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Abstract
Nitrogen fertilizer recommendations in corn (Zea mays L.) that match the economi-

cally optimal nitrogen fertilizer rate (EONR) are imperative for profitability and min-

imizing environmental degradation. However, the amount of soil N available for the

crop depends on soil and weather factors, making it difficult to know the EONR

from year-to-year and from field-to-field. Our objective was to explore, within the

framework of hydrologic soil groups and drainage classifications (HGDC), which

site-specific soil and weather properties best estimated corn N needs (i.e., EONR)

for two application timings (at-planting and side-dress). Included in this investigation

was a validation step using an independent dataset. Forty-nine N response trials con-

ducted across the U.S. Midwest Corn Belt over three growing seasons (2014–2016)

were used for recommendation model development, and 181 independent site-years

were used for validation. For HGDC models, soil organic matter (SOM), clay content,

and evenness of rainfall distribution before side-dress N application were the prop-

erties generally most helpful in predicting EONR. Using the validation data, model

Abbreviations: EONR, economically optimal nitrogen rate; HGDC, hydrologic soil group and drainage class; Ksat, saturated hydraulic conductivity; MRTN,
maximum return to nitrogen; PAWC, plant-available water content; PD, poorly drained; SDI, Shannon Diversity Index; SOM, soil organic matter; SSURGO,
Soil Survey Geographical Database; WD, well drained ; SRGO_PAWC, SSURGO plant-available water content.
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recommendations were within 34 kg N ha–1 of EONR for 37 and 42% of the sites

with a root mean square error (RMSE) of 70 and 68 kg N ha–1 for at-planting and

side-dress applications, respectively. Compared to state-specific recommendations,

sites needing <100 kg N ha–1 or no N were better estimated with HGDC models. In

contrast, for sites where EONR was >150 kg N ha–1, HGDC models underestimated

N needs compared to state specific. These results show HGDC groupings could aid

in developing tools for N fertilizer recommendations.

1 INTRODUCTION

Sustainable N fertilizer practices in corn (Zea mays L.) are
accomplished by applying the correct amount of N fertilizer
and at the correct time necessary to reach the economically
optimal nitrogen rate (EONR). These practices help main-
tain profit while minimizing N loss to the environment. Com-
monly, N fertilizer is overapplied to ensure maximum yield,
resulting in poor N use efficiency and environmental pollu-
tion (Schröder et al., 2000; Shanahan et al., 2008; Tremblay
et al., 2012). Due to the spatial and temporal variability of
soil and weather factors impacting the fate of soil N and corn
N uptake being negligible early in the growing season, deter-
mining EONR before or early in the growing season is diffi-
cult. For these reasons, split-applications with some fertilizer
applied in-season have merit.

Historically, N fertilizer recommendations have been
derived from expected grain yield (Blackmer et al., 1992;
Gehl et al., 2005), but this strategy failed to consider N
response to soil and weather conditions for the upcoming year.
Soil and weather metrics have been related to corn N response
(Tremblay et al., 2012; Xie et al., 2013). Corn N response, as
measured by the yield increase with N fertilization, is signif-
icantly related to EONR (r2 = .52; Meisinger et al., 2008).
Understanding weather and soil factors and their relationship
to crop response can improve N fertilizer recommendations
and help prevent environmental losses of N (Morris et al.,
2018).

Soil texture and organic matter (among other variables)
impact soil water flow, available N (organic matter miner-
alization), plant-available water content (PAWC), the trans-
portation and availability of ions (Schaetzl & Anderson,
2014), and crop yield (Armstrong et al., 2009; Tremblay et al.,
2012; Zhu et al., 2009). Spatial diversity of these properties
across a landscape combined with variable total rainfall, the
evenness of rainfall over the growing season, and tempera-
ture contribute to the complexity of N use in crops and its fate
in the environment (Tremblay et al., 2012). Denitrification
most often occurs in fine-textured soils experiencing anaer-
obic conditions from excessive rainfall and warm soil temper-
atures (Blevins et al., 1996). In contrast, NO3

– leaching below

the rooting depth results when large amounts of rainfall occur
on soils with low water-holding capacity or on coarse-texture
soils (Power et al., 2001). Volatilization may also occur if
certain N fertilizers, such as urea, are not incorporated into
the soil (Ma et al., 2010). These interactions require different
methods of N management.

