemical potential is the

slope of the tangent line of the free energy density curve. Eq. (2.20) indicates that

in the bulk phase, the negative of the pressure is the interception on the free energy

density axis by the tangent line of the free energy density curve as shown in Figure 2.1.

Slight deviations occurs where curved interfaces are present [59].

If the free energy density function of a system takes the shape shown in Figure 2.1,

12



a system of average density n will separate into two phases of density n1 and n2 in

equilibrium. Assume that the system has a volume V and the number density n in a

homogeneous state. Then it separates into two states, one of volume V1 with number

density n1 and the other of volume V2 with density n2. Because the system has a

constant volume and constant total number of particles, I have the constraints:

V1 + V2 = V , (2.21)

n1V1 + n2 V2 = nV. (2.22)

From Eq. (2.21) and Eq. (2.22) the volume can be obtained as

V2 =
n− n1

n2 − n1

V, (2.23)

V1 =
n2 − n

n2 − n1

V. (2.24)

The total free energy of the system in a homogeneous state is given by

Fhomogeneous ≡ ψ(nA)V, (2.25)

where ψA is the ψ value at point A in Figure 2.1. Using Eqs. (2.23) and (2.24), the
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total free energy of the system in a two-phase state can be obtained as

Fseparated = ψ1V1 + ψ2 V2

= ψ1
n2 − n

n2 − n1

V + ψ2
n− n1

n2 − n1

V

=
ψ2(n− n1) + ψ1(n2 − n)

n2 − n1

V

≡ ψB V, (2.26)

where ψB is the ψ value at point B in Figure 2.1. Since ψB is on the tangent line,

it represents the minimum average bulk free energy density of a system of an average

number density of n. The linear stability of a homogeneous phase is determined by the

shape of the bulk free energy density function. Figure 2.2 (a) shows that a locally convex

shape of the free energy curve implies stability with respect to small perturbations

because the total free energy of the system would increase if the system phase separated.

A phase at point A in Figure 2.2 (b) is unstable to infinitesimal perturbation because

the total free energy of the system will decrease in the case of phase separation.

Generally, a system will undergo phase separation if the shape of its bulk free energy

density function contains a concave section as shown in Figure 2.3. The system will

phase-separate into phases C and D, and CD is a straight line tangent to the free

energy line ψ(x) at points C and D. Points C and D are called binodal points, at

which the system has minimum total free energy. C ′ and D′ are points that separate

locally unstable regions and locally stable regions. Between C ′ and D′, the system

is unstable and will separate into two phases with only infinitesimal perturbation.

Between C and C ′ and between D and D′, the system is metastable and will undergo
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n

(a) Stable

A

B

ψ

ψ

ψA

B

n

(b) Unstable

Figure 2.2. The local stability of a system is determined by the concave
or convex of the free energy density function. The free energy density of a
homogeneous system is ψA. The average free energy density of the system
with two separated phase is ψB. (a) A system is stable to a small perturbation
when its free energy density function is convex locally. (b) A system is unstable
to a small perturbation when its free energy density function is concave locally.

phase separation only with finite perturbations. Points C ′ and D′ are called spinodal

points. Mathematically, they are determined by the condition that ψ′′(xC′) and ψ′′(xD′)

are zero.

A typical phase diagram is shown in Figure 2.4. In domain I, the system is

unconditionally unstable and separates into two phases by spinodal decomposition.

In domain II, the system is metastable and phase separates by nucleation. In domain

III, the system is stable, and the homogeneous state has the lowest free energy.

2.4. Phase Separation of a System Described by a Landau Free

Energy

The Landau free energy for a fluid with a liquid-gas transition has a form given

by Eq. (2.18). To study the phase behavior near the critical point, it is convenient to
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D’
D

C
C’

ψ

n
Figure 2.3. The binodal and spinodal points are determined by the
shape of the free energy density function of a system. The binodal
points C and D correspond to two equilibrium phases after phase
separation. The spinodal points C ′ and D′ separate the stable and
unstable region.

express the free energy density as [7]

ψ(T, n) = W (n, T ) + nµb − pb, (2.27)

where W (n, T ) is the excess free energy density; µb ≡ ∂nψ|n=nb
is the bulk chemical

potential; and pb is the bulk pressure. I chose the simplest excess free energy function

W (ν, τ) = pc(ν
2 − βτ)2. (2.28)

Here ν = (n−nc)/nc is the reduced density; τ ≡ (Tc−T )/Tc is the reduced temperature;

and Tc, pc ,nc are the critical temperature , critical pressure, and critical density,
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spinodal line binodal line

critical temperature

 

III IIIIIII nucleation

phase A

phase B

spinodal decomposition to
phase A + phase B

I

domain in one phaseT

n

c

Figure 2.4. Inside the binodal lines the system tends to phase separate
into two phases corresponding to the densities given by the two
branches of the binodal line. Inside the spinodal lines the system is
unconditionally unstable and a homogeneous system will phase separate
through spinodal decomposition. In the region between the binodal
and spinodal lines a homogeneous system will phase separate through
nucleation.

respectively. The bulk chemical potential is given by

µb =
4pc
nc

(1 − βτ), (2.29)

where β is a constant. The bulk pressure is

pb = pc(1 − βτ)2. (2.30)
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Therefore,

ψ = pc(ν + 1)2(ν2 − 2ν + 3 − 2βτ). (2.31)

When two phases coexist in equilibrium, the chemical potential without the surface

tension terms is given by

∂ψ

∂n
=

4pc
nc

(ν + 1)(ν2 − ν + 1 − βτ). (2.32)

The equilibrium gas and liquid densities are given by ν = ±
√
βτ . Introducing θ ≡ −βτ ,

the density of liquid and gas are

nl = nc(1 +
√
−θ), ng = nc(1 −

√
−θ). (2.33)

To solve the density profile n(x) of the interface of the system at the equilibrium state,

I use two constraints. One is that the free energy of the system must be minimal.

The other is the mass conservation of the system. Using the variation method with

subsidiary constraints[19], I get

Fn −
d

dx
Fnx

+ λ(nn −
d

dx
nnx

) = 0, (2.34)

where F = ψ(t, τ) + κ
2
(∂αn)2; λ is a Lagrange multiplier; and the subscripts signify

derivatives. For example, Fnx
signifies the derivative of function F with respect to nx,
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and nx signifies the derivative of function n with respect to x. Consequently,

4pc
nc

(ν + 1)(ν2 − ν + 1 − βτ) − κ
d2n

dx2
+ λ = 0, (2.35)

where the Lagrange multiplier λ is 4pc(1 − βτ)/nc. The interfacial profile can be

obtained by solving the differential equation (2.35). The physically correct solution for

a single interface is

n(x) = nc[1 +
√

βτ tanh(
x√
2ξ

)], (2.36)

where the interface width is

ξ =

√

κn2
c

4βτpc
. (2.37)

The surface tension [7] is

σ =
4

3

√

2κpc(βτ)
3/2 nc. (2.38)

The pressure tensor is (Appendix D),

Pαβ = [po − κn▽2 n− κ

2
(∂γn)2] δαβ + κ(∂αn)(∂βn), (2.39)

where po = n∂nψ − ψ. For my one dimension simulations, the pressure tensor reduces

to

p(x) = pc(ν + 1)2(3ν2 − 2ν + 1 − 2βτ) − κn∂2
xn+

κ

2
(∂xn)2. (2.40)
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The chemical potential with the surface tension term is

µ =
∂ψ

∂n
=

4pc
nc

(ν + 1)(ν2 − ν + 1 − βτ) − κ∇2n. (2.41)

2.5. Phase Separation of a System Described by the Flory-

Huggins Free Energy

The Flory-Huggins model is often employed to calculate the free energy of a polymer

solution. It assumes that each segment of a polymer, or mer, occupies one lattice point.

As shown in Appendix A, the Flory-Huggins free energy is given by

F =

∫



−
s
∑

σ=1

θnσmσ +
s
∑

σ=1

(nσθ lnφσ) +
s
∑

σ=1

s
∑

σ
′
=σ+1

(χσσ
′

θmσnσφσ
′

)

+
s
∑

σ=1

s
∑

σ
′
=1

(κσσ
′

∇nσ · ∇nσ′

)



 dV, (2.42)

where mσ is the polymerization of the component σ, which is the average number of

mers per polymer; nσ is the number density of component σ; and φσ is the volume

fraction of component σ. It is defined as

φσ =
mσnσ

∑

σ(m
σnσ)

=
ρσ

ρ
, (2.43)

where ρσ is the mer density of component σ and ρ is the mer density of the system,

which is a constant in the Flory-Huggins model.
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2.5.1. Phase separation of a binary system

The equilibrium state of a binary system can be obtained by minimizing the free

energy of the system. Derived from Eq. (2.42), the Flory-Huggins free energy density

of a binary polymer system without the interfacial free energy contribution is given by

ψ = θ

(

−ρA − ρB +
ρA

mA
lnφA +

ρB

mB
lnφB + χρAφB

)

. (2.44)

In many applications, a solution contains only one polymer component. So it is

reasonable to choose mA = m, where m is the polymerization of component A and

mB = 1. In the Flory-Huggins model, the lattice density is constant; therefore ρ ≡

ρA + ρB is a constant.1 For the calculation of binodal points, I can assume ρθ = 1 and

neglect an arbitrary constant without affecting the final results. With the constraint

φA + φB = 1, Eq. (2.44) has only one independent variable φ ≡ φA. Then Eq. (2.44)

can be simplified to

ψ =
1

m
φ lnφ+ (1 − φ) ln(1 − φ) + χφ(1 − φ). (2.45)

From Eq. (2.45), the whole phase diagram of a binary system can be established. First,

let us determine the critical point. Because the critical point is on the spinodal line, it

satisfies the spinodal line equation d2F/dφ2 = 0. Because the two spinodal lines meet

1This is not an explicit constraint in a LB simulation. However, in a LB simulation, when an

equilibrium state has been reached, the total density is very close to a constant.
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at the critical point, d3F/dφ3 = 0.

F ′′ =
1

m

1

φ
+

1

1 − φ
− 2χ = 0, (2.46)

F ′′′ = − 1

m

1

φ2
+

1

(1 − φ)2
= 0. (2.47)

Solving Eq. (2.46) and Eq. (2.47), the coordinates of the critical point is obtained as

φ =
1√
m+ 1

,

χ =
m+ 2

√
m+ 1

2m
. (2.48)

Eq. (2.46) can be rearranged as

2mχφ2 + (1 −m− 2mχ)φ+m = 0. (2.49)

Eq. (2.49) yields the spinodal lines with the equation

φ1,2 =
−(1 −m− 2mχ) ±

√

∆sp

4mχ
, (2.50)

where ∆sp = (1 −m− 2mχ)2 − 8m2χ.

The theoretical binodal lines, which correspond to the two equilibrium states of the

system, can be obtained numerically by minimizing the total free energy of the system,

and the numerical method is presented in Appendix F. The spinodal and binodal lines

are shown in Figure 2.5 for different polymerizations.
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Figure 2.5. The theoretical binodal and spinodal lines for a monomer
binary system (mA = 1,mB = 1) and a polymer system (mA = 10,
mB = 1) are presented.

2.5.2. Phase separation of a ternary system

The total free energy of a ternary system can be obtained from Eq. (2.42) as

F =

∫

[θ(−mAnA −mBnB −mCnC

+nA lnφA + nB lnφB + nC lnφC

+χABnAmAφB + χACnAmAφC + χBCnBmBφC)

+κAA(∇nA)2 + κBB(∇nB)2 + κCC(∇nC)2

+κAB∇nA∇nB + κAC∇nA∇nC + κBC∇nB∇nC ]dV, (2.51)

where mσ is the polymerization of component σ. Of course, mσ is one for a monomer.
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A ternary system has three components, but a Flory-Huggins model of a ternary

system has only two independent variables because the density factors out of the free

energy. Therefore, φA and φB can be chosen as two independent variables, and φC can

be obtained by φC = 1 − φA − φB.

Another constraint for a phase separation in a ternary system is that the initial

homogeneous phase and the two separated phases are always in a straight line in a

φA-φB diagram. The simple analysis below will make this clear.

Suppose the two volume fractions are chosen as phase parameters. The initial phase

is (φA, φB), and the total volume of the system is V . The system evolves into two phases:

(φA1 , φ
B
1 ) in volume V1, and (φA2 , φ

B
2 ) in volume V2. From the constraint that the total

mass of each component is conserved, so I get

V φA = V1φ
A
1 + V2φ

A
2 , (2.52)

V φB = V1φ
B
1 + V2φ

B
2 . (2.53)

From the constraint that the volume of the system is constant V = V1 + V2, it follows

that

φB − φB1
φA − φA1

=
φB2 − φB1
φA2 − φA1

. (2.54)

Eq. (2.54) shows that the three points are in a straight line in a φA-φB graph. Therefore,

in a ternary system, a phase separates into two phases along a straight line, which is

called the tie line.2

2In a general case there is the possibility of a three phase region which is ignored here.
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The theoretical thermodynamics of an equilibrium ternary system were obtained by

minimizing the total free energy of the system numerically as discussed. In this thesis,

the binodal lines of a ternary system is obtained by varying the initial volume fraction

of the components while holding the χ parameters constant. The simulation of phase

separation of a ternary system with constant χ parameters sheds light to the study of

an immersion precipitation process [27] in which the χ parameters are constant. In

contrast, the binodal lines of a binary system are obtained by varying χ while keeping

the initial volume fraction of the components constant.

Starting from the critical point, the volume fractions of two components of the initial

state (φA,φB) was increased linearly towards the final point (φA = 0.5, φB = 0.5). For

each initial state, two corresponding binodal points are obtained along a straight line.

The tie lines of different initial states usually are not parallel to each other. Therefore,

to calculate the binodal lines of a ternary system, I first calculate the two phases that

minimize the total free energy of the system along a straight line; then, I rotate the

straight line back and forth. Iterating this procedure allowed me to find the exact

direction of the tie line along which the total free energy of the system is minimal.

I have checked that the chemical potentials of the two phases of each component are

equal to a precision of at least of 10−5. That means that the binodal points obtained

with this approach represent equilibrium states. The collection of all the binodal points

generated the binodal line. The implementation of this algorithm is shown Appendix

G.

The phase diagram of a ternary system can be presented in Cartesian coordinates,

but a triangular representation is preferred in the literature [4, 6, 9]. Actually, the
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Figure 2.6. The binodal lines for polymerization m = 1, 5 and 10 of a ternary
system are illustrated in a Cartesian and a triangular coordinate. The shaded
area is inaccessible because of the constraint φA + φB ≤ 1. The system has
χAB = 3, χAC = 0.5, χBC = 0.2. Point R corresponds to (0.30, 0.37, 0.33). The
dotted line from point R shows the approach to determine φA of the point.

representations are equivalent, and a linear transformation exists between the two

systems. The phase diagram of a ternary system is represented in both coordinates

in Figure 2.6. The next chapter introduces the lattice Boltzmann method.
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CHAPTER 3

LATTICE BOLTZMANN METHOD

3.1. Single Relaxation Time Lattice Boltzmann

The Lattice Boltzmann Equation (LBE) can be understood as a discrete Boltzmann

Equation [36]. The LBE with a single relaxation time from the BGK model can be

expressed as [41, 57]

fi(r + vi∆t, t+ ∆t) − fi(r, t) = ∆t

(

1

τ
(f ei (r, t) − fi(r, t) +Gi) + Fi

)

, (3.1)

where r is the lattice position vector; vi is particle velocity; t is time; τ is the single

relaxation time parameter, but the inverse relation time Ω ≡ 1/τ is often used instead

of τ as simulation parameter; Gi introduces non ideal effects into the hydrodynamic

pressure tensor [38]; Fi is a forcing term that can be used to introduce non-ideal effects

into the bulk force [20, 34, 44, 64]; fi(r, t) denotes the particle distribution associated

with the discrete velocity vi; and f ei indicates the local equilibrium distribution

corresponding to an ideal gas. The discrete velocity vi is chosen such that the vi∆t is

a lattice vector.

In this thesis, I limit my study to isothermal systems in which mass and momentum

are conserved in the collision, and energy conservation is abandoned in favor of a

constant temperature requirement. I define the density ρ as ρ(x) ≡ ∑

i fi(x) and the
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velocity u as ρ(x)u(x) ≡∑i fi(x)vi. From mass and momentum conservation the first

two moments of the local equilibrium distribution function of an ideal gas are

∑

i

(f ei − fi) = 0 ⇒
∑

i

f ei =
∑

i

fi ≡ ρ, (3.2)

∑

i

(f ei − fi)vi = 0 ⇒
∑

i

f ei vi =
∑

i

fivi ≡ ρu. (3.3)

Analogous to the continuous case, the other two moments of the equilibrium distribution

function of an ideal gas can be defined as [41]

∑

i

f ei viαviβ =
1

3
ρδαβ + ρuαuβ, (3.4)

∑

i

f ei viαviβviγ =
1

3
ρ(uαδβγ + uβδαγ + uγδαβ) + ρuαuβuγ +Qαβγ, (3.5)

where Qαβγ is a tensor term that is zero in the equivalent continuous integral. Because

vix = v3
ix, I have

∑

i

f ei v
3
ix =

∑

i

f ei vix = ρu. (3.6)

Therefore, Qαβγ is usually chosen to be −ρuαuβuγ to make Eq. (3.5) satisfy Eq. (3.6).

