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A B S T R A C T

Maize (Zea Mays L.) yield responsiveness to nitrogen (N) fertilization depends on the yield under non-limiting N 
supply as well as on the inherent productivity under zero N fertilizer (Y0). Understanding the driving factors and 
developing predictive algorithms for Y0 will enhance the optimization of N fertilization in maize. Using a random 
forest algorithm, we analyzed data from 679 maize N fertilization studies (1031 Y0 observations) conducted 
between 1999–2019 in the United States and Canada. Predictability of Y0 was assessed while identifying 
determinant factors such as soil, crop management, and weather. The inclusion of weather variables as predictors 
improved the model efficiency (ME) from 51 up to 64 %, and reduced the root mean square error (RMSE) from 
2.5 to 2.0 Mg ha− 1, 34 to 27 % in relative terms (RRMSE). The most relevant predictors of Y0 were previous crop, 
irrigation, and soil organic matter (SOM), while the most influential weather data was linked to the radiation per 
unit of thermal time (Q quotient) around flowering and spring precipitations. The crop rotation effect resulted in 
Alfalfa (Medicago sativa L.) as the previous crop with the highest Y0 level (IQR = 11.5–15.0 Mg ha− 1) as 
compared to annual legumes (IQR = 5.6–10.0 Mg ha− 1) and other previous crops (IQR = 3.6–7.8 Mg ha− 1). The 
Q quotient around flowering positively affected Y0, while spring precipitations and extreme temperature events 
during grain filling showed a negative association to Y0. Overall, these results reinforce the concept that yields 
are controlled not only by soil N supply but also by factors modifying plant demand and ability to capture N. 
Lastly, we foresee a promising future for the use of machine learning to address both prediction and interpre
tation of maize yield to obtain more reliable N guidelines.   

1. Introduction

Decades of research on yield response to N application has not yet
produced accurate algorithms to issue N recommendations for maize in 
North America. Addressing the uncertainty on N needs for maize (Zea 
mays L.) is still a major concern (Morris et al., 2018; Raun et al., 2019) 
because of the unintentional impacts of misuse of N and low N use 

efficiency (Sela et al., 2018a, 2018b). Estimations of N recovery effi
ciency in the region are typically below 50 % of the applied N, which 
may reflect a higher uptake efficiency from indigenous sources (soil) 
than for applied fertilizer (Cassman et al., 2002). This scenario is linked 
to the complex process of fertilizer N losses such as leaching, denitrifi
cation, and volatilization (Baker and Johnson, 1981; Francis et al., 1993; 
Bowles et al., 2018). Despite genetic improvement for N use efficiency 
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(Mueller et al., 2019) there are further opportunities to develop pre
scription algorithms to improve N management and fertilizer 
recommendations. 

For most of the twentieth century, N recommendations in North 
America have been mostly based on estimation of yield and production 
goals (Stanford et al., 1966; 1973), that is the N demand dictated the 
amount of N to be added as fertilizer after the estimation of a simplified 
N balance that considered N credits and other subtractions and additions 
(Morris et al., 2018). Refined N guidelines for maize has been addressed 
following different systems over time and across states (Heady and 
Pesek, 1954; Bundy and Andraski, 1995; Scharf et al., 2005; Kyveryga 
et al., 2007; Kitchen et al., 2010; Setiyono et al., 2011; Wortmann et al., 
2011; Yost et al., 2014; Sindelair et al., 2015). Lory and Scharf (2003) 
have described an approach using delta yield, as the yield difference 
between non-N-limited and non-N-fertilized plots (Y0), assuming the 
latter as a proxy of indigenous soil N supply (Cassman et al., 1996). More 
recently, utilizing a large database of N response trials, the “maximum 
return to N (MRTN) recommendation system represented an approach to 
adjust estimations of the economic optimum N rate (EONR) grouping 
response functions according to several factors of interest including 
management and soil features (Sawyer et al., 2006). Likewise, the 
integration of multiple site-years expanding combinations of soil, crop 
management and weather scenarios, might lead to the use of comple
mentary predictive models (e.g., supervised learning techniques) with 
more focus on forecasting the N needs for maize crop rather than an 
ex-post analysis. 

The dissection of the yield response to N can inform decisions to 
manage a complex system such as the one governing the soil-plant N 
dynamics. For a given site-year, we may depict the Y0 as the intercept of 
the function that along with non-N-limited yield (plateau) defines a 
yield response to N fertilization for a given curvature. Thus, defining 
realistic expectations for EORN predictions will inevitably rely on ac
curate predictions of Y0. Recent attempts to address the problem of 
forecasting yield response to N have been pursued with limited datasets 
that restrict our inference space (Puntel et al., 2019) or used yield 
simulations that restrict the inference to the set of parameters and model 
assumptions (Shahhosseini et al., 2019; Archontoulis et al., 2020). Yield 
under non-N-limiting scenario is largely determined by temperature and 
solar radiation (van Ittersum et al., 2013) and it is adequately captured 
within dynamic crop growth model frameworks (Monteith, 1972; Mes
sina et al., 2009). In contrast, soil processes governing N cycling and its 
interactions with the plant and environment system are complex and 
less well represented in models. Predicting N deficiency level and Y0 
poses a much difficult problem to solve than non-N-limited yield (Puntel 
et al., 2018; Archontoulis et al., 2020), in particular for experiments 
conducted in small plots (Tao et al., 2018). The combination of mech
anistic models for predicting non-N-limited yield and data-driven ma
chine learning models for predicting Y0 could open up opportunities to 
increase the predictability of complex systems (Messina et al., 2020). 