Precipitation and temperature generally drive plant growth
and influence soil conditions, including soil microbial activity
(Tremblay & Bélec, 2006), which ultimately influence corn
yield. In years with above-average rainfall, corn has generally
been found to require more N fertilizer than years of below-
average rainfall (Yamoah et al., 1998). Across North America,
corn yield response to N fertilization was affected the most by
precipitation during June and July, and by temperatures dur-
ing July and August (Jeutong et al., 2000). The distribution or
evenness of rainfall has also been found significant in explain-
ing corn responsiveness to N fertilizer and subsequently, crop
yield (Reeves et al., 1993; Shaw, 1964; Tremblay et al., 2012).
Locations with large amounts of soil moisture early in the
growing season promoted N loss through denitrification and
leaching, and increased the grain yield responsiveness to N
fertilizer (Tremblay et al., 2012). Rainfall and temperature are
widely accepted weather attributes directly affecting soil fac-
tors such as oxygen levels, soil microbial activity, and decom-
position of organic matter (e.g., N and S mineralization),
which affects nutrient availability, plant-available water, and
ultimately crop yield (Dellinger et al., 2008; Kyveryga et al.,
2007; Power et al., 2001; Tremblay, 2004; Tremblay & Bélec,
2006; Tremblay et al., 2012). Research is needed to determine
how soil and weather factors can improve N fertilizer recom-
mendations.

Some of the above-mentioned soil and weather properties
interact (e.g., clay percentage and excessive precipitation) to
affect plant growth, and elements of these interactions have
been used by the USDA-NRCS to classify soils. Each USDA-
NRCS Soil Survey Geographical Database (SSURGO) soil
series is assigned both a hydrologic soil group and a drainage
classification (USDA NRCS, 2009). Hydrologic soil groups
are based on the depth to a restrictive layer or water table, the
transmission rate of water through the soil profile, soil texture,
soil structure, and the degree of soil swelling when saturated.



BEAN ET AL. 3

The seven drainage classifications are centered on the fre-
quency and duration of wet periods, the occurrence of internal
free water, and the rate of water removal from the soil profile.
When considering N loss on a watershed scale, hydrologic
groups were one of the most important factors in estimating
N movement and loss pathways (Blanchard & Lerch, 2000).
In forested soils in southern Quebec, drainage class was
significantly related to N transformation rates and internal N
cycling (Ullah & Moore, 2009).

Many publicly available N fertilizer rate recommendation
tools have been developed and tested (Morris et al., 2018).
However, many of these tools do not consistently relate well
to EONR, highlighting the need for additional improvement
(Puntel et al., 2018; Ransom et al., 2020; Sela et al., 2018;
Setiyono et al., 2011; Thompson et al., 2015). Only a few rec-
ommendation tools have used soil hydrologic groupings or
drainage classes, yet expanding its use could improve estima-
tion of corn N fertilizer needs. This was observed with the
Illinois soil N test, as its accuracy improved when drainage
classification was taken into account (J. Williams et al., 2007).
Our objective was to explore, within the framework of hydro-
logical soil groupings and drainage classifications, which site-
specific soil and weather properties best estimate corn N
needs, with the goal being to improve corn N recommenda-
tions. Included in this investigation was a validation step using
an independent dataset.

2 MATERIALS AND METHODS

2.1 Research for model development

This research for developing the models was conducted
as part of a public–private collaboration between eight
major land-grant universities (Iowa State University, Uni-
versity of Illinois, Purdue University, University of Min-
nesota, University of Missouri, North Dakota State Univer-
sity, University of Nebraska, and the University of Wis-
consin) within the U.S. Corn Belt and Corteva Agriscience
(Kitchen et al., 2017). Yield and soil measurements from
these plot studies provided the measurements needed to gen-
erate N fertilizer recommendation models and N response
functions.