But this choice of Qαβγ causes a small Galilean Invariance violation for moderate |u|.
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This will be discussed in Chapter 4. The moments of Gi are given by

∑

i

Gi = 0, (3.7)

∑

i

Giviα = 0, (3.8)

∑

i

Giviαviβ = Aαβ, (3.9)

∑

i

Giviαviβviγ = 0, (3.10)

where Aαβ is a tensor describing the non-ideal part of the pressure tensor of the liquid.

The velocity moments of the Fi are given by

∑

i

Fi = 0, (3.11)

∑

i

Fiviα = ρaα, (3.12)

∑

i

Fiviαviβ = ρ(aαuβ + aβuα), (3.13)

∑

i

Fiviαviβviγ =
1

3
ρ(aαδβγ + aβδαβ + aγδαβ), (3.14)

where aα is the acceleration.

Non-ideal fluid flow can be simulated by using a free energy from which the chemical

potential can be derived. There are two ways to include the interaction into the LB

evolution equation: the pressure approach (Fi = 0) and the forcing approach (Gi = 0).

The two approaches are subtly different because of higher order effects. This is beyond

the scope of this thesis. Interested readers can refer to a current paper by A.J. Wagner

[55].
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To recover the hydrodynamic equations, I use a moment method. First I perform a

Taylor expansion to the left side of Eq. (3.1),

∞
∑

k=1

(∆t)k

k!
(∂t + viα∂α)

kfi = ∆t

(

1

τ
(f ei − fi +Gi) + Fi

)

. (3.15)

In the long wavelength and small frequency limit, ∂α and ∂t result in small quantities

of the order of ǫ which indicates the order of smallness. Neglecting all the terms of

O(ǫ2), I get

∆t(∂t + viα∂α)fi +O(ǫ2) = ∆t

(

1

τ
(f ei − fi +Gi) + Fi

)

. (3.16)

With Eq. (3.16), fi can be expressed in terms of the f ei , Fi and Gi, for which all

moments are known. Neglecting all the terms of O(ǫ3) in Eq. (3.15),

∆t(∂t + viα∂α)fi +
(∆t)2

2
(∂t + viα∂α)

2fi +O(ǫ3) = ∆t

(

1

τ
(f ei − fi +Gi) + Fi

)

. (3.17)

Higher order terms are not considered here because the hydrodynamic equations only

contain second order derivatives.

Eqs. (3.2)-(3.5) establish the relations between the macroscopic variables, ρ and u,

and the moments of the equilibrium distributions. In order to use those relations, fi is

expanded in terms of f ei . Using Eq. (3.16) recursively,

fi = f ei +Gi + τFi − τ(∂t + viα∂α)(f
e
i +Gi + τFi) +O(ǫ2). (3.18)
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Substituting Eq. (3.18) into the left side of Eq. (3.17),

(∂t + viα∂α)(f
e
i +Gi + τFi) − w(∂t + viα∂α)

2(f ei +Gi + τFi) +O(ǫ3)

=
1

τ
(f ei +Gi + τFi − fi), (3.19)

where w ≡ τ − ∆t/2 .

To obtain the mass conservation equation, I sum Eq. (3.19) over i and obtain,

∂tρ+ ∂α(ρuα) + τ∂α(ρaα) − w
∑

i

(∂t + viα∂α)
2(f ei +Gi + τFi) +O(ǫ3) = 0. (3.20)

Eq. (3.20) shows that ∂tρ + ∂α(ρuα) + τ∂α(ρaα) is of the order of O(ǫ2), so Eq. (3.20)

can be simplified to

∂tρ+ ∂α(ρuα) + τ∂α(ρaα) − w∂β

[

∂t(ρuβ) + τ∂t(ρaβ) + ∂α
∑

i

f oi viαviβ

+∂αAαβ + ∂α
∑

i

Fiviαviβ

]

+O(ǫ3) = 0. (3.21)

Multiplying Eq. (3.19) with viβ and summing over i, I get

∑

i

viβ(∂t+ viα∂α)(f
e
i +Gi+ τFi)−

∑

i

viβw(∂t+ viα∂α)
2(f ei +Gi+ τFi) = ρaβ. (3.22)

Eq. (3.22) shows that

∑

i

viβ(∂t + viα∂α)(f
e
i +Gi + τFi) = ρaβ +O(ǫ2). (3.23)
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Substituting Eq. (3.23) into Eq. (3.21),

∂tρ+ ∂α

[

ρ(uα +
∆t

2
aα)

]

+O(ǫ3) = 0. (3.24)

Therefore, by denoting the macroscopic velocity Uα ≡ uα + aα∆t/2, the continuity

equation (2.1) can be recovered to the second order:

∂tρ+ ∂α(ρUα) = 0 +O(ǫ3). (3.25)

To obtain the momentum conservation equation, I substitute Eq. (3.23) into Eq. (3.22).

∑

i

viβ(∂t + viα∂α)(f
e
i +Gi + τFi) −

∑

i

wviβviγ∂γ(∂t + viα∂α)(f
e
i +Gi + τFi).

−w∂tρaβ +O(ǫ3) = ρaβ. (3.26)

Eq. (3.26) shows that a is of the oder O(ǫ). Eq. (3.12) shows that Fi is of the same

order as a, i.e. O(ǫ). The second term in Eq. (3.26) is simplified, step by step, as

follows:

∑

i

wviβviγ∂γ(∂t + viα∂α)(f
e
i +Gi + τFi)

=
∑

i

wviβviγ∂γ(∂t + viα∂α)(f
e
i +Gi) +O(ǫ3)

= w∂γ

(

∂t
∑

i

f ei viβviγ + ∂tAβγ + ∂α
∑

i

f ei viαviβviγ

)

+O(ǫ3). (3.27)
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Using Eq. (3.23),

∂t(ρuβ) = −∂α
(ρ

3
δαβ + Aαβ + ρuαuβ

)

+ ρaβ +O(ǫ2). (3.28)

Substituting Eq. (3.25) into Eq. (3.28),

ρ∂tuβ = −ρuα∂αuβ −
∂βρ

3
− ∂αAαβ + ρaβ +O(ǫ2). (3.29)

Using Eqs. (3.25), (3.28) and (3.29),

∂t
∑

i

f ei viβviγ + ∂α
∑

i

f ei viαviβviγ

= ∂t

(ρ

3
δβγ + ρuβuγ

)

+∂α

[ρ

3
(uαδβγ + uβδαγ + uγδαβ + ρuαuβuγ +Qαβγ +O(ǫ)

]

=
1

3
δβγ(−∂α(ρUα)) + uγ∂t(ρuβ) + ρuβ∂tuγ

+
1

3
δβγ∂α(ρuα) +

1

3
∂γ(ρuβ) +

1

3
∂β(ρuγ) + ∂α(ρuαuβuγ) + ∂αQαβγ +O(ǫ2)

= uγ

(

−1

3
∂βρ− ∂αAαβ − ∂α(ρuαuβ) + ρaβ

)

+ uβ

(

−uαuαuγ − ∂αAαβ −
1

3
∂γρ+ ρaγ

)

+
1

3
∂γ(ρuβ) +

1

3
∂β(ρuγ) + ∂α(ρuαuβuγ) + ∂αQαβγ +O(ǫ2)

=
1

3
ρ∂γuβ +

1

3
ρ∂βuγ + ρuγaβ + ρuβaγ

−uγ∂αAαβ − uβ∂αAαγ + ∂αQαβγ +O(ǫ2). (3.30)
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From Eqs. (3.25), (3.26), and (3.30), I obtained with some algebra,

∂t(ρUα) + ∂β(ρUαUβ) = −∂β
(

1

3
ρδαβ + Aαβ

)

+ ∂β

[w

3
ρ(∂βUα + ∂αUβ)

]

+ ρaα

+ w∂γ(−uγ∂βAαβ − uα∂βAβγ + ∂tAαγ + ∂βQαβγ) +O(ǫ3). (3.31)

Eq. (3.31) is a Navier Stokes equation except the terms of the last line that cause

Galilean invariance violations (Section 4.1.).

In other literature, a second approach exists to derive the hydrodynamic equations

of the lattice Boltzmann method (LBM). It is a multi-scale expansion, referred to as

the “Chapman Enskog” approach. The two approaches give the same results as far as

the recovery of the hydrodynamic equations are concerned [41, 62].

Identical forms of Eq. (3.31) can be implemented with different choices of A or a. If

both A and a are zero, Eq. (3.31) becomes the Navier Stokes equation for an ideal gas.

But even in the ideal gas LB model, the w∂γ∂βQαβγ exists and causes the GI violation.

The non-ideal model for LB simulation can be obtained by choosing either A or a to be

zero. The choice of a = 0 and A 6= 0 is referred to as the pressure approach; the choice

of a 6= 0 and A = 0 is referred to as the force approach. Swift et al. [48] invented a

model to simulate a non-ideal fluid in pressure approach by choosing Aαβ = Pαβ − 1
3
ρ.

This model is deficient and cause a severe Galilean invariance violation. The errors

come from the terms in the second line in Eq. (3.31). This problem was addressed by

Holdych et al. [21], Inamuro et al. [22], and Kalarakis et al. [24] independently. They
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solved the problem by redefining

Aαβ = Pαβ −
1

3
ρδαβ − ν(∂αρuβ + ∂βρuα + uγ∂γρδαβ). (3.32)

Eq. (3.32) leaves the density gradient terms in the second line of Eq. (3.31) to the second

order, which are assumed to be very small because the derivatives of the pressure tensor

are much smaller than the derivatives of density at the interface near equilibrium[24].

Therefore, Holdych’s model gives a more accurate result and diminished the GI violation

significantly. To simulate a one component phase separating system with a forcing

approach, ρaα = ∂β(Pαβ − 1
3
ρδαβ) can be chosen. To eliminate the Q term error in

ideal gas model or in non-ideal models of pressure or forcing approach, a forcing term is

introduced as ρaα = w∂β∂γQαβγ. A Holdych model with a Q correction is referred to as

HoldychQ, similarly is the ForcingQ. Table 3.1. summarizes the simulation approaches

explored in this thesis.

Table 3.1. The algorithms for the LB simulation of a non-ideal fluid

Approach Aαβ ρaα

Pressure Pαβ − 1
3
ρδαβ 0

Holdych
Pαβ − 1

3
ρδαβ

−ν(∂αρuβ + ∂βρuα + uγ∂γρδαβ)
0

HoldychQ
Pαβ − 1

3
ρδαβ

−ν(∂αρuβ + ∂βρuα + uγ∂γρδαβ)
w∂β∂γQαβγ

Forcing 0 ∂β(Pαβ − 1
3
ρδαβ)

ForcingQ 0 ∂β(Pαβ − 1
3
ρδαβ) + w∂β∂γQαβγ
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3.1.1. One-dimensional three-velocity lattice Boltzmann model

Many lattice Boltzmann models are available such as the one-dimensional three-

velocity model (D1Q3), the two-dimensional seven-velocity model (D2Q7), the two

dimensional nine velocity model (D2Q9), the three dimensional and fifteen velocity

model (D3Q15), and the three dimensional and twenty seven velocity model (D3Q27).

Although the D1Q3 model is the simplest, it is, in fact, a projection of all the other

models mentioned above. Therefore any a problem in the D1Q3 model exists also in the

higher dimensional models. In this thesis, D1Q3 models were used for all simulations

and are introduced next.

The D1Q3 model has three velocities: v0 = 0, v1 = 1, v2 = −1. In one dimension,

Eqs. (3.2) and (3.3) become

ρ = f0 + f1 + f2, (3.33)

ρu = f1 − f2, (3.34)

and the local equilibrium distribution satisfies

ρ = f e0 + f e1 + f e2 , (3.35)

ρu = f e1 − f e2 , (3.36)

ρu2 +
ρ

3
= f e1 + f e2 . (3.37)

I first derive the equilibrium distribution for the ideal gas. With Eqs. (3.35), (3.36),
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and (3.37),

f e0 =
2

3
ρ− ρu2, (3.38)

f e1 =
1

2
(ρ/3 + ρu+ ρu2), (3.39)

f e2 =
1

2
(ρ/3 − ρu+ ρu2) (3.40)

For a non-ideal gas with a pressure approach, Eqs. (3.7), (3.8), and (3.9) give

G0 +G1 +G2 = 0, (3.41)

G1 −G2 = 0, (3.42)

G1 +G2 = A, (3.43)

which yields

G0 = 0, (3.44)

G1 = A/2, (3.45)

G2 = A/2. (3.46)

For a non-ideal gas with a forcing approach, Eqs. (3.11), (3.12), and (3.13) give

F0 + F1 + F2 = 0, (3.47)

F1 − F2 = ρa, (3.48)

F1 + F2 = 2ρau. (3.49)

37



This can be solved for the Fi to give

F0 = −2ρau, (3.50)

F1 = (u+ 0.5)ρa, (3.51)

F2 = (u− 0.5)ρa, (3.52)

where ρa is the interaction force derived from the non-ideal gas interaction. The

evolution equations for a D1Q3 model is then:

f0(i, t+ 1) = f0(i, t) +
1

τ
(f e0 (i, t) − f0(i, t) +G0(i, t)) + F0(i, t), (3.53)

f1(i+ 1, t+ 1) = f1(i, t) +
1

τ
(f e1 (i, t) − f1(i, t) +G1(i, t)) + F1(i, t), (3.54)

f2(i− 1, t+ 1) = f2(i, t) +
1

τ
(f e2 (i, t) − f2(i, t) +G2(i, t)) + F2(i, t), (3.55)

where i is the lattice coordinate, and t is the time step.

3.1.2. Lattice Boltzmann for a liquid-gas system

To validate my theoretical analysis of LB simulations of non-ideal fluids, I performed

LB simulations of a simple one component non-ideal system described by the Landau

free energy model of Eq. (2.27) with Holdych’s approach and a forcing approach. The

equilibrium thermodynamic properties (density, pressure, and chemical potential) of

the system obtained by the LB simulation through the two approaches are compared

to the theoretical results derived in Section 2.4. The theoretical density profile is given

by Eq. (2.36). The pressure is given by Eq. (2.40), and the chemical potential is given
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by Eq. (2.41).

My LB simulations were performed with the D1Q3 models of Table 3.1. Each

simulation was performed on a lattice with 100 lattice points, unless noted otherwise.

Initially the system had a uniform density of 1, plus a sinusoidal perturbation to trigger

phase separation. The amplitude of the perturbation was 0.1 and its wavelength was

the lattice size.

To obtain the binodal lines of a liquid-gas system, the LB simulations were

performed starting with these initial conditions with increasing value of θ starting from

the critical point. A pair of binodal points were obtained by the LB simulation from

each initial condition. I continued to increase θ for each simulation until I observed

numerical instabilities. The binodal points were than given by the maximum and

minimum densities in equilibrium. The system evolved into a stable state after about

1000 time steps. The measurements were taken after 10000 time steps to be sure that

the system was in equilibrium.

Figure 3.1 shows the comparison of the binodal points obtained by the “Holdych”

and “ForcingQ” approaches to the theoretical binodal lines. The simulation results

approach the theoretical result, but the deviations increases as θ increases. The Holdych

approach is more accurate, but the ForcingQ approach has a larger stability range.

However, a stability analysis is outside the scope of this thesis; for more details on the

stability of the LB methods, an interested reader may refer to [2, 3, 37, 50, 52, 47, 54, 61].

Figure 3.2 shows the comparison of the total density, pressure, and and chemical

potentials obtained by HoldychQ approach to the theoretical values. The equilibrium

density profile almost overlapped with the theoretical profile. The equilibrium pressure
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Figure 3.1. The binodal points of a liquid-gas system obtained by the
LB simulation with the “ForcingQ” and “Holdych” approaches are
compared to the analytical solution. The system has κ = 0.1, nc = 1,
pc = 0.42, and ν = 1/6. For the LB simulation, ω = 1.0.

obtained by the simulation was slightly lower than the theoretical values, but the

difference was less than 0.1% when compared to the theoretical value. The equilibrium

chemical potential obtained by the LB simulation in the two bulk phases differ only

within 0.01%. There are two spikes on the chemical potential at the interface of the two

phases, but the spikes are less than 0.1% compared to the bulk chemical potentials.

The chemical potential obtained by the LBM are slightly lower than the theoretical

value, but the difference was less than 0.1% compared to the theoretical value.

Figure (3.3) shows the comparison of the total density, pressure, and and chemical

potentials obtained by ForcingQ approach to the theoretical values. The density profile
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Figure 3.2. The density, pressure, and the chemical potential of an equilibrium
liquid-gas system obtained by the HoldychQ approach LB simulation are
compared to the analytical solutions. The system has κ = 0.1, nc = 1,
pc = 0.125, βτ = 0.03. For the LB simulation, ω = 1.0.

in equilibrium by the ForcingQ approach agrees well with the theoretical value, but the

errors are slight larger than that by the HoldychQ approach. The pressures of the

two bulk phases by the LB were almost equal, but spikes occurred at the interface.

The amplitude of the spikes was less than 0.5% of the average bulk pressure. The

difference of average pressure by ForcingQ and the analytical solution was less than

0.1%. The analysis and corrections of the errors were given by Wagner [55]. The

chemical potentials obtained with the ForcingQ approach were almost equal in the

bulk phases, but small spikes occurred at the interfaces. The amplitude of the chemical

potential spikes was less than 0.3% of the average bulk chemical potential. The

difference of the average chemical potential by the ForcingQ and the theoretical value

is less than 0.1%.