Methodologically, science is entering an entirely new phase that 
involves data-intensive practices (Tolle et al., 2011). Machine learning is 
one method, laying at the intersection of computer science and statistics 
(Jordan and Mitchell, 2015) useful to identify repeatable patterns in 
large datasets. Belonging to the family of supervised learning tech
niques, tree-based methods such as decision trees, boosting and random 
forest (RF) are robust and versatile techniques as demonstrated in 
remote sensing applications (Belgiu and Drãgut, 2016; Schwalbert et al., 
2018) and more recently in agriculture (Khaki and Wang, 2019; Ram
anantenasoa et al., 2019). For forecasting purposes, a minimum set of 
candidate predictors including as early as possible metadata during the 
crop growing season is desirable. Since most substantial uncertainties 
are inherent to weather, with very limited predictability beyond 10− 15 
days (Stern and Davidson, 2015; Zhang et al., 2019), then those vari
ables are the main candidates to perform a sensitivity analysis. A model 
with no-weather, assuming it as completely unknown and stochastic, 
may serve as a reference prediction framework to later assess the value 

of adding weather information. On the other hand, spring weather is 
likely to be known by the time of planting and including weather pre
dictors may be useful in forecasting applications for N availability in 
production fields (Puntel et al., 2016). Lastly, defined seasonal weather 
patterns could serve as model limits. 

The main goal of this work is to describe properties of Y0 on a large 
database of maize fertilization studies performed in the United States 
and Canada, an develop a prediction model with potential to improve N 
management systems. The specific goals for this manuscript are to i) 
rank and identify the main soil, management and weather features 
impacting Y0, and ii) assess the prediction performance of different 
frameworks involving soil and management factors but varying the in
clusion of weather features: a) no weather variables; b) spring weather 
known around planting; and c) weather known for the entire crop 
growing season. 

2. Material and methods 

2.1. Data collection 

A database was built through meeting certain requirements as fol
lows: i) experiments performed during the last two decades 
(1999–2019) in order to reduce the noise related to different hybrids 
eras (Woli et al., 2016); ii) only replicated field trials having N treat
ments either on small plots or strip-plots; iii) absolute yield data re
ported for the zero-N control treatment; iv) top-soil analysis results 
and/or soil series reported; v) data of previous crop and tillage system; 
vi) latitude and longitude coordinates, or nearest town reported in order 
to retrieve weather and missing soil data; vii) starter-N and manure 
treatments were excluded to minimize confounding effects; and viii) 
general crop management (e.g., planting date, row spacing, other nu
trients, weed and pest management) was assumed to have been set to 
maximize yield under each site-specific condition. Published manu
scripts were the first source of data through an engine-search in Web of 
Science® filtering by the following keywords: “corn/maize” and “ni
trogen fertilizer” or “nitrogen fertilization” and “United States” and/or 
“Canada”. In order to reduce publication bias effect (Dickersin and Min, 
1993), unpublished data (e.g., dissertations, field reports, unpublished 
experiments) were also included in the database as long as they met the 
established criteria. After filtering and selection processes, 679 
site-years resulting in 1031 treatments of maize without N fertilizer were 
gathered from 59 different data sources, including published and un
published studies (Supp. Table 1). 

2.2. Data analysis 

2.2.1. Response and explanatory variables 
Yield that resulted from treatments receiving zero-N application (Y0, 

Mg ha− 1) was used as the response variable in the analysis. Grain yield 
was standardized at a water content of 155 g kg− 1. Average values (3–5 
replications) were considered as an unbiased central tendency-values of 
Y0. 

A set of weather, soil, and crop management variables were 
considered as explanatory variables, predictors or features. Soil related 
variables were topsoil (0− 15 cm) soil organic matter (SOM, %) and soil 
texture (clay, silt and sand, %). Soil data were collected from original 
sources, accessed from authors’ records when not reported in manu
scripts, or retrieved from gridded POLARIS soil data engine (Chaney 
et al., 2016), a raster optimization based on SSURGO data with a spatial 
resolution of 1 km2. When SOM data were reported at 0–20 or 0− 30 cm, 
values were standardized to 0− 15 cm using stratification factors based 
on data from previous research on grain crops trials (Al-Kaisi et al., 
2005; Varvel and Wilhelm, 2011; Franzluebbers, 2010; Villamil et al., 
2015). 