Forty-nine corn N response trials were conducted during
2014–2016 in eight midwestern Corn Belt states. In each
state, two sites varying in productivity were selected for each
growing season, resulting in six sites per state (Missouri had
three in 2016). The majority of sites were corn after soybean
[Glycine max (L.) Merr.]. Productivity was determined by his-
torical yield and general soil productivity. Research sites were
planted at a target population of 86,450 plants ha−1 using
Pioneer brand hybrids (Corteva Agriscience) adapted for the

Core Ideas
∙ Soil hydrologic classifications aid in determining

corn N fertilizer rates.
∙ Economically optimal N rate was best predicted

by different soil and weather properties for each
hydrologic group.

∙ Soil organic matter, clay, and rainfall evenness gen-
erally helped in estimating economically optimal N
rate.

∙ Compared to state N recommendations, developed
models were better when economically optimal N
rate <100 kg ha−1.

selected sites within the region. Descriptions of management
for all sites are presented in Kitchen et al. (2017) and Bean
et al. (2018a).

Fourteen different N application treatments replicated four
times were used in a randomized complete block design.
Nitrogen treatments comprised of dry-prilled NH4NO3 fertil-
izer broadcast applied. The “at-planting” fertilizer was applied
within 48 h of initial planting, while the side-dress fertilizer
was applied between the V8 and V10 leaf stage (Abendroth
et al., 2011). At-planting rates ranged from 0 to 315 kg N ha−1

in 45 kg N ha−1 increments. Side-dress rates ranged from
0 to 315 kg N ha−1 in 45 kg N ha−1 increments, but treat-
ments were split applied with 45 kg N ha−1 at planting and
the remaining N at the V9 development stage. Additional
details about the trial sites, treatments, and measurement have
been previously documented (Kitchen et al., 2017). An EONR
[corn grain price, US$0.158 kg−1 ($4.00 bu−1), N fertilizer
cost, $0.88 kg N−1 ($0.40 lb−1)] was calculated for both the at-
planting and split N treatments. The quadratic-plateau func-
tion was found most appropriate for all but one site where a
quadratic function was a better fit (Kitchen et al., 2017). The
EONR values were calculated as:

EONR =
−𝑏 − (N∶corn price)

(2𝑐)
(1)

where b and c were the linear and quadratic response coef-

ficients from the optimized quadratic-plateau function. For
evaluating HGDC-based N recommendation models for corn
that received 45 kg N ha−1 at planting, the EONR value was
reduced by this same amount so that it represents the N fer-
tilizer that was applied as side-dress. Throughout the rest of
this analysis “EONR” is used in the general sense to represent
both application timings.
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T A B L E 1 A list and brief description of the outside datasets used in the validation analysis

State Study characteristics Site-years References
IA Long-term corn N response plot studies established

(1999–2016) at several Iowa State University Research
Farms to observe the effect of N fertilization on soil organic
C, crop yield in varying corn cropping systems, and corn
model development

68 Brown et al., 2014; Puntel et al., 2016;
Poffenbarger et al., 2017

IN Large plot N response studies at several Purdue University
Agricultural Centers focused on fertilizer application timing,
rate and residual effects, and canopy reflectance

67 Emmert, 2009; Miller, 2012; Moser,
2016; J. J. Camberato, personal
communication, March 2018

MO Field-length N response sites used in the comparison between
variable-rate canopy sensor-based N fertilizer
recommendations and producer N rate. Additional studies on
corn N response related to soil texture and weather properties

5 Kitchen et al., 2010; Tremblay et al.,
2012

NE Large plot N response studies aimed at incorporating
management zones and canopy sensing ultimately to
improve N recommendation equations

14 Crowther, 2018

ND Nitrogen response studies used to compare satellite imagery
and canopy reflectance sensors as yield predictors in corn.
Additional studies on using rainfall data to improve canopy
sensor-based yield predictions