In summary, the phase separation in a liquid-gas system were successfully simulated

with Holdych and Forcing approaches. In equilibrium, the density profile, the pressure,

and the chemical potential were very close to the theoretical values. The interface

density profile obtained by the Holdych approach, however, is closer to the theoretical
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Figure 3.3. The density, pressure, and the chemical potential of an equilibrium
liquid-gas system obtained by the ForcingQ approach LB simulation are
compared to the analytical solutions. The system has κ = 0.1, nc = 1,
pc = 0.125, βτ = 0.03. For the LB simulation, ω = 1.0.

potential than that obtained by the Forcing approach. In the next section, I extend

the LBM to multicomponent systems.

3.2. Lattice Boltzmann for Multicomponent Systems

A multicomponent system may contain arbitrary number of components. In a

multicomponent system, the continuity equation and the Navier Stokes equation are

valid for the overall fluid. For each component, the continuity equation is still valid

because mass conservation is still valid for each component. However, there is only

one Navier Stokes equation for the total momentum because the momentum of each

component is not conserved. Expressing the continuity equation in terms of the mean

velocity I obtain a convection diffusion equation for each component as shown in Section

2.2.

With reference to my LB theory for a one component system, I established the

a symmetric LB theory of a multicomponent system that can recover the continuity

equation and the NSE for the overall fluid and can recover the convection diffusion
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equation for each component. I started my derivation of the hydrodynamic equations

for a multicomponent system from the LB equation of one component. In analogy to

Eq. (3.1), the LBE for a component σ of a multicomponent system is given by

fσi (r + vi∆t, t+ ∆t) − fσi (r, t) = ∆t

(

1

τ
(fσei (r, t) − fσi (r, t) +Gσ

i ) + F σ
i

)

, (3.56)

where fσi (r, t) is the particle distribution function with velocity vi for component σ;

fσe(r, t) is its equilibrium distribution; Gσ
i reflects the non-ideal effect due to pressure

tensor on component σ; and F σ
i is the forcing term of component σ due to the

mean potential field generated by the interaction of the component σ with the other

components.

The density of each component and the total density are given by

ρσ =
∑

i

fσi , (3.57)

ρ =
∑

σ

ρσ. (3.58)

The average velocity of one component σ and the overall fluid can be defined as

ρσuσα ≡
∑

i

fσviα, (3.59)

ρuα ≡
∑

σ

ρσuσα, (3.60)

where uσα is the average velocity of the component σ, and uα is the average velocity of

the overall fluid.
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The moments of equilibrium distributions for one component are

∑

i

fσei = ρσ,

∑

i

fσei viα = ρσuα,

∑

i

fσeviαviβ =
ρσ

3
δαβ + ρσuαuβ,

∑

i

fσeviαviβviγ =
ρσ

3
(uαδαβ + uβδαγ + uγδαβ) + ρσuαuβuγ +Qσ

αβγ, (3.61)

whereQσ
αβγ can be chosen to be −ρσuαuβuγ for the same reason as in the one-component

system as shown in Section 3.1.

The moments for the forcing terms of one component are

∑

i

F σ
i = 0 (3.62)

∑

i

F σ
i viα = ρσaσα, (3.63)

∑

i

F σ
i viαviβ = ρσ(aσαu

σ
β + aσβu

σ
α), (3.64)

∑

i

F σ
i viαviβviγ =

1

3
ρσ(aσαδβγ + aσβδαβ + aσγδαβ). (3.65)

The moments for the pressure tensor terms of one-component are

∑

i

Gσ
i = 0,

∑

i

Gσ
i viα = 0,

∑

i

Gσ
i viαviβ = Aσαβ,

∑

i

Gσ
i viαviβviγ = 0. (3.66)
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To utilize my analysis of the one component system I can establish a LB equation

for the total density by defining

∑

σ

fσi = fi,

∑

σ

F σ
i = Fi,

∑

σ

Gσ
i = Gi,

∑

σ

Aσαβ = Aαβ,

∑

σ

ρσaσα = ρaα. (3.67)

Similar to the counterparts of the one-component system, the moments for the

overall equilibrium distribution function are given by

∑

i

f ei = ρ,

∑

i

f ei viα = ρuα,

∑

i

f ei viαviβ =
1

3
ρδαβ + ρuαuβ,

∑

i

f ei viαviβviγ =
1

3
ρ(uαδβγ + uβδαγ + uγδαβ) + ρuαuβuγ +Qαβγ.

(3.68)

This is identical to the one-component cases of Eqs. (3.2)-(3.5). The moments for the
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overall force terms are then given by

∑

i

Fi = 0,

∑

i

Fiviα = ρaα,

Using Eq. (3.64), I obtain

∑

i

Fiviαviβ =
∑

σ

(aσαu
σ
β + aβu

σ
α)

= ρσ(aσα(uβ + ∆uσβ + aβ(uα + ∆uσα))

= ρ(aαuβ + aβuα) +
∑

σ

(aσα∆u
σ
β + aσβ∆u

σ
α), (3.69)

where the second term of Eq. (3.69) is of a higher order smallness than the first terms,

and therefore does not enter the hydrodynamic equations to second order.

∑

i

Fiviαviβviγ =
1

3
ρ(aαδβγ + aβδαβ + aγδαβ). (3.70)

The moments for the overall pressure terms are then given by

∑

i

Gi = 0,

∑

i

Giviα = 0,

∑

i

Giviαviβ = Aαβ,

∑

i

Giviαviβviγ = 0. (3.71)
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By summing Eq. (3.56) over σ, an effective LB equation for the total density is

fi(r + vi∆t, t+ ∆t) − fi(r, t) = ∆t

(

1

τ
(f ei (r, t) − fi(r, t) +Gi) + Fi

)

, (3.72)

which is identical to Eq. (3.1). Therefore, the continuity equation and the Navier

Stokes equation of the overall fluid of a multicomponent system are identical to those

of a one-component system. They are

∂tρ+ ∂α(ρUα) = 0 +O(ǫ3), (3.73)

where Uα ≡ uα + aα∆t/2 is the macroscopic velocity of the fluid. The Navier Stokes

equation for the overall fluid is:

∂t(ρUβ) + ∂α(ρUαUβ) = −∂α
(

1

3
ρδαβ + Aαβ

)

+ ∂α(
w

3
ρ(∂αUβ + ∂βUα)) + ρaβ

+ w∂γ(−uγ∂αAαβ − uβ∂αAαγ + ∂tAβγ + ∂αQαβγ). (3.74)

s To recover the convection diffusion equation of each component, I did a Taylor

expansion to the left of Eq. (3.56), and referring to Eq. (3.15),

∞
∑

k=1

(∆t)k

k!
(∂t + viα∂α)

kfσi = ∆t

(

1

τ
(fσei − fσi +Gσ

i ) + F σ
i

)

. (3.75)

To O(ǫ) , referring to Eq. (3.16), it followed that

∆t(∂t + viα∂α)f
σ
i +O(ǫ2) = ∆t

(

1

τ
(fσei − fσi +Gσ

i ) + F σ
i

)

. (3.76)
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To the order of O(ǫ2), referring to Eq. (3.17),

∆t(∂t + viα∂α)f
σ
i +

(∆t)2

2
(∂t + viα∂α)

2fσi +O(ǫ3)

= ∆t

(

1

τ
(fσei − fσi +Gσ

i ) + F σ
i

)

. (3.77)

Because of the recursive nature of Eq. (3.76), fσi can be expressed by fσei and derivatives

of fσei ; referring to Eq. (3.18),

fσi = fσei +Gσ
i + τF σ

i − τ(∂t + viα∂α)(f
σe
i +Gσ

i + τF σ
i ) +O(ǫ2). (3.78)

Substituting Eq. (3.78) into the left side of Eq. (3.77). I obtained, as in Eq. (3.19),

(∂t + viα∂α)(f
σe
i +Gσ

i + τF σ
i ) − w(∂t + viα∂α)

2(fσei +Gσi + τF σ
i ) +O(ǫ3).

=
1

τ
(fσei +Gσ

i + τF σ
i − fσi ). (3.79)

By summing over i, Eq. (3.79) gave,

∂tρ
σ +∂α(ρ

σuα)+ τ∂α(ρ
σaσα)−w

∑

i

(∂t+ viα∂α)
2(fσei +Gσ

i + τF σ
i )+O(ǫ3) = 0, (3.80)

which is equivalent to Eq. (3.20). However the moments of f ei and fσei are not identical

here, so the continuity equation cannot be obtained. Eq. (3.80) shows that ∂tρ
σ +

∂α(ρ
σuα) + τ∂α(ρ

σaσα) is of order O(ǫ2), and F σ
i is of order O(ǫ) as discussed in Section
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3.1. Therefore ∂tρ
σ + ∂α(ρ

σuα) is of order O(ǫ2), and the result is

w
∑

i

(∂t + viα∂α)
2(fσei +Gσ

i + τF σ
i )

= w
∑

i

(∂t + viα∂α)
2(fσei +Gσ

i )

= w
∑

i

(∂t + viα∂α)(∂tf
σe
i + viαf

σe
i + ∂αG

α
i viα)

= w∂t(∂t
∑

i

fσei + ∂α
∑

i

fσei viα + ∂α
∑

i

Gσ
i viα)

+w∂β(∂t
∑

i

fσei viβ + ∂α
∑

i

fσei viαviβ + ∂α
∑

i

Gσ
i viαviβ)

= w∂β(∂t(ρ
σuβ) + ∂α(

ρσ

3
+ ρσuαuβ) + ∂αAαβ) +O(ǫ3).

So Eq. (3.80) can be simplified to

∂tρ
σ + ∂α(ρ

σuα) + τ∂αρ
σaσα

−w∂β[∂t(ρσuβ) + ∂α(
ρσ

3
+ ρσuαuβ) + ∂αAαβ] +O(ǫ3) = 0. (3.81)

Using Eqs. (3.74) and (3.73) I obtained with some algebra,

∂tUβ = −Uα∂αUβ −
1

ρ
∂α

(ρ

3
δαβ + Aαβ

)

+ aβ +O(ǫ2). (3.82)

From Eq. (3.80) if follows that

∂tρ
σ = −∂α(ρσUα) +O(ǫ2). (3.83)
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With Eq. (3.82) and (3.83) it can be derived that

∂t(ρ
σuβ) = −∂α(ρσUαUβ) −

ρσ

ρ
∂α

(ρ

3
δαβ + Aαβ

)

+ ρσaβ +O(ǫ2). (3.84)

Substituting Eq. (3.84) into Eq. (3.81) results in,

∂tρ
σ + ∂α(ρ

σUα)

= w∂β

[

−ρ
σ

ρ
∂α

(ρ

3
δαβ + Aαβ

)

+ ∂α

(

Aσαβ +
ρσ

3
δαβ

)]

+τ∂α

(

ρσ

ρ
ρaα − ρσaσα

)

. (3.85)

I used the force approach for my simulation because the force ρσ∇µσ is easily

obtained. For a pressure approach we would need to identify a non-ideal pressure P σ

of component σ. However in general there is no pressure term with ∇P σ = ρσ∇µσ.

From the free energy density I derived the chemical potential with Eq. (A.13). Then I

needed to obtain the non-ideal interaction, from which the forcing terms in the evolution

equation can be derived with Eqs. (3.50), (3.51), and (3.52). In the force approach

approach, I set Aαβ = 0, and Eq. (3.85) becomes

∂tρ
σ + ∂α(ρ

σUα) = ∂α

[

−τρσaσα + τρσaα − w
ρσ

ρ
∂α

(ρ

3

)

+ w∂α

(

ρσ

3

)]

, (3.86)

where ρσaσα is the non-ideal aspect of the force on component σ. In the LB model, ρσaσα
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can be defined as

ρσaσα ≡ −w
τ
ρσ∂α(µ

σ − 1

3
ln ρσ) = −w

τ

[

ρσ∂αµ
σ − 1

3
∂αρ

σ

]

, (3.87)

where the coefficient is w
τ

= 1 − ∆t
2τ

due to the discretization of the LB model. This

coefficient approaches 1 as ∆t approaches 0, as one would expect from the continuum

limit. Eq. (3.87) can be employed in my simulation to obtain the non-ideal interaction.

Plugging Eq. (3.87) into Eq. (3.86), with some algebra,

∂tρ
σ + ∂α(ρ

σUα) = ∂α

[

w
ρσ

ρ

∑

σ′

ρσ
′

∂α(µ
σ − µσ

′

)

]

, (3.88)

where σ′ and σ refer to components.

Referring to Eq. (2.13) and Eq. (2.14), I recognized that Eq. (3.88) is the convection

diffusion equation, and the diffusion flux of component σ is

Jσd = −wρ
σ

ρ

∑

σ′

ρσ
′

∂α(µ
σ − µσ

′

). (3.89)

By comparing Eq. (3.89) to Eq. (2.13), it is clear that the w in Eq. (3.89) is equivalent

to kσσ
′

in Eq. (2.13). Furthermore, in my current approach, w is the same for all kσσ
′

.

Eq. (3.89) is thermodynamically consistent in that the diffusion flux of each component

is 0 in equilibrium when the chemical potential of each component is constant. Clearly

the extension of the model to allow different values for wσ for each component deserves

future research.
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3.3. Simulations of Multicomponent Systems

To validate my LB algorithm, I simulated phase separation in binary and ternary

systems. The binodal lines obtained by my algorithm was compared with the theoretical

ones obtained by minimizing the free energy. I used the interfacial tension parameter

κ = 0 in all my LB simulations of binary and ternary systems, because there is an

intrinsic surface tension in the LB simulation due to higher order terms [55], which did

not appear explicitly in the second order Taylor expansion presented in this thesis. This

choice can both simplify my simulation and avoid the unnecessary simulation instability

caused by a possible improper choice of κ.

3.3.1. Simulations of binary systems

To validate my algorithm for binary systems, I performed LB simulations of binary

systems. I then compared the equilibrium properties of those simulations to my

theoretical predictions. The theoretical binodal lines of a binary system are obtained

in Section 2.5.1. The free energy density is given by Eq. (2.45). The critical point of

a binary system is given by Eqs. (2.48) and (2.48). Starting from the critical point,

moving the initial state by increasing χ and keeping the volume fraction constant, I

obtained a pair of binodal points for each initial condition. The collection of all the

binodal points formed the binodal line. The theoretical equilibrium chemical potentials

of the two components of a binary system were calculated by using Eqs. (A.9) and

(A.10). Each component had two equal chemical potentials at the two phases to

the precision of at least 10−6. This indicated that my algorithm had determined the
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equilibrium densities. The pressures of the systems in equilibrium were calculated by

substituting the chemical potentials into Eq. (2.17). However, the pressure of the overall

fluid obtained by Eq. (2.17) is zero, which indicated that the Flory-Huggins free energy

model may not be a good choice for the hydrodynamic simulation of a binary system.

Since I was only concerned with one dimensional systems, hydrodynamic effects did

not enter significantly into my simulations.

I performed LB simulations with two binary systems: a monomer system with

mA = 1 and mB = 1, and a polymer system with mA = 10 and mB = 1. For both

systems, the total density was ρ = 100. The critical volume fractions for the monomer

system are φA = 0.5 and φB = 0.5 and for the polymer systems are φA = 0.24 and φB =

0.76. To induce phase separation a small perturbation is to be introduced in the initial

conditions. The amplitude of the perturbation is 0.1 and its wavelength is the lattice

size. The initial volume fraction of component A is given by φA(x) = φA0 +∆φ(x). The

initial volume fraction of component B is given by φB(x) = φB0 − ∆φ(x). The initial

volume fraction of component C is obtained naturally from φC(x) = 1−φA(x)−φB(x),

so initially φC(x) = 1 − φA0(x) − φB0(x) (Appendix K).

The monomer system was simulated with different reverse relaxation times Ω =

0.7, 0.8, and 0.9 to verify that my algorithm converges for different relaxation times.

The polymer system was simulated with only one inverse relaxation time of Ω = 0.9.

Starting from the critical point and increasing the χ value for each initial condition

until the simulations were numerically unstable, I obtained a pair of binodal points for

each initial condition. The system reached a stable state after about 5000 time steps.

My measurement were taken after 50000 time steps to be sure that an equilibrium state
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Figure 3.4. The binodal points obtained by the LB simulation are
compared to the theoretical solutions. For mA = 1,mB = 1, the
binodal points by LB with different ω converge at the theoretical
values. For mA = 10,mB = 1, the binodal points by LB with Ω = 0.9
match the binodal points by minimizing free energy.

had been reached.

Figure 3.4 shows that the binodal lines of the monomer system at different Ω almost

overlap with the theoretical values. The only notable difference is that the stability

ranges vary slightly with Ω. The simulations tended to be unstable when one component

was nearly depleted (φσ → 0).