Daily weather data were accessed via the Google Earth Engine 
platform (Gorelick et al., 2017) using reported latitude-longitude 
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coordinates of the trials or nearest town. With a spatial resolution of 1 
km2, precipitation (PP), temperature (T, oC, maximum and minimum) 
and vapor pressure deficit (vpd, kPa) were obtained from the 
Parameter-elevation Regressions on Independent Slopes Model -PRISM- 
(Daly et al., 2015); while incident shortwave solar radiation during 
daylight period –Rad, MJ m− 2- plus day-length were retrieved from 
Daymet (Thornton et al., 2018). Weather data were transformed into 
bi-monthly basis (as sum or average) following Carter et al. (2018a). We 
divided the weather data into three main periods: i) April-May (AM) as 
proxy of the early-growth period; ii) June-July (JJ) as proxy of the 
flowering period; and iii) and August-September (AS) as a proxy of grain 
filling period. In addition, we also considered PP and mean temperature 
of March as spring weather with the intent to represent typical weather 
data accessible to farmers when planting and N fertilizer decisions are 
made. 

A series of additional weather variables were calculated in order to 
capture environmental differences that might not be captured by 
analyzing standard weather information. For example, the Shannon 
Diversity Index (SDI) as described by Tremblay et al. (2012) was 
included to describe the distribution of PP during each period. Extreme 
PP events were included as the number of days with precipitations 
greater than 25 mm as a proxy of excessive rainfall events (Puntel et al., 
2019). Crop development was described by crop heat units (CHU; 
Tremblay et al., 2012). Extreme temperature events (ETE, defined as the 
number of days with mean maximum temperature over 30 ◦C) were also 
included as a proxy of heat stress risk (Butler and Huybers, 2013; Ye 
et al., 2017). The photo-thermal quotient (Q) was calculated as the ratio 
between cumulative Rad and CHU, as an indicator of the solar radiation 
available to the crop per unit of thermal time during each period, related 
to yield potential (Bannayan et al., 2018). 

2.2.2. Prediction models 
Three prediction models were tested with models differing in the 

weather features included:  

i a “No-weather” model includes only management and soil features; 
ii a “Spring-weather” model includes precipitations and mean tem

perature during March and April-May as proxy of pre-plant and early 
vegetative periods; and  

iii a “Full-weather” model includes all features from April 1st through 
September 30th (Table 1). This model is descriptive and enables 

assessing the relevance of seasonal weather and interactions with soil 
properties and management on Y0. 

2.2.3. Machine learning algorithm 
A tree-based algorithm was selected over other learning alternatives 

because as a non-parametric tool, it allows constructing prediction rules 
based on the simultaneous use of categorical and continuous predictors 
without making prior assumption on normality or on the form of asso
ciations with the response variable (Probst et al., 2019). While a single 
regression tree might be easier to interpret, its prediction power is 
normally low (and easy to overfit), so it is considered a “weak learner”. 
As an ensemble of trees, the RF is considered as a “strong learner” being 
much more capable in terms of prediction power (Breiman, 2001). 
Random Forest is primarily used here for two purposes: i) as a prediction 
tool, and ii) to assess the relevance of features on prediction. 

Among the RF alternatives, we used conditional inference trees to 
build the ensembles (forests) using the party package (Hothorn et al., 
2006) for R software (R Core Team, 2019). The function cforest() from 
party implements safeguards at the tree level to ensure the feature se
lection is not biased towards continuous predictors and/or those with 
many possible splits (Strobl et al., 2009; Probst et al., 2019), which is not 
available in randomForest() and ranger() functions. The permutation 
variable importance measure (Breiman, 2001; Strobl et al., 2007) has 
been demonstrated to reduce bias as compared with other alternatives 
(Strobl et al., 2007; Boulesteix et al., 2012). Moreover, since our dataset 
includes correlated features (Supp. Figs. 2 and 3), we evaluated the 
variable importance with a “conditional” permutation test to minimize 
the overestimation on importance scores of correlated features (Strobl 
et al., 2008; Probst et al., 2019). 

2.2.4. Cross-validation scheme 
For each prediction model, a nested cross-validation (CV) scheme 

was applied to avoid over-fitting during the model selection process 
(Zhang and Yang, 2015). This type of CV encompasses the use of an 
inner-loop for optimization and an outer-loop to assess the generaliza
tion performance (Krstajic et al., 2014). Acknowledging our dataset as 
relatively small for machine learning purposes (Zhang and Ling, 2018), 
we increased the k value (folds) with respect to the traditional 5 or 
10-folds as a safeguard to reduce potential bias on the generalization 
error (Cawley and Talbot, 2010). Thus, an outer 20-fold scheme was 
used, setting aside a different 5 % of observations at a time to be used 
later as the testing data. At the inner loop, a 10-fold-CV was applied over 
each outer-training set, dividing 90 % for training and 10 % for vali
dation. A grid-search was performed to optimize model 
hyper-parameters of interest: i) ntree, as the number of trees in the forest, 
and ii) mtry, as the number of random variables considered at each tree 
node-split across the forests. Best combinations were selected based on 
average performance on the inner-validation set. With the optimized 
hyper-parameters, performance metrics and features importance were 
assessed using the outer-training sets (20) to predict the observations on 
the outer-testing sets. 