11 Bu et al., 2017; Sharma et al., 2018

WI Evaluating cover crops and nitrapyrin for improved manure N
availability

16 Teeter, 2019; C. A. M. Laboski,
personal communication, March
2018

2.2 Research for model validation

Data used to validate the models were collected from six
major land-grant universities (Iowa State University, Purdue
University, University of Missouri, North Dakota State Uni-
versity, University of Nebraska, and the University of Wis-
consin) within the U.S. Corn Belt. These corn N fertilizer
response studies were separate from those used to generate
the models and represented a wide range of soil and weather
conditions. Of the 181 total, 165 site-years (59 at-planting and
106 side-dress) were relevant to the models being developed
and could be used for validation. These included sites that
were conducted from 1999 to 2017. A brief description of the
collected datasets is presented in Table 1 and additional base-
line information supplied in supplemental tables. An EONR
for each site and N application timing was calculated using
the same corn grain price to N fertilizer cost ratio mentioned
above.

2.3 Measurements considered for model
development

Soil sampling at each site was conducted in the spring
before planting. Bulk soil apparent electrical conductivity sur-
veys using a Veris 3100 (Veris Technologies) guided site
characterization soil sampling. For soil characterization, two
adjacent 1.2-m deep soil cores (i.d. 4.76 cm) were obtained

from each of the four replications at each site using a Giddings
Model no. 5-UV/MGSRPSUV (Giddings Machine Com-
pany). One core was used to measure bulk density and soil
moisture at sampling while the other was processed for phys-
ical and chemical analyzes, including: particle size (pipette
method), cation exchange capacity, total C, total organic C,
total inorganic C, soil organic matter (SOM), and pH (salt and
water) following standardized procedures (Nelson & Som-
mers, 1996; Soil Survey Staff, 2014). Plant available water
content (PAWC) was calculated as the difference between
the soil water content at field capacity and permanent wilt-
ing point using procedures outlined by Saxton and Rawls
(2006). Results were average across all replicated cores to
represent the site. Soil biological activity was assessed from
samples taken at the V5 corn growth stage using the Cornell
Soil Health Assessment CASH soil respiration test (Moebius-
Clune et al., 2016), a test measuring CO2 output during a 4-d
incubation period (Zibilske, 1994).

The SSURGO data for model development were obtained
from the USDA-NRCS via the “Web Soil Survey” web-
site and the “Soil Data Viewer” plug-in available in
ArcMap (Esri) or the Soil Web (O’Geen et al., 2017).
If more than one SSURGO mapping unit was assigned to the
research site, the most dominant SSURGO mapping unit was
chosen. Data collected from SSURGO included PAWC, clay,
and SOM.

Weather data were collected using a HOBO U30 Auto-
matic Weather Station (Onset Computer Corporation). Daily
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T A B L E 2 Weather parameters calculations from the time of planting to the time of side-dress using formulas and descriptions outlined in
Table 2 of Tremblay et al. (2012)

Weather parameter Calculation
Growing degree days Growing degree days = ∑(Tmin + Tmax)/2 – 10 ˚C where Tmin and Tmax are the

minimum and maximum daily temperatures; if Tmax > 30˚C, Tmax = 30 ˚C.

Total precipitation Total precipitation = ∑(Rain), where Rain is the daily rainfall and irrigation
amounts (mm).

Shannon Diversity Index (SDI) SDI = [–∑pi × ln(pi)]/ln(n), where pi = Rain/total precipitation and n = number
of days in the period. SDI = 1 implies complete evenness of rainfall and
SDI = 0 implies complete unevenness.

Abundant and well-distributed
rainfall

SDI × total precipitation.

temperatures were used to calculate growing degree days
while daily precipitation (and irrigation) was used to calcu-
late the total precipitation, Shannon Diversity Index (SDI),
and abundant and well-distributed rainfall (Table 2). The SDI
measures the evenness of precipitation by calculating the pro-
portion of daily precipitation to the total cumulative precip-
itation during a specified time period. For additional details
about the calculations and interpretation for these metrics
used in reference to N management, refer to Tremblay et al.
(2012) and Bean et al. (2018b).