For the polymer system, Figure 3.5 shows the comparison of the total density,

pressure, and the volume fractions and chemical potentials of each component to the

corresponding theoretical values. The total density of a system in equilibrium by LB is

nearly constant, but a slight density difference exists for two phases and spikes occur
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Figure 3.5. The total density, pressure, volume fraction and the chemical
potentials of the two components of a binary system by LB simulation are
compared to the theoretical values. The system has mA = 10, mB = 1, χ
= 0.94, κ = 0. For LB simulation, ω = 0.9.

at the interface between the two phases. The Flory-Huggins model assumes constant

total density but the total density in LB simulation is only nearly constant. This may

account for the discrepancy of the simulation results and the theoretical values. The

volume fractions of each component by LB simulation agrees well with the theoretical

values. The pressure of the system by the LB simulation is 0 to the machine precision

in agreement with the theoretical value.

The chemical potential of each component by the LB simulation was very close to

the theoretical value. Chemical potential µA of the two bulk phases differed slightly

while µB of the two bulk phases are nearly the same. Spikes existed at the interface of

the two bulk phases, the amplitude of which were less than 3% of the theoretical value.
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3.3.2. Simulations of ternary systems

To validate my algorithm for ternary systems, I perform LB simulations and

compared the equilibrium results to the theoretical predictions. The theoretical binodal

lines are obtained in Section 2.5.2. The theoretical equilibrium chemical potentials of

the three components of a ternary system were calculated by using Eqs. (A.11), (A.12),

and (A.13). The pressure of the systems in equilibrium was calculated by substituting

the chemical potentials into Eq. (2.17). However, the pressure of the overall fluid

obtained by Eq. (2.17) are again zero to numerical accuracy.

I performed LB simulations with two ternary systems: a monomer system with

mA = 1, mB = 1, and mC = 1 and a polymer system with mA = 10, mB = 1,

and mC = 1. The χ parameters for both systems were χAB = 3, χAC = 0.5, and

χBC = 0.2. The inverse relaxation time constant for both simulations was Ω = 0.9.

The critical point for the monomer system was φA = 0.32, φB = 0.32, and φC = 0.36.

The critical point for the polymer system was φA = 0.14, φB = 0.11, and φC = 0.75.

The initial state of each simulation were set from the critical points towards the end

point (φA = 0.5, φB = 0.5, φC = 0). Initially a small sinusoidal wave perturbation of

an amplitude of 0.1 and wavelength of the lattice size was superimposed on the initial

volume fractions of the components to induce phase separation. I performed a LB

simulation for each set of initial volume fractions and obtained the volume fractions of

the two phases in the equilibrium state, resulting in two binodal points. The simulation

reached a stable state after about 20,000 time steps. The measurements were taken

after 200,000 time steps to make sure the equilibrium state was reached.
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Figure (3.6) shows the comparison of the binodal points by LB simulation to the

theoretical binodal lines of both systems. The binodal points obtained by the LB

simulation agree reasonably well with the theoretical binodal lines for the monomer

and polymer systems. The simulation becomes unstable when φA is close to zero, i.e.

when one component is nearly depleted. It is also noticeable that the binodal points

obtained by the LB simulation deviate from the theoretical binodal lines when one

component is nearly depleted. Immediately near the critical point, the evolution of

the system becomes extremely slow so the slight deviation between the binodal points

obtained through the LB simulation and the theoretical ones probably indicates that

the LB simulation was not yet fully equilibrated.

Figure 3.7 shows the comparison of the total density, pressure, and the volume

fractions and chemical potentials of each component. The total density of the system

obtained by LB simulation is very close to the theoretical value except the spikes at

the interface region. The amplitudes of these spikes are less than 1% of the theoretical

density. The Flory-Huggins model assumes constant total density but the total density

in LB simulations is only nearly constant. This may account for some of the discrepancy

between the simulation results and the theoretical predictions. The volume fractions of

each phase by LB simulation were very close to their theoretical values. The pressure

of the system by the LB simulation is again 0 to the machine precision. The chemical

potential of component A was slightly different in two phases, while the chemical

potentials of components B and C were much closer in the two phases, although there

were small spikes at the interface. The amplitude of the spikes are less than 2% of the

theoretical value. The chemical potential by LB agrees with the theoretical value.
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Figure 3.6. The binodal points of a ternary system
obtained by LB simulation are compared to the
theoretical values. One ternary system has mA = 1,
mB = 1, and mC = 1; the other has mA = 10, mB = 1,
and mC = 1. The parameters for both systems are χAB

=3, χAC = 0.5, χBC = 0.2. Ω = 0.9.

To sum up, the equilibrium properties of the simulations in binary and ternary

systems validate my multicomponent LB algorithm for at least three components. The

binodal points obtained with my algorithm of different relaxation times converged to

the theoretical values. The pressure of the overall fluid was constant, and the chemical

potential for each component was also constant in equilibrium. Therefore, my model

was consistent with the expectations of equilibrium thermodynamics.
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Figure 3.7. The total density, pressure, and volume fractions and the chemical
potentials of each components of a ternary system by LB simulation are
compared to the theoretical results obtained by minimizing the free energy.
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CHAPTER 4

GALILEAN INVARIANCE OF THE LATTICE

BOLTZMANN METHOD

4.1. Lattice Boltzmann Galilean Invariance Violations and

Corrections

The Galilean Invariance Principle states that the fundamental laws of physics are

the same in all inertial (uniform-velocity) frames of reference in the non-relativistic

domain. Although the continuum Navier Stokes equation is Galilean invariant as shown

in Appendix B, LB simulations suffer from Galilean invariance violations because the

lattice frame is fixed and even the recovery of NSE in LB is not complete. Eq. (3.31)

shows that the error derived from the incomplete recovery of NSE increases as the

fluid velocity increases. Therefore, it is reasonable to deduce that the error of GI

violation also increase with the relative speed between the stationary frame and the

moving frame. Both the ideal gas LB model and the non-ideal gas LB model suffer

from GI violations, but the error sources for the two models are different. As shown in

Eq. (3.31) and Eq. (3.74), the ideal gas LB model suffers from GI violations because of

the w∂γ∂βQαβγ term, which was obvious when both a and A were set to zero. For the

non-ideal LB simulation, some extra terms were introduced through the A term. This

was especially the case when a non-ideal LB model was employed to simulate phase
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separation. Because near equilibrium at the interface region, the density gradient is

much larger than the pressure gradient thus contributes more to the Galilean invariance

violation through the density gradient in the A term.

The GI violation of the LBM is not always serious and may be acceptable in some

applications. But in other applications, it can cause problems. Recently, research has

investigated Lees-Edwards-like boundary conditions in lattice Boltzmann simulations

of sheared systems [58]. It turns out that these boundary conditions were problematic

[10], and I presume that Galilean invariance violations may be to blame. This motivated

me to investigate the GI of LB in detail.

To begin my analysis of the GI violation of LB, I introduced a criterion which can

be used to judge if an LB model is Galilean invariant and, if not, which terms cause the

errors. For any LB model that is Galilean invariant, its equilibrium density distribution

function must satisfy the following equation [8]:

Mj(u) = Mj(0), (4.1)

where the j order tensor Mj(u) is defined as Mj(u) ≡ ∑b
i=1(vi − u)jf eq(u); b is the

number of discrete velocities; v is the velocity of the distribution; and u is the average

velocity. For the purpose of GI judgement, terms of j ≤ 3 are of most importance

because we required those terms in Section 3.1. to derive the hydrodynamic equations.

Although higher order terms do have some effect on the simulations, their effects are

minor compared with those of the lower order terms. Buick used Eqs. (4.1) when he

derived coefficients of an LB model [8], but it can be used to test the GI of an LB
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model. The following moments are easily obtained by substituting Eqs. (3.38) , (3.39),

and (3.40) into Eq. (4.1),

M0(0) = ρ, M0(u) = ρ; (4.2)

M1(0)γ = 0, M1(u)γ = 0; (4.3)

M2(0)γδ = ρ/3, M2(u)γδ = ρ/3; (4.4)

M3(0)γδθ = 0, M3(u)γδθ = −ρu3. (4.5)

The result clearly shows the GI violation of the model because of the ρu3 term in M3.

I applied Eq. (4.1) to the D1Q3 model here because I use this model exclusively

to verify my theoretical analysis. Actually, Eq. (4.1) is applicable to all LB models.

The results of the application of Eq. (4.1) to additional ideal and non-ideal models are

described in Appendix E.

Simulations are performed to test various approaches to GI violation corrections in

Table 3.1. A sound wave propagation simulation was performed to check the effects of

corrections in a one-phase scenario. A one-component phase separation simulation was

performed to check the effects of the corrections in a two-phase scenario.

4.2. Galilean Invariance Corrections for Sound Waves

In this section, I analyze the simulation of one-dimensional isothermal sound wave

propagation with LB ideal gas models. I simulated the sound wave propagation with

an isothermal LB simulation because those are the models we are interested in, even
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though an adiabatic model would be more physical. The results of the simulations

with and without GI corrections were compared to the analytical solution derived in

Appendix C,

ρ = ρ0 + δρ0 exp(−c2sk2(τ − ∆t/2)t) sin(k(x− cs
√

1 − c2sk
2(τ − ∆t/2)2 t )), (4.6)

where ρ is the density, ρ0 is the constant density of medium in the absence of a sound

wave, δρ0 is the initial amplitude of the density variation constituting the sound wave,

cs is the sound speed, k is the wave number, τ is the relaxation time of LB, and ∆t is the

time step which is 1 in LB simulation. The density of the ideal gas is ρ0 = 100, and 3

wavelengths are in one frame. The initial condition for the simulation can be obtained

by using continuity equation Eq.(2.1). The initial density of the system is ρ[i] =

100 + δρ0 sin(6πi/L), where i is the lattice site and L is the number of the total lattice

sites. The initial velocity is u[i] = (−c2sk(τ−∆t/2) cos(kx)+csδρ0 sin(6πi/L))/ρ[i]+u0,

where u0 is the velocity of the frame of the medium with respect to the fixed lattice.

In my simulation δρ0 = 1. See Appendix C for the derivation.

To measure the effect of my Q correction on the GI violation, I introduced some

measurement definitions. Because a sound wave causes a density variation on a medium,

I defined the norm of the sound wave as N ≡ 〈(ρ(i)−ρ0(i))
2〉, where i is the lattice site,

ρ(i) is the density of the medium with a sound wave, ρ0(i) is the density of medium in

the absence of a sound wave. The absolute error is defined as E ≡ 〈(ρu0
(i) − ρ(i))2〉,

where ρu0
is the density when the frame on medium has a velocity u0 with respect to

the static frame on the lattice, ρ(i) is density measured when u0 is 0. When measured,
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Figure 4.1. The waveforms of sound waves in an ideal gas obtained
by the LB simulation with and without Q correction were compared
to the theoretical values. The medium moved with a velocity of 0.1
with respect to the static frame.

ρu0
(i) and ρ(i) should be in the same phase with respect to i. The relative error is

defined as Er ≡
√

E/N .

The attenuation of the sound waves in an ideal gas with and without Q correction are

compared in Figure 4.1. The measurement was taken after 2000 iterations. The figure

shows that the algorithm with correction gives a better result, namely it is closer to the

analytical solution. Figure 4.1 also shows a small phase shift between the theoretical

solution and the LB simulation. The source of which merits further investigation.

The errors and relative errors of the sound waves versus iterations with and without

Q correction are compared in Figure 4.2. We see that both the error and relative

error of the sound wave with correction are smaller than that without correction.
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Figure 4.2. The error and relative error of a sound wave in an ideal
gas obtained by the LB simulation with Q correction are compared to
that without Q correction for u0 = 0.1.

The simulation parameters of this simulation are the same as those in the attenuation

simulation, except u0 = 0.1.

The relative error of the sound waves with and without correction are also compared

as a function of u0 in Figure 4.3. The parameters for this simulation were the same

as those in the attenuation simulation except u0 changes from 0.01 to 4.29, and the

iteration for each u0 was 3000. Figure 4.3 shows that the relative error with correction is

smaller than that without correction. For both algorithms, the relative errors increase

with the velocity of the whole system.

All the simulation results show that the LB algorithm with correction performed

better than the algorithm without correction. Next, the effect of the GI correction by

the LB simulations in a system of two phases is checked.
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Figure 4.3. The relative errors of a sound wave in an ideal gas obtained
by LB simulation with and without Q correction are compared for
different u0 after 3000 iterations.

4.3. Test of Correction in Liquid-Gas Phase Separation

To validate our GI violation correction approach, I simulated liquid-gas phase

separation described by a Landau free energy model (Eq. 2.31). The thermodynamics

of such a system has been discussed in Section 2.4.. The LB simulation results with

and without Q term correction were compared with the analytical solutions.

In order to measure the effects of the GI violation in the LB simulation, I used two

frames of reference: one was fixed on the lattice, and the other moved along with the

fluid at a velocity u0. For a stationary system, the density profile is given by a profile

ρ0(x) and the velocity is u(x) = 0. When the same system is moving with velocity u0, I

expect a profile ρ(x) = ρ0(x−u0t) and a velocity u(x) = u0. Any deviation of Galilean
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Figure 4.4. Galilean invariance errors E(u0) of a liquid-gas system with different
LB approaches are compared through u0 in (a) and κ in (b). The simulation
parameters are nc = 1, pc = 0.42, θ = −0.03. (a) E(u0) at κ = 0.1. (b) E(κ) of
the HoldychQ method for u0 = 0.025, 0.05, 0.1, 0.2, 0.3.

invariant behavior shows up in deviations of the profiles of ρ(x) and u(x). Because

the analytical solution for the velocity profile was translation invariant, it was easy to

devise a measure of the Galilean invariance violation based on the velocity profile. I

defined the dimensionless error function as

E(u0) =

√

∑

i

(u(i)/u0 − 1)2/L . (4.7)

The simulation showed that it typically takes less than 1000 iterations for the density

profile of the system to reach a stable state. The measurement was taken after 105

iterations to be sure that the system was in an equilibrium state. The measurements

of different correction approaches are shown in Figure 4.4.

Figure 4.4 (a) shows the Galilean invariance error E(u0) for the different methods
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of Table 3.1. The errors of pressure approach were the largest because the density

profile in the LB simulation of this approach remained static at all values of u0.

The correction terms in the Holdych approach led to a significant improvement. The

additional Q correction term in the HoldychQ method did not lead to a noticeable

improvement, except for u0 ≥ 0.3, for which this method becomes more accurate and

more stable. The Forcing approach led to a good performance at a small u0, but

the error increased exponentially with u0, which can be expressed approximately as

E(u0) = 10−3 exp(11.65u0). The Q correction term in the ForcingQ method yielded a

significant improvement. For a small u0, the Forcing and Holdych methods gave the

same results as their Q corrected versions because the correction term was cubic in u0

and, therefore, gave a negligible contribution to the forcing term.

When interpreting these results, it is important to note that the parameter space

for the Galilean invariance problem includes not only u0 but also the parameters

determining the equilibrium density profile κ, θ, and pc as well as the relaxation time

τ . This parameter space is so large that it is not feasible to examine exhaustively here.

Since the Galilean invariance violations are related to gradient terms, it is reasonable to

assume that a wider interface leads to a smaller error. Because of the intrinsic surface

tension in the Forcing Q approach, the thickness of the interface cannot be adjusted by

changing the value of κ [55]. Therefore, only the HoldychQ method was employed for my

simulation. I performed simulations for different interface widths. The interface width

ξ is related to κ through ξ ∝ κ1/2 [7]. Figure 4.4 (b) shows that κ−1.2 ∝ ξ−2.4 for large

κ. So increasing the interface width is another means by which Galilean invariance

violations can be reduced. For thin interfaces the Galilean invariance violation was
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worse at smaller velocities. This effect is attributed to the pinning of the interface

to the lattice since the interface can be more easily dislodged by a larger advective

velocity.

To sum up, I have identified the Galilean invariance violation terms for both of the

ideal gas LB models and the non-ideal fluid LB model in the Navier Stokes equation

level. The corrections for both cases were presented. The simulations in one-phase and

two-phase systems validated the corrected algorithms.
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APPENDIX A

FLORY-HUGGINS MODEL OF POLYMER SOLUTION

The Flory Huggins free energy model is very popular in studying phase behavior

of polymer solutions. One motivation to develop the multicomponent LB method is

to apply it to simulate the hydrodynamics and phase-separation of multicomponent

polymer solutions. Therefore, I derive the free energy of the system from the model

[33]. I will start from a binary polymer solution then extend our conclusions to a

multicomponent solution.