Six complementary metrics were used to evaluate models perfor
mance: i) the mean absolute error (MAE, Mg ha− 1) as an average 
magnitude of the errors; ii) the root mean square error (RMSE, Mg ha− 1) 
as an average squared errors-based statistic that penalizes large re
siduals more heavily than MAE; iii) the normalized or relative RMSE 
(RRMSE, %) as a metric of percentage deviation from the average yield 
(Yang et al., 2014); iv) the mean bias error (MBE, Mg ha− 1) as the 
average difference of predicted values with respect to observed, for 
which positive values mean a systematic over-prediction while negative 
mean under-prediction; v) the Nash–Sutcliffe model efficiency (ME) as a 
normalized analogous statistic to the coefficient of determination (Nash 
and Sutcliffe, 1970; Krause et al., 2005); and vi) the concordance cor
relation coefficient (CCC) as a normalized metric that weighs the Pear
son correlation coefficient (r) by an index of accuracy (Lin, 1989). The 
medians (50th percentile) of each metric based on the 20-folds-CV were 

Table 1 
Explanatory variables included for the prediction of maize yield under N 
omission (Y0). *Periods: AM = April-May, JJ = June-July, AS = August-September.  

Management 

Previous Crop alfalfa; annual legumes; others (maize, 
sorghum, wheat, barley, rye, sunflower) 

Tillage system Till; no-till 
Irrigation Irrigated; Rainfed 

Soil 
Variables Units Depth 
SOM = Soil Organic Matter 

% 0− 15 cm Clay 
Silt 
Sand 

Weather 
Variables Units Periods* 
PP = Precipitations mm March, AM, JJ, AS 
Tm = Mean Temperature oC 
SDI = Shannon Diversity Index 0− 1 (uneven - even) 

AM, JJ, AS 

EPE = Extreme PP Events # days PP > 25 mm 
vpd = Vapor Pressure Deficit (sum) KPa 
Rad = Incident radiation (sum) MJ m− 2 

CHU = Crop Heat Units oC 
Q = Photothermal quotient MJ m− 2 / CHU 
ETE = Extreme Temperature Events # days Tmax > 30 ◦C JJ, AS  
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selected as their unbiased central-tendency statistic. 

3. Results 

3.1. Database description 

Maize experiments were distributed across 21 US states (AL, AR, IA, 
IL, IN, KS, KY, MI, MN, MO, NC, ND, NE, OH, OK, PA, SD, TN, TX, VA 
and WI) and two Canada provinces (ON and QC) (Fig. 1A). In temporal 
terms, 19.7 %, 31.0 %, 31.2 %, and 18.1 % were distributed between 
1999–2004, 2005–2009, 2010–2014, and 2015–2019, respectively 
(Supp. Fig. 1). A total of 831 (81 %) and 200 trials (19 %) were con
ducted under rainfed and irrigated conditions, respectively. Under 
rainfed conditions, Y0 ranged from 0.73 to 17.7 Mg ha− 1, with a mean of 
6.97 Mg ha− 1 and a median of 6.41 Mg ha− 1 (interquartile range, 
IQR25− 75 = 4.21− 9.49 Mg ha− 1). Under irrigation, Y0 varied from 1.29 
to 16.1 Mg ha− 1, with a mean of 9.10 Mg ha− 1 and a median of 9.50 Mg 
ha− 1 (IQR25− 75 = 6.84-11.65 Mg ha− 1). Based on available observations 
of above-ground plant N uptake at maturity (n = 279), estimations of 
apparent indigenous soil N supply varied from at least 23 kg N ha− 1 to 
411 kg N ha− 1, representing apparent N requirements from 11. 8–22.1 
kg N Mg grain yield− 1 (Fig. 1B). Complementary, observations of grain N 
uptake and grain dry biomass (n = 305) were used to estimate a grain N 
nutrition index (NNI) following the ear-N dilution curve (%Nc = 2.22 * 

Grain− 0.26; Zhang et al., 2020), which was able to portray the positive 
effect of alfalfa as previous crop on maize N nutrition (Fig. 1C). 

