The Mathematics of Radioactive Decay

1) Discovery of the radioactive decay law. In 1900, E rnest Rutherford noticed a decrease over time in the radioactive intensity of a sample he was studying, so he begin to measure this decrease. He determined that the decrease fit the following formula (using modern symbols):

$$
\begin{equation*}
N=N_{0} e^{-k t} \tag{1}
\end{equation*}
$$

where $\mathrm{N}=$ the amount of sample remaining after an amount of time ' t ' and $\mathrm{N}_{\mathrm{O}}=$ the original starting amount of the sample. e has its usual meaning and k is a constant with a unique value for each substance. Rutherford named it the radioactive decay constant.
2) Straight-line form of the decay law. Equation 1 can be modified to the form of a straight line formula ($y=m x+b$) as follows:

$$
\begin{array}{ll}
N / N_{O}=e^{-k t} & \text { by rearrangement } \\
\ln \left(N / N_{O}\right)=-k t & \text { take natural logarithm of each side } \tag{2}\\
\ln N-\ln N_{O}=-k t & \text { division of exponents is done by subtraction } \\
\ln N=-k t+\ln N_{0} & \text { by rearrangement }
\end{array}
$$

This last equation fits the general form of a straight-line equation. The y-axis is the natural log of N and the x-axis is t (time). The line will from upper left to lower right (negative slope) with negative k being the slope.
3) An equation for calculating half-life. The equation (2) can be modified to give an equation where knowing the value for k leads directly to the length of the half-life.

$$
t=------------\quad \ln \left(N / N_{0}\right) \quad \text { by rearrangement }
$$

From the definition of half-life, we obtain the value for $\mathrm{N} / \mathrm{N}_{\mathrm{O}}$ as one-half. After one half-life, half the material on-hand at the start will have decayed. If the starting amount equals 2 , then the ending amount one half-life later will equal one.

Considering the numerator only: $\quad-\ln (1 / 2)=-(\ln 1-\ln 2)=-(0-\ln 2)=\ln 2$
Letting $T_{1 / 2}=$ time of one half-life, we obtain:

$$
\mathrm{T}_{1 / 2}=0.693 / \mathrm{k} \quad \text { since } \ln 2=0.693
$$

4) Miscellaneous half-life information. The fraction one-half figures prominently in this.
where $\mathrm{n}=$ the number of half-lives yields the decimal portion of substance remaining.

If the decimal fraction of substance remaining is known, setting it equal to $(1 / 2)^{n}$ and solving will yield the number of half-lives elapsed.