For an isothermal system, the free energy change of the system can be calculated by

the entropy change and the internal energy change. For a binary system of components

A and B, A is monomer and B is polymer with polymerization m. The system can be

modeled as two kinds of balls in a three-dimensional lattice. Every lattice site can only

be filled with one ball. The entropy of a system can be calculated using Boltzmann’s

equation: S = k ln Ω, where Ω is the total number of distinguishable arrangements

having equal energy. For a binary system, the entropy change is

∆Smix = k[ln ΩAB − (ln ΩA + ln ΩB)], (A.1)

where ΩAB represents the arrangement in the mixture while ΩA and ΩB represent the

arrangement in the pure components. For our binary system, the total number of
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sites is NA + mNB. Consider the arrangement for the first polymer chain first. The

number of arrangements of the first mer is NA +mNB. The number of arrangements

of the second mer is z, which is the lattice coordination number. The number of

arrangements of the third mer is z − 1 (one less because one coordination is occupied

by the first mer). The number of arrangements of the fourth mer is z − 1. The

number of arrangements of the fifth mer is (z − 1)ε, where ε < 1 accounts for the

fact that some of the z − 1 neighboring sites not occupied by the third mer could

be occupied by the first or second. The “mean field approximation” is used because

rigorous treatment is difficult. Because ε can be approximated as the overall fraction

of unfilled sites in the lattice, ε5 = (NA + mNB − 4)/(NA + mN2) for the fifth mer,

and εj is assumed to be the same in one chain. The arrangements of the first polymer

chain ν1 is ν1 = (NA +NB)z(z− 1)m−2εm−4
j . Similarly, the arrangements of the second

polymer chain can be obtained in the form ν2 = [NA + m(NB − 1)]z(z − 1)x−2εm−1
j

while NA +m(NB − 1) for the first mer, zεj for the second mer, and (z − 1)εj for the

third mer and so on. In general, νi+1 = [NA + m(NB − 1)]z(z − 1)x−2εm−1
j . Since N1

and N − 2 are large numbers, εj can be computed approximately for each chain rather

than each mer: εj = (NA +m(NB − j))/(NA +mNB). The approximation of z ≈ z− 1

yields

νi+1 ≈ [NA +m(NB − i)]

[

(z − 1)
NA +m(NB − i)

NA −mNB

]m−1

= [NA +m(NB − i)]m
[

z − 1

NA −mNB

]m−1

(A.2)
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ΩAB =
1

NB!
ΠNB−1

0 νi+1

=
1

NB!

[

z − 1

NA +mNB

]NB(m−1)

ΠNB−1
0 [NA +m(NB − i)]m

=
(NA +mNB)!

NA!NB!

[

z − 1

NA +mNB

]NB(m−1)

.

(A.3)

The arrangement of a pure polymer ΩB can be found by setting NA = 0:

ΩB =
(mNB)!

NB!

[

z − 1

mNB

]NB(m−1)

. (A.4)

Using ΩA = 1 for a pure solvent and Sterling’s approximation, I obtain

∆Smix

= k[ln ΩAB − (ln Ωa + ln ΩB)]

= k

[

lnNA +mNB)! − lnNA! − ln(mNB)! +NB(m− 1) ln

(

mNB

NA +mNB

)]

= −k(NA lnφA +NB lnφB), (A.5)

where φA ≡ NA

NA+mNB
and φB ≡ mNB

NA+mNB
are the volume fractions. The enthalpy change

of mixing can be calculated with a simple model. Let eAA represent the contact energy

between two A mers and eBB represent the contact energy between two B mers. The

enthalpy change for mixing to form one pair of A B contacts from pure A and pure B

contacts is ∆e = eAB − 1
2
(eAA + eBB), as illustrated by (• • + ◦ ◦ −→ 2 • ◦ ), where •

and ◦ represent an A mer and a B mer. For a polymer solution, the enthalpy of mixing
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is ∆Hmix = pAB∆e, where pAB is the total number of AB contacts in the solution.

Lattice sites adjacent to the end mer are z − 1 , and lattice sites adjacent to each mer

that is not at the end is z−2. So the total lattice sites for a single chain with m degree

of polymerization are m(z − 1) + 2 ≈ m(z − 2). And the lattice sites for all polymer

chains are NBm(z − 2). With mean field approximation, φA of the total sites are filled

by solvent, pAB = NB(z − 2)mφA = (z − 2)NAφB. Therefore, the enthalpy change of

mixing is ∆Hmix = (z − 2)NAφB∆e = kTNAφBχ, where χ ≡ (z − 2)∆e/(kT ) is the

interaction parameter. The free energy change of the mixing is

∆Gmix = ∆Hmix − T∆Smix = kT (NA lnφA +NB lnφB +NAφBχ), (A.6)

where θ = kT .

Generalizing Eq. (3.1) to an arbitrary multicomponent system, considering the

contribution from gradient terms, I get the total Helmholtz free energy of the mixing

of a multicomponent system in Eq. (2.42).

The chemical potential can be calculated by substituting Eq. (2.42) into Eq. (2.16).

Considering the surface tension contribution, the free energy density of a binary system

can be obtained with Eq. (2.15) as

φ = ψ(nA, nB) +
1

2
κAA∇nA∇nA +

1

2
κAB∇nA∇nB +

1

2
κBB∇nB∇nB, (A.7)
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where ψ(nA, nB) is bulk free energy density, κ is the surface tension parameter.

µA =
∂φ

∂nA
+ ∇ ∂φ

∂∇nA (A.8)

= θ[−mA + lnφA + φB(1 −mA/mB) +mAχABφ
2
B)]

−2κA∇2nA − κAB∇2nB, (A.9)

µB = θ[−mB + lnφB + φA(1 −mB/mA) +mBχABφ
2
A)]

−2κB∇2nB − κAB∇2nA. (A.10)

Similarly, the chemical potential for ternary systems are

µA = θ[−mA + lnφA + (1 − φA) − φB
mA

mB
− φC

mA

mC

+mA(1 − φA)(φBχAB + φCχAC) −mAχBCφBφC ]

−2κA∇2nA − κAB∇2nB − κAC∇2nC , (A.11)

µB = θ[−mB + lnφB + (1 − φB) − φC
mB

mC
− φA

mB

mA

+mB(1 − φB)(φCχBC + φAχAB) −mBχACφAφC ]

−2κB∇2nB − κBC∇2nC − κAB∇2nA, (A.12)

µC = θ[−mC + lnφC + (1 − φC) − φA
mC

mA
− φB

mC

mB

+mC(1 − φC)(φAχAC + φBχBC) −mCχABφAφB]

−2κC∇2nC − κAC∇2nA − κBC∇2nB. (A.13)
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APPENDIX B

GALILEAN INVARIANCE IN CONTINUUM

To discuss the Galilean Invariance problem of LB, it will be beneficial to understand

that NSE itself obeys Galilean invariance. For two systems A′ and A, if A is moving with

a constant velocity U with reference to A′, the Galilean transformation is as follows:































r′ = r + Ut

t′ = t

u′ = u + U

and also






























r = r′ − Ut′

t = t′

u = u′ − U.

Suppose F (r, t) is an arbitrary function in the A system and F ′(r′, t′) is the

corresponding function in A′ system. The two functions describe the same physical

field. We have

F (r, t) = F ′(r + Ut, t), (B.1)

F ′(r′, t′) = F (r′ − Ut′, t′). (B.2)
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Because ∂rr
′ = ∂r(r + Ut) = ∂rr, we have

∂rF = ∂r′F
′ (B.3)

∂tF (r, t) = ∂tF
′(r + Ut, t) = ∂t′F

′ + u · ∂r′F
′. (B.4)

Similarly, we can get

∂t′F
′ = ∂tF − U · ∂rF. (B.5)

The continuity equation in system A is

∂tρ+ ∂r(ρu) = 0. (B.6)

By using Eq. (B.3) and Eq. (B.5), the continuity equation in system A′ is

∂t′ρ
′ + ∂r′(ρ

′u′)

= ∂tρ− U · ∂rρ+ ∂r(ρu) + ∂r(ρU)

= ∂tρ+ ∂rρu

= 0.

The right side of the NSE equation contains only spatial derivatives that are equivalent
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in the two systems. The left side in the A′ system is

ρ′(∂t′u
′

i + u′k∂kui)

= ρ′(∂t′u
′

i + u′k∂ku
′

i)

= ρ[(∂t − Uk∂k)(ui + Ui) + (uk + Uk)∂k(ui + Ui)]

= ρ(∂tui + uk∂kui).

Therefore, the NSEs are of the same form in both the A and the A′ system.
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APPENDIX C

ANALYTICAL SOLUTION OF ONE-DIMENSIONAL

SOUND WAVE

The theoretical equation describing the sound wave propagation in an isothermal

ideal gas in one dimension is needed as a reference to validate the LB simulation

algorithm.

C.1. Sound Wave Equation Without Viscosity

The sound wave equation in isothermal ideal gases in one dimension can be derived

from the continuity equation Eq. (2.1) and the Navier Stokes equation Eq. (2.2). Since

the sound wave equation is expected to be a second order differential equation, terms

of higher order smallness can be neglected in the derivation. The velocity of the fluid u

caused by a sound wave can be treated as a small quantity of the first order of smallness

when the amplitude of the sound wave is small. Suppose the viscosity is negligible, Eq.

(2.2) yields

∂t(ρu) + ∇P = 0. (C.1)

Doing time derivative of Eq. (2.1) gives

∂2
t ρ+ ∂t∇ · (ρu) = 0. (C.2)
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Substituting Eq. (C.2) into Eq. (C.1) leads to

∂2
t ρ−∇2P = 0. (C.3)

In ideal gas, the P = kTρ is a constant, so in the isothermal case ∂ρP = kT .

∇2P = kT∇2ρ. (C.4)

The wave equation is given by

∂2
t ρ = kT∇2ρ (C.5)

In one dimension, Eq. (C.5) reduces to

∂2
t ρ = kT∂2

xρ (C.6)

The sound velocity obviously is given by

cs =
√
kT . (C.7)

In the LB lattice model, the sound velocity cs = 1/
√

3.
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C.2. Sound Wave Equation with Viscosity

To derive the sound wave equation with viscosity, I express the stress tenor of Eq.

(2.3) in an alternative form

σij = η(∂jui + ∂iuj) + λδij∇ · u, (C.8)

where η is the shear viscosity and λ is the second viscosity.

The NSE with this viscosity definition is given by

ρ∂tu + ρu · ∇u = −∇P + (2η + λ)∇(∇ · u). (C.9)

Eq. (C.9) in one dimension becomes

ρut + ρuux = (2η + λ)uxx − px. (C.10)

In order to find an analytical solution of a sound wave, the sound wave amplitude

should be considered.

ρ = δρ+ ρ0, p = δp+ p0, (C.11)

where δρ and δp are the perturbations of density and pressure caused by sound waves,

and ρ0 and p0 are the density and pressure of the ideal gas without a sound wave. Note

that δρ, δp , and u are of the first order smallness, which is denoted as O(ǫ). In sound

wave analysis, the long wave length assumption is not applicable, and the time and
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space derivative of a variable would not increase its order of smallness. Plugging Eq.

(C.11) into Eq. (C.10) and retaining only the first order terms give

ρ0ut + δpx = (2η + λ)uxx +O(ǫ2). (C.12)

Eq. (C.7) implies in isothermal case,

δp = c2sδρ (C.13)

Substituting Eq. (C.11) into Eq. (2.1) yields

δρt + ρ0ux = O(ǫ2). (C.14)

Denoting s ≡ 2η + λ and doing t derivative to Eq. (C.12) lead to

ρ0utx + δpxx = suxxx +O(ǫ3). (C.15)

Doing x derivative to Eq. (C.13) gives

δpx = c2sδρx. (C.16)

Doing t derivative to Eq. (C.14) gives

δρtt + ρ0uxt = O(ǫ3). (C.17)
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Doing x derivative to Eq. (C.14) gives

δρtx + ρ0uxx = O(ǫ3). (C.18)

Substituting Eqs. (C.16), (C.17), and (C.18) into Eq. (C.15) and keeping the terms

only to the order of O(ǫ2), the wave equation is obtained in the form of

−δρtt + c2sδpxx +
s

ρ0

δρtxx = 0. (C.19)

We assume the analytical solution is of the form δρ = δρ0 exp(i(kx − ωt)) where

ω = α− iβ and β is the attenuation coefficient. So I have

δρtt = −ω2δρ (C.20)

δρxx = −k2δρ (C.21)

δρxxt = ik2ωδρ (C.22)

Substituting Eqs. (C.20), (C.21), and (C.22) into Eq. (C.19) gives

ω2 − c2sk
2 + i

sωk2

ρ0

= 0 (C.23)

In the one dimensional LB model, by noting cs = 1/
√

3, s = 2ν + 0 = 2ρ(τ − δt/2)/3,

and with the substitution of complex expression of ω into equation C.23, an algebra
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equation can be obtained as

α2 − i2αβ − β2 − c2sk
2 + iαc2sk

2(2τ − ∆t) + βc2sk
2(2τ − ∆t) = 0. (C.24)

The real and imaginary parts of the equation C.24 should both equal to zero. The

solution of the simultaneous equations obtained is

β = c2sk
2(τ − ∆t/2) (C.25)

α =
√

c2sk
2 − c4sk

4(τ − ∆t/2)2 (C.26)

A general solution is then of the form

ρ = ρ0 + δρ0 exp(−c2sk2(τ − ∆t/2)t) sin(k(x− cs
√

1 − c2sk
2(τ − ∆t/2)2 t )). (C.27)

To find the initial condition for my LB simulation, I substitute the Eq. (C.27) into the

continuity equation Eq. (2.1) and obtain

−δρ0β exp(−βt) sin(kx− αt) − δρ0α exp(−βt) cos(kx− αt) +
∂

∂x
(ρu) = 0 (C.28)

Integrating Eq. (C.28) with respect to x, applying t = 0 and Eqs. (C.25) and (C.26),

I get the initial condition for u(x) in a static medium frame as

u(x) = δρ0

(

−c2sk(τ − ∆t/2) cos(kx) + cs
√

1 − c2sk
2(τ − ∆t/2)2 sin(kx)

)

/ρ(x)

(C.29)
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APPENDIX D

THE DERIVATION OF PRESSURE TENSOR

The pressure tensor can be derived from the total free energy expression of a system,

which is given by Eq. (2.18). The force on density can be obtained from the derivative

of the pressure tensor or from the product of the density and the the derivative of the

chemical potential, which is given by Eq. (2.16). Therefore,

∂βPαβ = n∂α

(

δF
δn

)

= n∂α

(

dψ

dn
− κ∂β∂βn

)

. (D.1)

The first term of the equation(D.1) can be written

∂α

(

n
dψ

dn

)

− dψ

dn
∂αn = ∂α

(

n
dψ

dn
− ψ

)

. (D.2)

And the second term becomes

κ[(∂αn)(∂β∂βn) − ∂α(n∂β∂βn)]

= κ[∂β{(∂α)(∂βn)} − (∂βn)∂β∂αn− ∂α(n∇2n)]

= κ∂β

[

(∂αn)(∂βn) − δαβ

(

n(∇2n) +
1

2
|∇n|2

)]

. (D.3)

89



By Eqs (D.2) and (D.3) we have

∂βPαβ = ∂β

[

δαβ

(

p0 − κn∇2n− κ

2
|∇n|2

)

+ κ(∂αn)(∂βn)
]

, (D.4)

where p0 = ndψ
dn

− ψ. Therefore up to an arbitrary constant

Pαβ = δαβ

(

p0 − κn∇2n− κ

2
|∇n|2

)

+ κ(∂αn)(∂βn). (D.5)

Following the same process, the pressure tensor of a binary system can be obtained as

[51]:

Pαβ = pδαβ + κρ(∂αρ)(∂βρ) + κϕ(∂ϕρ)(∂βϕ), (D.6)

where p = p0 − kρρ∇2ρ − κρ

2
|∇ρ|2 − kϕϕ∇2ϕ − κϕ

2
|∇ϕ|2 and p0 = ρ∂ρψ + ϕ∂ϕψ − ψ.

Here ρ = nA +nB and ϕ = nA−nB are the sum and difference of the two components.
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APPENDIX E

GALILEAN INVARIANCE EXAMINATIONS

Eq. (4.1) can be used to examine whether an LB model is strictly Galilean invariance

and to indicate which terms break the GI. Four models are examined: the D2Q7 and

D2Q9 models for ideal gases; Swift’s and Inamuro’s models for non-ideal gases. The

moments in the D2Q7 ideal gas model are

Table E.1. Velocity product summation(D2Q7)

sum over i for i= 2, · · · , 7
∑6

i=0 viα 0
∑6

i=0 viαviβ 3δαβ
∑6

i=0 viαviβviγ 0
∑6

i=0 viαviβviγviδ
3
4
(δαβδγδ + δαγδβδ + δαδδβγ)

∑6
i=0 viαviβviγviδviθ 0

M0(0) = ρ, M1(u) = ρ;

M1(0)γ = 0, M1(u)γ = 0;

M2(0)γδ = ρ
4
δγδ, M2(u)γδ = ρ

4
δγδ;

M3(0)γδθ = 0, M3(u)γδθ = −ρuγuδuθ.

The moments in the D2Q9 ideal gas model are
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Table E.2. Velocity product summation(D2Q9)

sum over i for i= 2, · · · , 5 for i= 6, · · · , 9
∑

viα 0 0
∑

viαviβ 2δαβ 4δαβ
∑

viαviβviγ 0 0
∑

viαviβviγviσ 2δαβδαγδβσ 4(δαβδγσ + δαγδβσ + δασδβγ − 2δαβδαγδβσ)
∑

viαviβciγviσviλ 0 0

M0(0) = ρ, M0(u) = ρ;

M1(0)γ = 0, M1(u) = 0;

M2(0)γδ = ρ
3
δγδ, M2(u) = ρ

3
δγδ;

M3(0)γδθ = 0, M3(u) = −ρuγuδuθ .

Therefore, the above three ideal gas models suffer GI violation because of the

−ρuγuδuθ term, just as shown in Eq. (3.31) . Non-ideal fluid models also can be tested

with the model. For the Swift model, the equilibrium distribution in D2Q7 model is of

the form

f eqi = A+Buαviα + Cu2 +Duαuβviαviβ +Gαβviαviβ, (E.1)

for i = 1, · · · , 6 . For particles at rest,

f eq0 = A0 + C0u
2, (E.2)
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where the coefficients are

A0 = n− 6A,A = (p0 − κ− n∇2n)/3c2, B = n/3c2, C = −n/6c2, C0 = −n/c2,

D = 2n/3c4, Gxx = −Gyy =
κ

3c4
{

(∂xn)2 − (∂yn)2
}

, Gxy =
2

3c4
κ∂xn∂yn.