In terms of soil, experiments represented 11 soil textural groups (Soil 
Survey Staff, 2014) (Fig. 1D). Soil organic matter at topsoil (%, 0− 15 
cm) ranged from 0.46 % to 11.3 %, with a mean of 3.49 % and a median 
of 3.40 % (IQR25− 75 = 2.12 %–4.91 %). In terms of weather, studies 
were exposed to a wide range of mean seasonal temperatures (Fig. 1E) 
that ranged from 13.5 ◦C to 26.6 ◦C, with a mean of 18.9 ◦C and a 
median of 18.7 ◦C (IQR25− 75 = 17.2–20.9 ◦C); and seasonal pre
cipitations -April-September- (Fig. 1F) ranged from 165 mm to 1167 
mm, with a mean of 613 mm and a median of 593 mm (IQR25− 75 =

502–703 mm). A total of 630 (61 %) and 401 trials (39 %) were reported 
under conventional tillage (TI) and no-tillage (NT) systems, respectively. 
Previous crops were alfalfa (n = 83), soybean and annual legumes (n =
497), and cereals and others (n = 451). Planting dates were reported in 
643 cases (62 % of database), which in 95 % of cases ranged between 
March-20th to May-28th and were centered around May-5th (IQR25− 75 
= April-23rd to May-11th). 

Exploratory correlation matrix was calculated (Supp. Fig. 2) and 
principal components analysis (Supp. Fig. 3) conducted to understand 
the main relationship patterns between the continuous explanatory 
variables. The first component, explaining 36 % of variability, can be 
interpreted a temperature-dimension where temperature variables 
(Temp, CHU, ETE) showed a high correlation to each other and were 

Fig. 1. A: Geographical distribution of maize nitrogen fertilization trials under study (1031 Y0 observations from 679 site-years) performed in the USA and Canada 
during the period 1999-2019. B: Relationship between total above-ground N uptake at crop maturity (R6, n = 279) and yield under zero-N (Y0). C: Estimated grain N 
Nutrition Index (NNI, n = 305) of zero-N maize for different previous using ear N dilution curve as reference (Zhang et al., 2020). D: variability of soil texture (0-15 
cm), E: distribution of mean temperature, and F: total precipitation (mm) from April 1st to September 30th. 
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negatively correlated with latitude and Q index. The second component, 
explaining 11 % of variability, discriminates levels of precipitation and 
radiation. In total, five interpretable components explained about 70 % 
of variability in both, rainfed and irrigated conditions (Supp. Fig. 3). 

3.2. Prediction performance 

Performance metrics improved with increasing number of weather 
predictors accessible to the model (Full > Spring > No Weather, Fig. 2). 
The model “No weather” that did not include weather predictors 
accounted for roughly half of the variation in Y0 (ME = 0.51), with CCC 
= 0.66, MAE = 1.94 Mg ha− 1, RMSE = 2.46 Mg ha− 1, RRMSE = 33.7 %, 
and MBE = -0.107 Mg ha− 1. The “spring model” improved the accuracy 
relative to “No weather” model by adding mean temperature and pre
cipitations of March and April-May periods. Prediction metrics medians 
were ME = 0.59, CCC = 0.75, MAE = 1.72 Mg ha− 1, RMSE = 2.16 Mg 
ha− 1, RRMSE = 29.3 %, and MBE = -0.036 Mg ha− 1. The “Full weather” 
model accounted for 64 % the variation in Y0 (ME = 0.64), with CCC =
0.77, MAE = 1.56 Mg ha− 1, RMSE = 2.01 Mg ha− 1, RRMSE = 27.1 %, 
and MBE = –0.043 Mg ha− 1. 

3.3. Features importance 

Conditional importance analysis indicated that the most important 
factors driving Y0 variability were previous crop and irrigation for all 
models (Fig. 3). These factors were several times more relevant than the 
evaluated soil and weather features. Regarding the previous crop effect, 
Y0 levels were the greatest with alfalfa as previous crop, followed by 
annual legumes and others, respectively (Fig. 4A). Irrigation positively 
influenced Y0 of maize, especially with annual legumes as previous crop, 
increasing yields differences over other previous crops that did not 

reflect a positive effect of irrigation as annual legumes (Fig. 4A). Soil 
factors decreased in relative importance as weather features were 
introduced. However, SOM ranked as the most important soil variable 
for Y0 regardless of the model (Fig. 3). Regarding soil texture, its rele
vance resulted inconsistent with no fraction resulting particularly 
relevant. 

When the weather features were introduced to the model, they 
improved the prediction accuracy, reduced the relevance of soil factors, 
and increased the relevance of management factors (Fig. 3B; C). Pre
cipitations and mean temperature during April-May ranked as the most 
important features for the Spring weather. Although including all 
weather variables still refined the prediction accuracy (Fig. 2), signs of 
redundant features with only a marginal effects on performance were 
observed. Since importance scores were estimated conditional to the 
presence of correlated features, general low scores and a considerable 
fragmentation was observed across all the weather variables. Thus, 
relative importance of weather in the Full-weather model did consid
erable not increase with respect to the Spring-weather model. 
Notwithstanding, it is noticeable that the Full model allowed better 
ensemble structures that increased the relevance of previous crop and 
Irrigation factors (Fig. 3C), which resulted in increased prediction ac
curacy (Fig. 2). Moreover, several important insights emerged from the 
ranking of weather predictors. The occurrence of extreme precipitation 
events (EPE_AM, daily PP>25 mm) during early-growth stages exhibited 
a negative effect on Y0 (Fig. 4C). The amount of radiation per unit of 
thermal time (Q quotient) during April-May (Fig. 4D) but particularly 
during June-July (Fig. 4E) exhibited a positive effect on predicted Y0 
until reaching an optimum level (about 1.0 unit for Q_AM, and 0.6 units 
for Q_JJ). Likewise, a negative association of Y0 with extreme temper
ature events (>30 ◦C) during August-September (ETE_AS) (Fig. 4F) as 
well as with the mean temperature of April-May (data not shown), as 