Similarly, the moments can be obtained as

M0(0) = n, M0(u) = n;

M1(0)γ = 0, M1(u)γ = 0;

M2(0)γδ = 3Aδγδ + 3
2
Gγδ, M2(u)γδ = 3Aδγδ + 3

2
Gγδ;

M3(0)γδθ = 0,
M3(u)γδθ = −nuγuδuθ + n

4
(uθδγδ + uδδγθ + uγδδθ)

−3A(uθδγδ + uδδγθ + uγδδθ) − 3
2
(uθGγδ + uγGθδ + uδGθγ).

Inamuro suggested the following equilibrium distribution function in D2Q9 model.

[22]:

f eqi = Hiρ+ Fi[(po − κρ∆2ρ) + 2wuγ∂γρ] (E.3)

+Eiρ[3uαviα −
3

2
u2 +

9

2
uαuβviαviβ] + EiGαβviαviβ, (E.4)

where i = 1, · · · , 9, and α, β, γ = 1, 2 are the Cartesian coordinate with summation

convention. H1 = 1 and Hi = 0 for i = 1; 2, · · · , 9; E1 = 4
9
, Ei = 1

9
for i = 2, · · · , 5, and

Ei = 1
36

for i = 6, · · · , 9; F1 = −5
3
, Fi = 1

3
for i = 2, · · · , 5, and Fi = 1

12
for i = 6, · · · , 9.

Gαβ =
9

2
[κ∂αρ∂βρ+ w(uβ∂αρ+ uαρβ)] −

9

4
[κ∂γρ∂γρ+ 2wuγ∂γρ]δαβ. (E.5)
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where ω = 1
3
(τ − 1

2
)∆x, and po is the pressure of a van der Waals fluid. Denote

p1 ≡ p0 − κρ∇2ρ.

M0(0) = ρ, M0(u) = ρ;

M1(0)γ = 0, M1(u) = 0;

M2(0)γδ = p1δγδ + 2
9
Gγδ, M2(u)γδ = p1δγδ + 2

9
Gγδ;

M3(0)γδθ = 0,
M3(u)γδθ = −ρuγuδuθ − p1(uγδδuθ

+ uδδγθ + uθδγδ)

−2
9
(uγGδuθ

+ uδGγθ + uθGγδ).

It is clear that the GI violation term ρuαuβuγ from the ideal gas model still remains

uncorrected for all the non ideal fluid model corrections. Therefore a correction for

ρuαuβuγ term has not been done in all the above models.
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APPENDIX F

CODE FOR THEORETICAL SOLUTION OF A BINARY
SYSTEM

/*This code is to calculate the binodal lines of a binary system.

As one phase separates into two phases, the free energy of the

system changes. We find the two binodal points by dislodging

the state variables of the two resulting phases until the free

energy of system reaches minimum.

by Qun Li on July, 2005 */

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<unistd.h>

#include<math.h>

#include<mygraph.h>

#define PRECISION 1e-10

/* calculate the the free energy of the system */

double FreeEnergy(double phi, double chi, double polymerization)

{double freeenergy;

if(phi<=0 || phi>=1)

{

printf("The valid value of phi is in (0,1)" );

return .0;

}

freeenergy = phi* log(phi) + (1.- phi)* log(1.- phi)

/polymerization + chi * phi * (1. - phi);

return freeenergy;

}

/*calculate the free energy of the system when it phase separates

from a homogeneous state of phi0 into two phases, phi1 and phi2.*/

double Fmix(double phi0, double phi1, double phi2,

double polymerization, double chi)

{ double fmix;

if(phi1< phi0 && phi0< phi2 )

fmix= FreeEnergy(phi1,chi,polymerization)*(phi0-phi2)/(phi1-phi2)

+ FreeEnergy(phi2,chi,polymerization)*(phi1-phi0)/(phi1-phi2);

else

fmix=FreeEnergy(phi0,chi,polymerization);

return fmix;
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}

/* dislodge phi1 back and forth to find the minimum free energy

of the system*/

double FindPhi1min(double phi0, double phi1, double phi2,

double step,double polymerization, double chi,double boundary1)

{

double phimin, fmin, f1, f2, f3, phi1l, phi1r;

phi1l = phi1-step;

phi1r = phi1+step;

if(phi1l <=boundary1)

phi1l = phi1;

if(phi1+step > phi0)

phi1r = phi0;

f2=Fmix(phi0, phi1l, phi2, polymerization, chi);

f1=Fmix(phi0, phi1, phi2, polymerization, chi);

f3=Fmix(phi0, phi1r, phi2, polymerization, chi);

fmin = f1;

phimin=phi1;

if(f2<fmin)

{

phimin=phi1l;

fmin=f2;

}

if(f3<fmin)

phimin=phi1r;

return phimin;

}

/*dislodge phi2 back and forth to find the minimum free energy

of the system */

double FindPhi2min(double phi0, double phi1, double phi2,

double step,double polymerization, double chi,double boundary2)

{

double phimin, fmin, f1, f2, f3, phi2l, phi2r;

phi2l = phi2-step;

phi2r = phi2+step;

if(phi2r >= boundary2)

phi2r=phi2;

if(phi0 + step > phi2)

phi2l = phi0;

f1=Fmix(phi0, phi1, phi2l, polymerization, chi);

f2=Fmix(phi0, phi1, phi2, polymerization, chi);

f3=Fmix(phi0, phi1, phi2r, polymerization, chi);

fmin = f1;
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phimin=phi2l;

if(f2<fmin)

{

phimin=phi2;

fmin=f2;

}

if(f3<fmin)

phimin=phi2r;

return phimin;

}

main(){

FILE *pt;

int change1, change2;

double chi, step, phi0, phi1, phi2, phi1min, phi2min, polymerization,

epsilon, boundary1, boundary2, phi_critical, chi_critical;

pt=fopen("bim5.dat","w");

epsilon= 1e-10;

boundary1= epsilon;

boundary2=1.0-epsilon;

polymerization=5;

chi_critical =(polymerization + 1 + 2 * sqrt(polymerization))

/(2*polymerization);

phi_critical = 1/(sqrt(polymerization)+1); //volume fraction

for(chi = chi_critical; chi<5.1; chi=chi+0.01){

step=0.01;

phi0= 1- phi_critical; /* This is for solvent volume fraction */

phi1 = phi0 - 2.0*step;

phi2 = phi0 + 2.0*step;

do{

do{change1=0; change2=0;

phi1min = FindPhi1min(phi0, phi1, phi2, step,

polymerization, chi, boundary1);

if(phi1min != phi1){change1=1; phi1 = phi1min;}

phi2min = FindPhi2min(phi0, phi1, phi2, step,

polymerization, chi, boundary2);

if(phi2min != phi2){change2 =1; phi2 = phi2min;}

}while(change1==1 || change2==1);

step = step/2. ;

}while(step > epsilon);

fprintf(pt, "%e %e %e \n", chi, phi1, phi2);}

fclose(pt);

return 0; }
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APPENDIX G

CODE FOR THEORETICAL SOLUTION OF A TERNARY
SYSTEM

/* to calculate the binodal points and chemical potentials

with a Flory-Huggins free energy model of constant density */

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define SIZE 1000

#define PRECISION 1e-8

double mA=10.0,mB=1.0,mC=1.0,density =100,/*m=polymerization*/

can, dtheta_initial=0.001,chiAB=3,chiAC = 0.5, chiBC = 0.2;

/* chi is the interaction parameter between species */

double x[SIZE], y[SIZE], f[SIZE], ddf[SIZE],

/* ddf array is the second derivative of f */

xx0, yy0, xx1, yy1, xx2, yy2, size=SIZE, d = 0.01,

/*d is the distant of two middle point */

s= 1e-4, /* s is step, xx1 is at left, xx2 is at right */

tie_end_x1,tie_end_x2,tie_end_y1,tie_end_y2,sinitial=0.01,

dinitial = 0.01, fminbi, theta, temperature = 0.3333333,

/*this temperature is theta in LB*/dtheta=0.0001,epsilon=1e-8;

double AlnA(double x){

if(x < 1e-36) return 0;

return x*log(x);

}

/* the free energy per mer site */

double FreeEnergyDensity(double x, double y){

double z, free;

z=1-x-y;

free = temperature*density*(1 + AlnA(x)/mA + AlnA(y)/mB

+ AlnA(z)/mC + chiAB*x*y + chiAC*x*z +chiBC*y*z);

return free;

}

double chemA(double x, double y){

double chem_po, z;

z = 1-x-y;

chem_po=temperature*(-mA +log(x)+(1- x)-y*mA/mB-z*mA/mC

+ mA*(1-x)*(y*chiAB + z*chiAC) - mA*chiBC*y*z);

return chem_po;

}
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double chemB(double x, double y){

double chem_po, z;

z = 1-x-y;

chem_po = temperature*(-mB+log(y)+(1-y)-z*mB/mC-x*mB/mA

+ mB*(1-y)*(z*chiBC + x*chiAB)-mB*chiAC*x*z);

return chem_po;

}

double chemC(double x, double y){

double chem_po, z;

z = 1- x-y;

chem_po = temperature*(-mC+log(z)+(1- z)-x*mC/mA-y*mC/mB

+ mC*(1-z)*(x*chiAC + y*chiBC) - mC*chiAB*x*y);

return chem_po;

}

/* Fmix is free energy of the system with (xx1, yy1),(xx2, yy2)

phases after phase separating from xx0, yy0 phase. The total

volume is assumed to be one and constant in phase separation.*/

double Fmix(double xx0, double yy0, double xx1,

double yy1, double xx2, double yy2) {

if(xx1 == xx2) return FreeEnergyDensity(xx0, yy0); return

FreeEnergyDensity(xx1,yy1)*(xx0*yy2-xx2*yy0)/(xx1*yy2-xx2*yy1)

+FreeEnergyDensity(xx2,yy2)*(xx0*yy1-xx1*yy0)/(xx2*yy1-xx1*yy2);

}

void SecondOrderDerivative( double a[], double dda[], int size){

int i;

for(i=1; i<size-1; ++i)

dda[i] = (a[i+1] + a[i-1] - 2.0*a[i]);

dda[0] = dda[1];

dda[size-1]=dda[size-2];

}

void Tie(double theta, double xx0, double yy0){

int i;

tie_end_x1 = 0;

tie_end_x2 = xx0 + yy0*tan(M_PI/2.0 - theta);

tie_end_y1 = yy0 + xx0*tan(theta);

tie_end_y2 = 0;

for(i=0;i<size;i++)

{ x[i]=tie_end_x1+((double)i/(size-1.0))*(tie_end_x2-tie_end_x1);

y[i]=tie_end_y1+((double)i/(size-1.0))*(tie_end_y2-tie_end_y1);

f[i]=FreeEnergyDensity (x[i],y[i]);

SecondOrderDerivative( f, ddf, size);

}

}

void Pre_binodal(void){

int i;
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for(i=0; i<size; i++)

{ if(ddf[i] >= 0 && ddf[i+1]<0)

{xx1 = x[i+1];

yy1 = y[i+1];

}

if(ddf[i]<0 && ddf[i+1]>=0)

{ xx2 = x[i];

yy2 = y[i];

break;

}

}

}

/* Findmin1 function is to determin the minimum total free energy

of the two separated phases, given three points along a fixed

tie line. The middle points is the original one, and another two

points are at the outside and inside of the original point.

The range of the outside and inside points are limited */

void Findmin1_once(void){

double fmin1, fout1, fin1, x1out, y1out, x1in, y1in, x1min, y1min;

x1out=xx1-s*cos(theta);

y1out=yy1+s*sin(theta);

x1in = xx1 + s*cos(theta);

y1in = yy1- s*sin(theta);

if(x1out+y1out >1 || x1out<0){

x1out = xx1;

y1out =yy1;

}

if(x1in >xx0){

x1in = xx0;

y1in= yy0;

}

fmin1=Fmix(xx0,yy0,xx1,yy1,xx2,yy2);

x1min=xx1;

y1min=yy1;

fout1 = Fmix(xx0,yy0,x1out,y1out,xx2,yy2);

fin1 = Fmix(xx0,yy0,x1in,y1in,xx2,yy2);

if(fout1< fmin1){

fmin1= fout1;

x1min= x1out;

y1min= y1out;

}

if(fin1 < fmin1){

fmin1= fin1;

x1min= x1in;

y1min= y1in;
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}

xx1=x1min;

yy1=y1min;

}

/*The Findmin2 function behaves similar as Findmin1 */

void Findmin2_once(void){

double fmin2,x2out,y2out,x2in,y2in,fout2,fin2,x2min,y2min;

x2out = xx2+s*cos(theta);

y2out = yy2-s*sin(theta);

x2in = xx2-s*cos(theta);

y2in = yy2+ s*sin(theta);

if(x2out+y2out>1 || y2out <0){

x2out = xx2;

y2out = yy2;

}

if(x2in < xx0 ) {

x2in = xx0;

y2in= yy0;

}

fmin2=Fmix(xx0,yy0,xx1,yy1,xx2,yy2);

x2min=xx2;

y2min=yy2;

fout2 = Fmix(xx0,yy0,xx1, yy1,x2out,y2out);

fin2 = Fmix(xx0, yy0, xx1, yy1, x2in, y2in);

if(fmin2>fout2){

fmin2 = fout2;

x2min = x2out;

y2min = y2out;

}

if(fmin2 > fin2){

fmin2 = fin2;

x2min = x2in;

y2min = y2in;

}

xx2 = x2min;

yy2 = y2min;

}

void Findmin1(){

double oldxx1;

do{ oldxx1= xx1;

Findmin1_once();

}while(oldxx1 != xx1);

}

void Findmin2(){

double oldxx2;
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do{ oldxx2= xx2;

Findmin2_once();

}while(oldxx2 != xx2);

}

void Fix_binodal(){

s = sinitial;

do

{

Findmin1();

Findmin2();

s = s/10.0 ;

}

while(s>PRECISION);

fminbi= Fmix(xx0,yy0,xx1,yy1,xx2,yy2);

}

void Initial_condition(void)

{ s=sinitial;

d=dinitial;

xx0=0.4999;

yy0=0.4999;

theta=M_PI/4;

}

/*Find binodal points on line */

void Binodal_online(void){

Tie(theta, xx0, yy0);

Pre_binodal();

Fix_binodal();

}

/* the function is to find the initial binodal */

void Initial_binodal(void){

Initial_condition();

Binodal_online();

}

/*Find the new middle point from the old one by moving

distance d from the old one along the direction perpendicular

to the old tie line and towards the original point. */

void Next_center(void ){

xx0=(xx1+xx2)/2.0;

yy0=(yy1+yy2)/2.0;

xx0=xx0 - d*sin(theta);

yy0=yy0 - d*cos(theta);

}

/* the function is used after Tie() function to find the binodal

point with only one rotation */

void Rotation_once(void){
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double the0, the1, the2, themin, fthemin,thex1,thex2,they1,they2;

the1 = theta+dtheta;

the2 = theta-dtheta;

the0 = theta;

theta = the1;

Binodal_online();

{

fthemin = fminbi;

themin = theta;

thex1 = xx1;

thex2 = xx2;

they1 = yy1;

they2 = yy2;

}

theta = the2;

Binodal_online();

if(fminbi<fthemin){

thex1=xx1;

thex2=xx2;

they1=yy1;

they2=yy2;

themin = theta;

fthemin = fminbi;

}

theta=the0;

Binodal_online();

if(fminbi<fthemin){

thex1=xx1;

thex2=xx2;

they1=yy1;

they2=yy2;

themin=theta;

fthemin = fminbi;

}

fminbi = fthemin;

theta=themin;

xx1=thex1;

xx2=thex2;

yy1=they1;

yy2=they2;

}

Binodal_rotation(){

double oldfminbi;

do{

oldfminbi = fminbi;
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Rotation_once();

} while( oldfminbi != fminbi ) ;

}

/*To find the binodal point with the many rotations */

void Binodal(void){

double thetaold;

dtheta = dtheta_initial;

do

{

thetaold=theta;

Binodal_rotation();

dtheta = dtheta/10;

}

while(dtheta > PRECISION);

}

/* this function check if phase separation is possible */

int Can(double theta, double xx0, double yy0) {

int i=0;

Tie(theta, xx0, yy0);

for(i=0; i<size; i++)

if(ddf[i] < 0) return (1);

return (0) ;

}

main(){

FILE* pt;

pt = fopen("ternchem1.dat", "w");

Initial_condition();

Initial_binodal();

can =1;

while(can ==1)

{

if( yy1 <= 0.4) d = 0.0001;

Next_center();

can = Can(theta, xx0, yy0);

Binodal();

fprintf(pt, "%f %f %f %f %f %f %f %f %f %f \n",xx1,yy1,xx2,yy2,

chemA(xx1, yy1), chemA(xx2, yy2), chemB(xx1, yy1),

chemB(xx2, yy2), chemC(xx1, yy1), chemC(xx2,yy2));

}

fclose(pt);

return 0;

}
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APPENDIX H

CODE FOR LIQUID-GAS SYSTEM (HOLDRYCHQ)

/*The code is to verify the Holdych correction to pressure tensor.

The presure tensor correction = (\tau - 0.5)*u*\partial_x n,

and therefore we have the equilibrium distribution function as:

feq0=n-p-nu^2-c; feq1=(p+nu^2+nu+c)/2; feq2=(p+nu^2-nu+c)/2;*/

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<math.h>

#include<mygraph.h>

#define xdim 100

static int i, size = xdim, Repeat = 1, done= 0, sstep = 0,

Pause=1, densityreq = 0;

static double f0[xdim],f1[xdim],f2[xdim],omega = 1, n[xdim],

u[xdim],p[xdim],dn[xdim],mu[xdim], nu[xdim], ddn[xdim],

kappa = 0.1, nc = 1,pc=0.125,betatau=0.03,u0=0,correction[xdim];

double chem_an, pressure_an, n_an[xdim];

Analytical(){

chem_an = 4*pc*(1-betatau)/nc;

pressure_an = pc* (1-betatau)*(1-betatau);

for(i=0; i<100; i++)

n_an[i]=nc*(1+sqrt(betatau)*tanh((50-i)

/sqrt(kappa*nc*nc/(2*betatau*pc))));

}

void init (void){

int i;

for(i=0; i < xdim; i++){

n[i] = 1 + 0.01*sin(2*M_PI*i/xdim);

u[i] = u0;

f0[i] = (n[i]-n[i]*u[i]*u[i]-p[i]);

f1[i] = (n[i]*u[i]/2+n[i]*u[i]*u[i]/2+p[i]/2);

f2[i] = (-n[i]*u[i]/2+n[i]*u[i]*u[i]/2+p[i]/2);

}

}

FirstOrderDerivative(double *a,double *da, int n){

int i;

da[0]=(a[1]-a[n-1])/2.0;

da[n-1]=(a[0]-a[n-2])/2.0;

for(i= 1; i<n-1; ++i)

da[i]=(a[i+1]-a[i-1])/2.0;
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}

void SecondOrderDerivative( double a[], double dda[], int n){

int i;

dda[0]= (a[1]+a[n-1]-2.0*a[0]);

dda[n-1]=(a[0]+a[n-2]-2*a[n-1]);

for(i=1; i<n-1; ++i)

dda[i] = (a[i+1] + a[i-1] - 2.0*a[i]);

}

void iterate(void){

int i=0;

double temp1, temp2 ;

/*pc critical presure; beta a constant; nc critical density*/

/*tau = (Tc-T)/Tc; */

for (i=0;i<xdim;i++){

n[i]=f0[i]+f1[i]+f2[i];

nu[i] = (n[i] - nc)/nc;

u[i]=(f1[i]-f2[i])/n[i];

mu[i]=4*pc*(nu[i]+1)*(nu[i]*nu[i]-nu[i]+1.0-betatau)/nc

-kappa*ddn[i];

}

FirstOrderDerivative(n,dn,size);

SecondOrderDerivative(n,ddn,size);

for (i=0;i<size;i++){

p[i]=pc*(nu[i]+1)*(nu[i]+1)*(3*nu[i]*nu[i]-2*nu[i]+1-2*betatau)

-kappa*ddn[i] + kappa*dn[i]*dn[i]/2.0;

correction[i]=(1.0/omega-0.5)*u[i]*dn[i];

}

for (i=0;i<xdim;i++){

f0[i]+=omega*(n[i]-n[i]*u[i]*u[i]-p[i]-correction[i]-f0[i]);

f1[i]+=omega*((n[i]*u[i]+n[i]*u[i]*u[i]+p[i]+correction[i])

/2.0-f1[i]);

f2[i]+=omega*((-n[i]*u[i]+n[i]*u[i]*u[i]+p[i]+correction[i])

/2.0-f2[i]);

}

temp1 = f1[xdim-1];

temp2=f2[0];

for(i=1; i<xdim; i++){

f1[xdim-i]=f1[xdim-i-1];

f2[i-1]=f2[i];

}

f1[0]=temp1;

f2[xdim-1]=temp2;

}

/*

void GUI()
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{

DefineGraphN_R("Density", n, &size, &densityreq);

DefineGraphN_R("Chem. Pote.",mu, &size, &densityreq);

DefineGraphN_R("U", u, &size, &densityreq);

DefineGraphN_R("p",p,&size,&densityreq);

StartMenu("GUI",1);

DefineDouble("u0",&u0);

DefineDouble("kappa",&kappa);

DefineDouble("nc",&nc);

DefineDouble("beta tau",&betatau);

DefineDouble("Pc",&pc);

DefineDouble("omega",&omega);

StartMenu("Restart",0);

DefineMod("xdim",&size, xdim+1);

DefineFunction("Restart",&init);

EndMenu();

DefineGraph(curve2d_,"Density graph");

DefineBool("pause",&Pause);

DefineBool("Single step", &sstep);

DefineInt("Repeat", &Repeat);

DefineBool("Done", &done);

EndMenu();

}

int main()

{

int i;

init();

GUI();

while (!done)

{

Events(1);

DrawGraphs();

if (!Pause||sstep)

{

sstep=0;

for (i=0;i<Repeat;i++)iterate();

}

else

{

sleep(1);

}

}

return 0;

}
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*/

int main(){

FILE* pt;

int i;

pt = fopen("HoldychDensityPressure.dat","w");

init();

Analytical();

for(i=0; i<100000; ++i)

{

iterate();

}

for(i=0; i<100; i++){

fprintf(pt,"%d %f %f %f %f %f %f \n", i, n_an[i], n[i],

pressure_an, p[i], chem_an, mu[i]);

}

fclose(pt);

return 0;

}
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APPENDIX I

CODE FOR LIQUID-GAS SYSTEM (FORCINGQ)

/*This code treats the pressure as two parts: pi, ideal gas pressure

and pni, non ideal gas pressure. The effect of ideal gas pressure

is introduced into the LBE as presure equaling to n/3. The effect

of the non ideal gas pressure is introduced into the LBE as force

equaling to na = divergence of the non ideal gas pressure.

Also the Q term correction is included.

na=(tau-1/2)\partial^2(nu^3).

F0= 2*tau*u*na; F1=-tau*(u+0.5)*na; F2=-tau*(u-0.5)*na;

also feq_i = f^o_i - F_i; */

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<unistd.h>

#include<math.h>

#include<mygraph.h>

#define SIZE 100

static int i, size = SIZE, Repeat = 1, done= 0, sstep = 0,

Pause=1,nreq=0,iterations=0;

static double f0[SIZE],f1[SIZE],f2[SIZE], n[SIZE], dn[SIZE],

ddn[SIZE],chem[SIZE], pni[SIZE],nu[SIZE],na[SIZE],

Q[SIZE],ddQ[SIZE],dpni[SIZE], u[SIZE], p[SIZE], kappa = 0.1,

nc = 1.0, pc = 0.125, betatau=0.03, u0=0, omega =1.0;

double chem_an, pressure_an, n_an[SIZE];

Analytical(){

chem_an = 4*pc*(1-betatau)/nc;

pressure_an = pc* (1-betatau)*(1-betatau);

for(i=0; i<100; i++)

n_an[i]=nc*(1+sqrt(betatau)*tanh((50-i)

/sqrt(kappa*nc*nc/(2*betatau*pc))));

}

FirstOrderDerivative(double *a,double *da, int n){

int i;

da[0]=(a[1]-a[n-1])/2.0;

da[n-1]=(a[0]-a[n-2])/2.0;

for(i= 1; i<n-1; ++i)

da[i]=(a[i+1]-a[i-1])/2.0;

}

void SecondOrderDerivative( double a[], double dda[], int n){

int i;
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dda[0]= (a[1]+a[n-1]-2.0*a[0]);

dda[n-1]=(a[0]+a[n-2]-2*a[n-1]);

for(i=1; i<n-1; ++i)

dda[i] = (a[i+1] + a[i-1] - 2.0*a[i]);

}

void init(void){

int i;

iterations=0;

for(i=0; i < size; i++)

{

n[i] = 1 + 0.01*sin(2*M_PI*i/size);

nu[i] = (n[i] - nc)/nc;

u[i]=(f1[i]-f2[i])/n[i];

Q[i]=n[i]*u[i]*u[i]*u[i];

}

FirstOrderDerivative(n,dn,size);

SecondOrderDerivative(n,ddn,size);

SecondOrderDerivative(Q,ddQ,size);

for (i=0;i<size;i++){

p[i]=pc*(nu[i]+1)*(nu[i]+1)*(3*nu[i]*nu[i]-2*nu[i]+1-2*betatau)

-kappa*ddn[i] + kappa*dn[i]*dn[i]/2.0;

chem[i]= 4*pc*(nu[i]+1)*(nu[i]*nu[i]-nu[i]+1-betatau)/nc

- kappa*ddn[i];

pni[i] = p[i] - n[i]/3;

u[i] = u0;

f0[i] = omega * (n[i]*2/3 - n[i]*u[i]*u[i])+2.0*u[i]*dpni[i]

-2.0*u[i]*na[i];

f1[i] = omega * (n[i]/3.0+n[i]*u[i] + n[i]*u[i]*u[i])/2.0

-(u[i]+0.5)*dpni[i]+(u[i]+0.5)*na[i];

f2[i] = omega * (n[i]/3.0-n[i]*u[i] + n[i]*u[i]*u[i])/2.0

-(u[i]-0.5)*dpni[i]+(u[i]-0.5)*na[i];

}

}

void iterate(void){

int i=0;

double temp1, temp2 ;

for (i=0;i<size;i++){

n[i]=f0[i]+f1[i]+f2[i];

nu[i] = (n[i] - nc)/nc;

u[i]=(f1[i]-f2[i])/n[i];

Q[i]=n[i]*u[i]*u[i]*u[i];

}

FirstOrderDerivative(n,dn,size);

SecondOrderDerivative(n,ddn,size);

SecondOrderDerivative(Q,ddQ,size);
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for (i=0;i<size;i++){

p[i]=pc*(nu[i]+1)*(nu[i]+1)*(3*nu[i]*nu[i]-2*nu[i]+1-2*betatau)

-kappa*ddn[i] + kappa*dn[i]*dn[i]/2.0;

chem[i]= 4*pc*(nu[i]+1)*(nu[i]*nu[i]-nu[i]+1-betatau)/nc;

pni[i] = p[i] - n[i]/3;

na[i]=(1.0/omega-0.5)*ddQ[i];

}

FirstOrderDerivative(pni,dpni,size);

for (i=0;i<size;i++){

f0[i]+=omega*(n[i]*2/3-n[i]*u[i]*u[i]-f0[i])+2.0*u[i]*dpni[i]

-2.0*u[i]*na[i];

f1[i] += omega * (n[i]/6+n[i]*u[i]/2+n[i]*u[i]*u[i]/2 -f1[i])

-(u[i]+0.5)*dpni[i]+(u[i]+0.5)*na[i];

f2[i] += omega * (n[i]/6-n[i]*u[i]/2+n[i]*u[i]*u[i]/2 -f2[i])

-(u[i]-0.5)*dpni[i]+(u[i]-0.5)*na[i];

}

temp1 = f1[size-1];

temp2=f2[0];

for(i=1; i<size; i++){

f1[size-i]=f1[size-i-1];

f2[i-1]=f2[i];

}

f1[0]=temp1;

f2[size-1]=temp2;

++iterations;

}

/* graphic interface by A. Wagner to dispaly evolution.

void GUI(){

DefineGraphN_R("Density", n, &size, &nreq);

DefineGraphN_R("U", u, &size, &nreq);

DefineGraphN_R("pni",pni,&size,&nreq);

DefineGraphN_R("dpni",dpni,&size,&nreq);

DefineGraphN_R("p",p,&size,&nreq);

StartMenu("GUI",1);

DefineInt("Iterations",&iterations);

DefineDouble("betatau",&betatau);

DefineDouble("pc",&pc);

DefineDouble("kappa",&kappa);

DefineDouble("u0",&u0);

DefineDouble("nc",&nc);

DefineDouble("omega",&omega);

StartMenu("Restart",0);

DefineMod("size",&size, size+1);

DefineFunction("Restart",&init);

EndMenu();
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DefineGraph(curve2d_,"Density graph");

DefineBool("pause",&Pause);

DefineBool("Single step", &sstep);

DefineInt("Repeat", &Repeat);

DefineBool("Done", &done);

EndMenu();

}

int main()

{

int i;

init();

GUI();

while (!done){

Events(1);

DrawGraphs();

if (!Pause||sstep){

sstep=0;

for (i=0;i<Repeat;i++)iterate();

} else {

sleep(1);

}

}

return 0;

}

*/

int main(){

FILE * pt;

int i;

pt = fopen("FQ.dat", "w");

init();

for(i=0; i<10000; i++){

iterate();

}

Analytical();

for(i=0; i<100; i++){

fprintf(pt, "%d %f %f %f %f %f %f\n", i, n_an[i], n[i],

pressure_an, p[i], chem_an, chem[i]);

}

fclose(pt);

return 0;

}
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APPENDIX J

CODE FOR BINARY SYSTEM SIMULATION

/* This code is to simulate a binary system with my LB approach.*/

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<unistd.h>

#include<math.h>

#include<mygraph.h>

#define PRECISION 1e-10

#define xdim 100

static int i, size = xdim, Repeat = 1, done=0, sstep=0,

Pause=1, nreq=0, iterations=0;

double nA[xdim], nB[xdim], fA0[xdim], fA1[xdim], fA2[xdim],

M=1.0,A=1.0,F[xdim],P[xdim],chemA[xdim],chemB[xdim],

nAa[xdim], nBa[xdim], rhoA[xdim], rhoB[xdim], fB0[xdim],

fB1[xdim], fB2[xdim], u[xdim], n[xdim], FA0[xdim],

FA1[xdim], FA2[xdim],FB0[xdim],FB1[xdim], FB2[xdim],

dchemA[xdim], dchemB[xdim], phiA[xdim], phiB[xdim],

drhoA[xdim], drhoB[xdim];

double chi = 0.94, omega = 0.9, kappa = 0.1, h = 0.5,

mA=10,mB=1,density=100,rho[xdim],dphiA[xdim],dphiB[xdim],

T=0.3333333333, Amplitude=0.1, theta=0.3333333333;

void FirstOrderDerivative(double *a, double *da, int n){

int i;

da[0]=(a[1]-a[n-1])/2.0;

da[n-1]=(a[0]-a[n-2])/2.0;

for(i= 1; i<n-1; ++i)

da[i]=(a[i+1]-a[i-1])/2.0;

}

void SecondOrderDerivative( double a[], double dda[], int n){

int i;

dda[0]= (a[1]+a[n-1]-2.0*a[0]);

dda[n-1]=(a[0]+a[n-2]-2*a[n-1]);

for(i=1; i<n-1; ++i)

dda[i] = (a[i+1] + a[i-1] - 2.0*a[i]);

}

void Initial(){

Repeat=1; done=0; sstep=0; Pause=1; nreq=0; iterations=0;

for(i=0; i < xdim; i++)

{
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phiB[i] = 0.759 + Amplitude * sin(2*M_PI*i/xdim);

phiA[i] = 1- phiB[i];

rhoA[i] = density*phiA[i];

rhoB[i]= phiB[i] * density;

nA[i]=rhoA[i]/mA;

nB[i] = rhoB[i]/mB;

u[i] = 0;

fA0[i] = rhoA[i]*2.0/3.0 - rhoA[i]*u[i]*u[i];

fA1[i] = 0.5*(rhoA[i]/3.0+rhoA[i]*u[i]+rhoA[i]*u[i]*u[i]);

fA2[i] = 0.5*(rhoA[i]/3.0-rhoA[i]*u[i]+rhoA[i]*u[i]*u[i]);

fB0[i] = rhoB[i]*2.0/3.0 - rhoB[i]*u[i]*u[i];

fB1[i] = 0.5*(rhoB[i]/3.0+rhoB[i]*u[i]+rhoB[i]*u[i]*u[i]);

fB2[i] = 0.5*(rhoB[i]/3.0-rhoB[i]*u[i]+rhoB[i]*u[i]*u[i]);

rho[i] = rhoA[i]+rhoB[i];

chemA[i]= theta*(-mA + log(phiA[i]) + (1 - mA/mB)* phiB[i]

+ chi*mA*phiB[i]*phiB[i])/mA;

chemB[i]= theta*(-mB + log(phiB[i]) + (1 - mB/mA)* phiA[i]

+ chi*mB*phiA[i]*phiA[i])/mB;

F[i]= theta * (- rhoA[i]-rhoB[i] + rhoA[i]*log(phiA[i])/mA

+ rhoB[i]*log(phiB[i])/mB +chi*rhoA[i]*phiB[i]);

}

}

void Iterate(void){

int i=0;

double temp1, temp2;

iterations++;

for(i=0; i<size; i++){

rhoA[i] = fA0[i] + fA1[i] + fA2[i];

rhoB[i] = fB0[i] + fB1[i] + fB2[i];

nA[i]=rhoA[i]/mA;

nB[i] = rhoB[i]/mB;

rho[i] = rhoA[i] + rhoB[i];

u[i] = (fA1[i] + fB1[i] - fA2[i] - fB2[i])/rho[i];

phiA[i] = rhoA[i]/rho[i];

phiB[i] = rhoB[i]/rho[i];