Fig. 2. Out of bag (OOB) prediction performance of conditional random forest considering three alternative models: NW – No weather, only soil and crop man
agement features; Spring weather – including March, April and May mean temperature and precipitations; and Full weather – including all weather variables during 
the cropping season (April-September). Violin plots represent variability of performance metrics assessed on a 20-fold cross-validation scheme. Internal boxes 
represent the inter-quartile range (25th to 75th percentile) and whiskers the 5th to 95th percentiles. Model Efficiency (ME) and concordance correlation coefficient 
(CCC) are dimensionless (Dl) indices. 
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both weather features are moderately correlated (Supp. Figs. 2 and 3). 
Although, only simple dependencies are shown, this did not preclude 
existence of significant higher-level interactions. 

High-level interactions arose from this analysis. However, it is 
remarkable that two out of the five most important weather variables in 
the full model were from early stages (EPE_AM, and Q_AM), plus the 
high relevancy of PP_AM and Tm_AM for the Spring weather model. 
These results indicate that early spring weather data already provides 
relevant information relative to the interaction between plant N demand 
and soil N supply. 

4. Discussion 

This study combined a comprehensive collection of maize experi
ments and advanced analytics to: i) describe properties of Y0 under a 

large variation of production conditions, and ii) to assess the importance 
of environmental and agronomic determinants of variation in this 
important descriptor of maize productivity. The outlined model could be 
used in combination with mechanistic models to improve prediction 
accuracy and decision making in N fertilization (Messina et al., 2020). 
This study also determined uncertainty levels for the forecast of Y0 under 
alternative prediction frameworks, which defines limits of predictabil
ity. Awareness about uncertainty on Y0 is crucial to set realistic expec
tations on prediction accuracy for yield response to N, EONR, and 
ex-ante N recommendations. 

Further insights on the main driving factors of Y0 have implications 
for its use as a proxy of indigenous soil N supply (Cassman et al., 2002) 
or as a metric of biological buffering capacity (Morris et al., 2018). 
Available data on plant N uptake at crop maturity (R6) on this database 
indicates that under zero-N fertilizer, a maize crop needed at least 

Fig. 3. Variable importance of management, soil, and weather features on the prediction of Y0 at three alternative frameworks assessed via conditional permutations 
on random forest models (Strobl et al., 2008) re-scaled to percentage. Within each framework, boxes represent the inter-quartile range (25th to 75th percentile) and 
whiskers the 5th to 95th percentiles of conditional importance under a 20-fold cross-validation scheme. Abbreviations from Table 1. 
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between 11.8–22.1 kg available N ha− 1 per Mg of grain yield (Fig. 1B), 
acknowledging that the crop is not a merely passive sink for N (Fox and 
Piekielek, 1995; Vanotti and Bundy, 1994; Meisinger et al., 2008; Sou
fizadeh et al., 2018). Undoubtedly, addressing the soil-N-supply and 
plant-demand trade-offs (Briat et al., 2020) from complementary per
spectives plays a key role for the design of N management strategies in 
maize crop. For a reduced portion of our dataset (<30 %), Fig. 1C shows 
that following the concept of N dilution curves (Plénet and Lemaire, 
2000; Lemaire and Ciampitti, 2020), estimates of N nutrition index 
(NNI) could provide a mechanistic-approximation of N uptake satisfied 
by a given soil condition (Devienne-Baret et al., 2000). This estimation 
of grain NNI at harvest using ear-N dilution curve as reference (Zhang 
et al., 2020) was able to portray differences of zero-N maize under 
different previous crops. However, a major limitation at a regional scale 
relies on the lack available and relevant data (co-variables) such as on 
whole-plant biomass and plant N uptake at specific stages (e.g., flow
ering) in order to represent contrasting management, soil, and weather 
conditions. 

For the above-mentioned purposes, it is noteworthy that collecting 
field data on Y0 would be fairly scalable. Similarly, collecting initial soil 
data and obtaining precise spring weather data for building a simple but 
an effective prediction approach would also be fairly scalable. The 
reasonable performance of our data assessment framework across a wide 
geographic region suggests that cross-state guidelines could be pursued, 
a pending aspect for most of current N guidelines (Morris et al., 2018). 
Further efforts should recognize the value of combining collaborative 
research with increasing computational resources, data sources and type 
of models (Messina et al., 2020). 