F[i]= theta*(-rhoA[i]-rhoB[i]+rhoA[i]*log(phiA[i])/mA

+ rhoB[i]*log(phiB[i])/mB +chi*rhoA[i]*phiB[i]);

}

FirstOrderDerivative(rhoA,drhoA,size);

FirstOrderDerivative(rhoB,drhoB,size);

FirstOrderDerivative(phiA,dphiA,size);

FirstOrderDerivative(phiB,dphiB,size);

for(i=0; i<size; i++){

chemA[i]=theta*(-mA+log(phiA[i])+(1 - mA/mB)* phiB[i]

+ chi*mA*phiB[i]*phiB[i])/mA;
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chemB[i]=theta*(-mB+log(phiB[i])+(1 - mB/mA)* phiA[i]

+ chi*mB*phiA[i]*phiA[i])/mB;

}

FirstOrderDerivative(chemA,dchemA,size);

FirstOrderDerivative(chemB,dchemB,size);

for(i=0; i<size; i++){

nAa[i]=-(1-0.5*omega)*(rhoA[i]*dchemA[i]-theta*drhoA[i]);

nBa[i]=-(1-0.5*omega )*(rhoB[i]*dchemB[i]-theta*drhoB[i]);

P[i] = rhoA[i]*chemA[i] + rhoB[i]*chemB[i] - F[i];

}

/* The forcing terms */

for(i=0; i<size; i++){

FA0[i]=-2*nAa[i]*u[i];

FA1[i]= (u[i]+0.5)*nAa[i];

FA2[i]= (u[i]-0.5)*nAa[i];

FB0[i]= -2*nBa[i]*u[i];

FB1[i]= (u[i]+0.5)*nBa[i];

FB2[i]= (u[i]-0.5)*nBa[i];

}

/*The collision */

for(i=0; i<size; i++){

fA0[i] += omega*(rhoA[i]*2.0/3.0 - rhoA[i]*u[i]*u[i]

-fA0[i]) + FA0[i] ;

fA1[i] += omega*(0.5*(rhoA[i]/3.0 + rhoA[i]*u[i]

+ rhoA[i]*u[i]*u[i])-fA1[i]) + FA1[i] ;

fA2[i] += omega*(0.5*(rhoA[i]/3.0 - rhoA[i]*u[i]

+ rhoA[i]*u[i]*u[i])-fA2[i]) + FA2[i] ;

fB0[i] +=omega*(rhoB[i]*2.0/3.0-rhoB[i]*u[i]*u[i]-fB0[i])

+ FB0[i];

fB1[i] += omega*(0.5*(rhoB[i]/3.0 + rhoB[i]*u[i]

+ rhoB[i]*u[i]*u[i])-fB1[i]) + FB1[i] ;

fB2[i] += omega*(0.5*(rhoB[i]/3.0 - rhoB[i]*u[i]

+ rhoB[i]*u[i]*u[i])-fB2[i]) + FB2[i] ;

}

/* the advection */

temp1 = fA1[size-1];

temp2=fA2[0];

for(i=1; i<size; i++){

fA1[size-i]=fA1[size-i-1];

fA2[i-1]=fA2[i];

}

fA1[0] = temp1;

fA2[size-1] = temp2;

temp1 = fB1[size-1];

temp2 = fB2[0];
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for(i=1; i<size; i++){

fB1[size-i] = fB1[size-i-1];

fB2[i-1] = fB2[i];

}

fB1[0] = temp1;

fB2[size-1] = temp2;

}

/* graphic interface be A. Wagner to display evolution */

void GUI()

{

DefineGraphN_R("phiA", phiA, &size, &nreq);

DefineGraphN_R("u", u, &size, &nreq);

DefineGraphN_R("phiB", phiB, &size, &nreq);

DefineGraphN_R("rho", rho, &size, &nreq);

DefineGraphN_R("chemA",chemA, &size, &nreq);

DefineGraphN_R("chemB",chemB, &size, &nreq);

DefineGraphN_R("P",P, &size, &nreq);

StartMenu("GUI",1);

DefineInt("iterations",&iterations);

DefineDouble("mA", &mA);

DefineDouble("mB", &mB);

DefineDouble("A", &A);

DefineDouble("kappa", &kappa);

DefineDouble("chi",&chi);

DefineDouble("Amplitude",&Amplitude);

DefineDouble("omega",&omega);

StartMenu("Restart",0);

DefineMod("size",&size, size+1);

DefineFunction("Restart", &Initial);

EndMenu();

DefineGraph(curve2d_,"Density graph");

DefineBool("pause",&Pause);

DefineBool("Single step", &sstep);

DefineInt("Repeat", &Repeat);

DefineBool("Done", &done);

EndMenu();

}

int main(){

int i;

Initial();

GUI();

while (!done){

Events(1);

DrawGraphs();

if (!Pause||sstep){
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sstep=0;

for (i=0;i<Repeat;i++) Iterate();

} else {

sleep(1);

}

}

return 0;

}

*/

int main(){

int i;

FILE* pt;

pt = fopen("biLBm10Qun.dat", "w");

Initial();

for(i=0; i<500000; i++)

Iterate();

for(i=0; i<size; i++)

fprintf(pt, "%d %e %e %e %e %e \n",i,phiA[i],

phiB[i], chemA[i], chemB[i], P[i]);

fclose(pt);

}
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APPENDIX K

CODE FOR TERNARY SYSTEM SIMULATION

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<unistd.h>

#include<math.h>

#include<mygraph.h>

#define PRECISION 1e-10

#define xdim 100

static int i,size=xdim,Repeat=1,done=0,sstep=0,Pause=1,

nreq=0, iterations=0;

double fA0[xdim], fA1[xdim], fA2[xdim],fB0[xdim], fB1[xdim],

fB2[xdim], fC0[xdim], fC1[xdim], fC2[xdim],

M=1.0,A=1.0,/*A controls chemical potential in simulation.*/

chemA[xdim], chemB[xdim], chemC[xdim], nAa[xdim], nBa[xdim],

nCa[xdim],rhoA[xdim],rhoB[xdim],rhoC[xdim], u[xdim], IA=0.14,

IB=0.11, /* IA and IB are the initial phiA and phiB */

FA0[xdim],FA1[xdim], FA2[xdim], FB0[xdim],FB1[xdim],

FB2[xdim],FC0[xdim], FC1[xdim],FC2[xdim],dchemA[xdim],

dchemB[xdim], dchemC[xdim],phiA[xdim], phiB[xdim],

phiC[xdim],drhoA[xdim],drhoB[xdim],drhoC[xdim];

double omega = 0.9,kappa=0.1,h=0.5,mA=10,mB=1,mC=1,chiAB=3,

chiAC=0.5, chiBC=0.2, density=100, rho[xdim],dphiA[xdim],

dphiB[xdim],dphiC[xdim],T=0.3333333333,

Amplitude=0.1, theta=0.3333333333;

/*find the first order derivative*/

void FirstOrderDerivative(double *a, double *da, int n){

int i;

da[0]=(a[1]-a[n-1])/2.0;

da[n-1]=(a[0]-a[n-2])/2.0;

for(i= 1; i<n-1; ++i)

da[i]=(a[i+1]-a[i-1])/2.0; }

/*find the second order derivative*/

void SecondOrderDerivative( double a[], double dda[], int n){

int i;

dda[0]= (a[1]+a[n-1]-2.0*a[0]);

dda[n-1]=(a[0]+a[n-2]-2*a[n-1]);

for(i=1; i<n-1; ++i)

dda[i] = (a[i+1] + a[i-1] - 2.0*a[i]); }

/*set up intial conditions*/
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void Initial(){

Repeat=1; done=0; sstep=0; Pause=1; nreq=0; iterations=0;

for(i=0; i < xdim; i++){

phiA[i] = IA + Amplitude * sin(2*M_PI*i/xdim);

phiB[i] = IB - Amplitude * sin(2*M_PI*i/xdim) ;

phiC[i] = 1 - phiA[i] - phiB[i];

rhoA[i] = density*phiA[i];

rhoB[i] = density*phiB[i];

rhoC[i] = density*phiC[i];

u[i] = 0;

fA0[i] = rhoA[i]*2.0/3.0 - rhoA[i]*u[i]*u[i];

fA1[i]=0.5*(rhoA[i]/3.0+rhoA[i]*u[i]+rhoA[i]*u[i]*u[i]);

fA2[i]=0.5*(rhoA[i]/3.0-rhoA[i]*u[i]+rhoA[i]*u[i]*u[i]);

fB0[i]=rhoB[i]*2.0/3.0 - rhoB[i]*u[i]*u[i];

fB1[i]=0.5*(rhoB[i]/3.0+rhoB[i]*u[i]+rhoB[i]*u[i]*u[i]);

fB2[i]=0.5*(rhoB[i]/3.0-rhoB[i]*u[i]+rhoB[i]*u[i]*u[i]);

fC0[i]=rhoC[i]*2.0/3.0-rhoC[i]*u[i]*u[i];

fC1[i]=0.5*(rhoC[i]/3.0+rhoC[i]*u[i]+rhoC[i]*u[i]*u[i]);

fC2[i]=0.5*(rhoC[i]/3.0-rhoC[i]*u[i]+rhoC[i]*u[i]*u[i]);

rho[i] = rhoA[i]+rhoB[i]+rhoC[i];

chemA[i]= A*theta*(log(phiA[i])-phiA[i] - phiB[i]* mA/mB

-phiC[i]*mA/mC+mA*(phiB[i]+phiC[i])*(chiAB*phiB[i]

+ chiAC*phiC[i])- mA*chiBC*phiB[i]*phiC[i])/mA;

chemB[i]= A*theta*(log(phiB[i]) - phiB[i] - phiC[i]* mB/mC

-phiA[i]*mB/mA+mB*(phiC[i]+phiA[i])*(chiBC*phiC[i]

+ chiAB*phiA[i])-mB*chiAC*phiC[i]*phiA[i])/mB;

chemC[i]= A*theta*(log(phiC[i])-phiC[i]-phiA[i]* mC/mA

-phiB[i]*mC/mB+mC*(phiA[i]+phiB[i])*(chiAC*phiA[i]

+ chiBC*phiB[i] - mC*chiAB*phiA[i]*phiB[i])/mC;}

}

/*interates in LB algorithm*/

void Iterate(void){

int i=0;

double temp1, temp2;

iterations++;

for(i=0; i<size; i++){

rhoA[i] = fA0[i] + fA1[i] + fA2[i];

rhoB[i] = fB0[i] + fB1[i] + fB2[i];

rhoC[i] = fC0[i] + fC1[i] + fC2[i];

rho[i] = rhoA[i] + rhoB[i] + rhoC[i];

u[i]=(fA1[i]+fB1[i]+fC1[i]-fA2[i]-fB2[i]-fC2[i])/rho[i];

phiA[i] = rhoA[i]/rho[i];

phiB[i] = rhoB[i]/rho[i];

phiC[i] = rhoC[i]/rho[i];

}
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FirstOrderDerivative(rhoA,drhoA,size);

FirstOrderDerivative(rhoB,drhoB,size);

FirstOrderDerivative(rhoC,drhoC,size);

FirstOrderDerivative(phiA,dphiA,size);

FirstOrderDerivative(phiB,dphiB,size);

FirstOrderDerivative(phiC,dphiC,size);

for(i=0; i<size; i++){

chemA[i]= A*theta*(log(phiA[i]) - phiA[i] - phiB[i]* mA/mB

- phiC[i]*mA/mC + mA*(phiB[i]+phiC[i])*(chiAB*phiB[i]

+ chiAC*phiC[i]) - mA*chiBC*phiB[i]*phiC[i])/mA;

chemB[i]= A*theta*(log(phiB[i])-phiB[i]-phiC[i]* mB/mC

-phiA[i]*mB/mA+mB*(phiC[i]+phiA[i])*(chiBC*phiC[i]

+ chiAB*phiA[i])-mB*chiAC*phiC[i]*phiA[i])/mB;

chemC[i]= A*theta*(log(phiC[i])-phiC[i]-phiA[i]* mC/mA

- phiB[i]*mC/mB+mC*(phiA[i]+phiB[i])*(chiAC*phiA[i]

+ chiBC*phiB[i])- mC*chiAB*phiA[i]*phiB[i])/mC;}

FirstOrderDerivative(chemA,dchemA,size);

FirstOrderDerivative(chemB,dchemB,size);

FirstOrderDerivative(chemC,dchemC,size);

for(i=0; i<size; i++){

nAa[i]=-(1-0.5*omega)*(rhoA[i]*dchemA[i]-theta*drhoA[i]);

nBa[i]=-(1-0.5*omega)*(rhoB[i]*dchemB[i]-theta*drhoB[i]);

nCa[i]=-(1-0.5*omega)*(rhoC[i]*dchemC[i]-theta*drhoC[i]);

}

/* The forcing terms */

for(i=0; i<size; i++){

FA0[i]=-2*nAa[i]*u[i];

FA1[i]= (u[i]+0.5)*nAa[i];

FA2[i]= (u[i]-0.5)*nAa[i];

FB0[i]= -2*nBa[i]*u[i];

FB1[i]= (u[i]+0.5)*nBa[i];

FB2[i]= (u[i]-0.5)*nBa[i];

FC0[i]=-2*nCa[i]*u[i];

FC1[i]= (u[i]+0.5)*nCa[i];

FC2[i]= (u[i]-0.5)*nCa[i];

}

/*The collision */ for(i=0; i<size; i++){

fA0[i] += omega*(rhoA[i]*2.0/3.0 - rhoA[i]*u[i]*u[i]-fA0[i])

+ FA0[i] ;

fA1[i] += omega*(0.5*(rhoA[i]/3.0 + rhoA[i]*u[i]

+ rhoA[i]*u[i]*u[i])-fA1[i]) + FA1[i] ;

fA2[i] += omega*(0.5*(rhoA[i]/3.0 - rhoA[i]*u[i]

+ rhoA[i]*u[i]*u[i])-fA2[i]) + FA2[i] ;

fB0[i] += omega*(rhoB[i]*2.0/3.0 - rhoB[i]*u[i]*u[i]-fB0[i])

+ FB0[i];
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fB1[i] += omega*(0.5*(rhoB[i]/3.0 + rhoB[i]*u[i]

+ rhoB[i]*u[i]*u[i])-fB1[i]) + FB1[i] ;

fB2[i] += omega*(0.5*(rhoB[i]/3.0 - rhoB[i]*u[i]

+ rhoB[i]*u[i]*u[i])-fB2[i]) + FB2[i] ;

fC0[i] += omega*(rhoC[i]*2.0/3.0 - rhoC[i]*u[i]*u[i]-fC0[i])

+ FC0[i] ;

fC1[i] += omega*(0.5*(rhoC[i]/3.0 + rhoC[i]*u[i]

+ rhoC[i]*u[i]*u[i])-fC1[i]) + FC1[i] ;

fC2[i] += omega*(0.5*(rhoC[i]/3.0 - rhoC[i]*u[i]

+ rhoC[i]*u[i]*u[i])-fC2[i]) + FC2[i] ;

}

/* the advection */

temp1 = fA1[size-1];

temp2=fA2[0];

for(i=1; i<size; i++){

fA1[size-i]=fA1[size-i-1];

fA2[i-1]=fA2[i];

}

fA1[0] = temp1;

fA2[size-1] = temp2;

temp1 = fB1[size-1];

temp2 = fB2[0];

for(i=1; i<size; i++){

fB1[size-i] = fB1[size-i-1];

fB2[i-1] = fB2[i];

}

fB1[0] = temp1;

fB2[size-1] = temp2;

temp1 = fC1[size-1];

temp2=fC2[0];

for(i=1; i<size; i++){

fC1[size-i]=fC1[size-i-1];

fC2[i-1]=fC2[i];

}

fC1[0] = temp1;

fC2[size-1] = temp2;

}

/*graphic interface by A.Wagner to display evolution

void GUI()

{

DefineGraphN_R("phiA", phiA, &size, &nreq);

DefineGraphN_R("u", u, &size, &nreq);

DefineGraphN_R("phiB", phiB, &size, &nreq);

DefineGraphN_R("phiC", phiC, &size, &nreq);

DefineGraphN_R("rho", rho, &size, &nreq);
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DefineGraphN_R("chemA",chemA, &size, &nreq);

DefineGraphN_R("chemB",chemB, &size, &nreq);

StartMenu("GUI",1);

DefineInt("iterations",&iterations);

DefineDouble("mA", &mA);

DefineDouble("mB", &mB);

DefineDouble("A", &A);

DefineDouble("IA", &IA);

DefineDouble("IB", &IB);

DefineDouble("kappa", &kappa);

DefineDouble("Amplitude",&Amplitude);

DefineDouble("omega",&omega);

StartMenu("Restart",0);

DefineMod("size",&size, size+1);

DefineFunction("Restart", &Initial);

EndMenu();

DefineGraph(curve2d_,"Density graph");

DefineBool("pause",&Pause);

DefineBool("Single step", &sstep);

DefineInt("Repeat", &Repeat);

DefineBool("Done", &done);

EndMenu();

} */

int main(){

int i;

Initial();

GUI();

while (!done){

Events(1);

DrawGraphs();

if (!Pause||sstep){

sstep=0;

for (i=0;i<Repeat;i++) Iterate();

} else {

sleep(1);

}

}

return 0;

}
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