This study also offers an ex-ante approach using a large database of 
field studies to develop forecast models for Y0. Past efforts were mostly 
focused on: i) describing N response curves ex-post (Morris et al., 2018); 
ii) predicting the EONR via simulation models (Melkonian, 2008; 
Setiyono et al., 2011; Puntel et al., 2018); or iii) predicting EONR via 
machine learning using datasets of limited size that constrain the 
generalization of outcomes (Qin et al., 2018; Ransom et al., 2019). The 
vast majority of models in literature use all the available data for 
training, but not out-of-sample data is used for testing how well they 
predict unseen observations. Predicting EONR faces the issue of defining 

a reference value, and its degree of uncertainty is generally overlooked 
(Hernandez and Mulla, 2008), highly depending on the best fitted model 
(Jaynes, 2011) and on the fertilizer to grain price ratio (Kim et al., 
2013). Machine learning with small datasets (up to few hundred ob
servations) is likely to suffer of high bias, limiting the detection of pat
terns and restricting the predictive ability in unexplored domains 
(Zhang and Ling, 2018). Still yet, limited efforts were focused specif
ically on the prediction of Y0 (Puntel et al., 2019), also with constraints 
on data availability to explore benefits of machine learning-type models. 

We acknowledge issues limiting the scope of this approach: i) 
achieving a balanced and more detailed dataset, ii) research plot data 
has limitations, and iii) the trade-off between prediction power and 
interpretability of machine learning. For the first point, our dataset 
suffered from unevenly reported metadata and a lack of relevant fea
tures such as soil N availability tests, plant biomass and N uptake, 
planting and maturity dates, among other data descriptors that could 
eventually result in improved performance. From the scalability 
perspective, yields in well-managed research experiments are generally 
greater than yield with the same practices applied by farmers in pro
duction fields (Cassman et al., 2002). Regarding the interpretability 
limitations, this is currently shared by most of the machine learning 
algorithms (Khaki and Wang, 2019). Nonetheless, as computing power 
and algorithms exponentially grow, we will likely overcome the 
“black-box” limitation in the foreseeable future with refined methods to 
assess features role on prediction (Springenberg et al., 2015). 
Meta-learning models as ensembles of learning algorithms (Makowski 
et al., 2015) coupled with simulations (Shahhosseini et al., 2019; Mes
sina et al., 2020) and cross-scales models (Wu et al., 2019) may 
contribute to this process. Finally, Bayesian statistics are also likely to 
contribute to yield forecast models as they offer more inference options 
on dealing with yield uncertainty (Iizumi et al., 2009). 

A noteworthy outcome of this study is that a large fraction of the Y0 
variability was explained just by management and soil factors (~50 %). 
Weather contributed to improving the overall performance (+15 %). 
The “Full weather” and the “Spring weather” models reduced the 
RRMSE by 7 % and 4 %, respectively, with respect to the “No weather” 
model. While the reduction in RRMSE of the “Spring weather” model is 
lower than the “Full weather” model, it could be utilized for prediction. 

Fig. 4. Partial main dependencies of predicted maize grain yield under N omission (Y0, Mg ha− 1) on the most relevant features related to management, soil, and 
weather (Fig. 3). In A, Boxes represent the inter-quartile range (25th to 75th percentile) and whiskers the 5th to 95th percentiles. Out-of-bag predictions from 20-fold 
cross-validation for the Full weather framework. 
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Prediction errors in the range of RMSE ~2 Mg ha− 1 (RRMSE from 27 % 
to 34 %) still represent a moderate performance and significant 
remaining uncertainty (Liu et al., 2013). Taking into consideration the 
observed range of apparent N requirement to produce 1 Mg yield ha− 1 

(Fig. 1B), those values can be translated into an uncertainty in soil N 
supply of at least from 23 to 44 kg N ha− 1 (considering an ideal, 100 %, 
N uptake efficiency). However, this also represents an opportunity for 
improvement. For example, a similar research approach on the predic
tion of rainfed maize yield using 2267 field studies across the US ob
tained a RRMSE up to 11 % using deep neural networks (Khaki and 
Wang, 2019), although encompassed more than 140,000 observations 
for training, as well as a much a more balanced and detailed database in 
terms soil, weather, in addition to the use of genetic markers data. 

Across all models, the positive influence of legumes residues into 
crop rotations is clearly highlighted among management factors. The 
effect of alfalfa on the following maize N response has been well docu
mented affecting soil N availability as well as soil physical conditions 
(Yost et al., 2012, 2013; 2014; Riedell, 2014). At the cropping system 
level, better coupling of C and N cycling processes can be achieved by 
relying more on organic rather than inorganic nutrient inputs (Drink
water and Snapp, 2007). On the other hand, as one of the most limiting 
factors of maize yields (Mueller et al., 2012; Elliott et al., 2013; Meng 
et al., 2016), water supply was also a critical management factor for Y0, 
particularly enhancing yields of annual legumes as previous crops more 
than for cereals (Fig. 4A), as the first group is comparatively less likely to 
suffer N-limitations. Counter-intuitively, our analysis did not show the 
expected influence of factors such as tillage on improving the estimation 
of Y0. Nonetheless, a lack of differences in yield response was also noted 
from the MRTN database (Sawyer and Nafziger, 2005). At a regional 
scale of our analysis, marginal effects are likely distorted by higher level 
interactions and by systematic differences in experimental methods. At a 
field level, however, it is well documented that tillage can modify soil 
aggregation, water holding capacity, soil temperature, and consequently 
soil N mineralization (Bruce et al., 1990; Andraski and Bundy, 2008; 
Coulter and Nafziger, 2008). 

Considered an essential part of the soil and farming systems (Lal, 
2004), SOM played the most influential role among soil features. A 
recent global meta-analysis documented a positive trend of maize yields 
with SOM with leveling off at ~3.4 % (Oldfield et al., 2019). This study 
estimated that the same yield would be achievable with zero-N input in a 
soil with SOM of 3.4 % as with 50 kg N ha− 1 with SOM of 0.9 %. 
However, N mineralization and the total organic carbon pool shows 
inconsistent relationship across the literature (Fox and Piekielek, 1984; 
Narteh and Sahrawat, 1997; Schomberg et al., 2009; Soon et al., 2007; 
Sainz Rozas et al., 2008), potentially related to differences in the most 
active of SOM fractions (Schmidt et al., 2011). In this sense, indices of 
soil N mineralization would theoretically improve the utilization of SOM 
and a simple index from soil-test biological activity appears noteworthy 
(Franzluebbers, 2018). Lastly, the soil texture is sometimes presented in 
association with soil N mineralization, but the relationship is variable 
across studies in the literature (Hassink, 1997; Franzluebbers et al., 
1996; Yoo and Wander, 2006; Zhu et al., 2009; Dessureault-Rompré 
et al., 2010; Ros et al., 2011; Cai et al., 2016). For instance, a 
meta-analysis including 51 experiments in North-America have reported 
higher maize N responses under finer soil textures (Tremblay et al., 
2012), while only marginal effects of spatial variability for soil texture 
relative to variation across years were also reported in other studies (van 
Es et al., 2005v; Tremblay and Bélec, 2006; Kyveryga et al., 2009). 

Weather factors are determinants of both N supply and demand 
(Soufizadeh et al., 2018). In this study, the excess of rainfall early in the 
season enter in prediction models consistent with the negative impact of 
high precipitation on drainage, water-logging and increased N losses 
(Cameron et al., 2013; Wang et al., 2014). Spring precipitations have 
been reported to account for 74 % of inter-annual variation in mean soil 
residual N at pre-sidedress (Balkcom et al., 2003). Similarly, every 10 
mm of April precipitation above historical average delayed planting date 

for 1 day in the main 12 central US states (Kucharik, 2008). Although it 
is unlikely that yields under N limitations were limited by solar radiation 
(DeBruin et al., 2013; Soufizadeh et al., 2018), radiation per unit of 
thermal time (Q quotient) during June-July (JJ) and early in the season 
(AM) positively affected yields (Andrade et al., 2000; Carter et al., 2018; 
Soufizadeh et al., 2018) until variable optimum levels, exhibiting the 
trade-off with the temperature effects on radiation use efficiency 
(Andrade et al., 1993) and biomass partitioning to the ear (Wilson et al., 
1995). Regarding temperature, the occurrence of extreme temperatures 
during the reproductive period (ETE_AS) resulted in one of the most 
relevant features suggesting that the positive effect of temperature on 
soil N mineralization (Dalias et al., 2002; Wu et al., 2008; Fernández 
et al., 2017) could be offset by a negative impact of supra-optimal 
temperatures on plant growth (e.g., shortening the grain filling dura
tion) and plant N demand (Muchow et al., 1990; Soufizadeh et al., 
2018). Overall, the high relevance of weather features at early stages 
(spring) appraises to invest more resources in the aggregation and 
analysis of massive databases that allow to further explore the devel
opment of prediction frameworks for Y0 that can be applied in practice. 

5. Conclusions 

Management factors such as previous crop and irrigation in combi
nation with top-soil SOM accounted for the largest portion of variation 
in Y0, while the inclusion of weather features refined the prediction 
accuracy. In a practical sense, a simple framework including weather 
variables of spring (March-May) might result comparable in perfor
mance to a framework including all-season weather. Future attempts 
should assess alternative statistical and machine learning approaches 
offering performance and interpretability improvements. Refined pre
diction frameworks for Y0 could provide new insights on N respon
siveness and represent a step-forward towards more collaborative and 
regional-scale N recommendation guidelines. 
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