2.4 Measurements collected for model
validation

For many validation sites, soil information was supplied by
the principal investigators of the experiments or additional
analyzes were performed on stored soil (Table 1). For site-
years with missing soil information or samples, additional
soil sampling was performed in the fall of 2018. Sites requir-
ing additional soil collection were sampled in a “Z” pat-
tern across the footprint of the site location via a Backsaver
hand soil probe (JMC Soil Samplers) with no <10 sam-
pling points per site. Samples were taken and aggregated
in 0-to-30- and 30-to-60-cm depth increments and analyzed
using the same methods described above at the University of
Missouri Soil Health Assessment Center or the USDA-ARS
Soil Quality Lab (Columbia, MO). The SSURGO data were
obtained the same way as described for sites under model
development.

Weather data were collected either from on-site weather
stations or the National Oceanic and Atmospheric Admin-
istration’s (NOAA) cooperative climate dataset resource
(http://www.ncdc.noaa.gov). Weather data gathered
through NOAA were taken from the weather station
nearest the site location. These were used to calculate the
same weather metrics as described above under model
development.

F I G U R E 1 A schematic for delineating soils in order to develop
site-specific N management recommendations. Soils were delineated
using two United States Department of Agriculture–Natural Resources
Conservation Service (USDA-NRCS) soil classification systems: (1)
hydrologic soil groups (A, B, C, and D), and (2) drainage classes (well
drained [WD] or poorly drained [PD])

2.5 Site delineation by hydrologic soil
group and drainage class

For both model development and validation sites, hydro-
logic groupings and soil drainage classifications were gath-
ered from the SSURGO database via Soil Web (University
of California). There are four USDA-NRCS hydrologic soil
groups (A, B, C, D) with group A having the least potential
for runoff and group D having the highest potential (Table 3).
There are seven USDA-NRCS drainage classifications (exces-
sively drained, somewhat excessively drained, well drained,
moderately well drained, somewhat poorly drained, poorly
drained, and very poorly drained), but for this analysis sites
were grouped to be considered either poorly drained (PD)
or well drained (WD). Initial site delineation was made by
combining sites within hydrologic soil groups A and D, with
no distinction of drainage class (Figure 1). Hydrologic soil
group A and D were grouped together because they both have

http://www.ncdc.noaa.gov
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T A B L E 3 Hydrologic soil groups as defined by the USDA. The hydrologic soil group delineations are made with the considerations that (1) the
intake and transmission of water are under the conditions of maximum yearly wetness, (2) the soil is not frozen, (3) the soil surface is bare, and (4)
maximum swelling of expansive clays are measured (where applicable). It should also be noted that the soil surface slope is not considered and when
assigning a soil to a hydrologic soil group, the least transmissive layer is used

Hydrologic
group

Runoff
potential Water transmission Soil texture KSAT

Depth to water
table

Depth to
impermeable layer

cm h−1 cm

A Low Unrestricted >90% sand
and <10% clay

>14.5 >61 >51

B Moderate low Unrestricted 10–20% clay and
50–90% sand

3.6–14.5 >61 >51

C Moderate high Somewhat restricted 20–40% clay
and <50% sand

0.36–3.6 >61 >51

D High Very restricted >40% clay and <50%
sand

<0.36 <61 <51

T A B L E 4 Overview of soil and weather measurements considered in linear regression models for predicting economic optimal nitrogen rate
(EONR). This linear regression analysis was performed within each USDA-NRCS defined hydrologic soil groups and drainage classifications for
at-planting and side-dress N application timings. All soil information (measured and Soil Survey Geographical Database [SSURGO]) were tested
using values from 0-to-30- and 0-to-60-cm depths. Weather variables were used only for side-dress treatments and calculated from time of planting
to time of side-dress (V8–V10 stage)

Type Factors evaluated
Weather SDI, growing degree days, total precipitation, abundant and well distributed rainfall

Measured soil information Clay, PAWC, SOM, organic C, total C, pH, soil respiration

SSURGO based information Clay, SRGO_PAWC, SOM

Note. SDI, Shannon Diversity Index; PAWC, plant available water content (%); SRGO_PAWC, SSURGO plant available water (%); SOM, soil organic matter (%).

a high propensity for N loss–group A soils via leaching and
group D soils via denitrification. For sites classified in soil
groups B and C, further delineation was accomplished using
the drainage class with soils being PD or WD, as shown in
Figure 1. Thus, site delineation resulted in five groups and
was the framework for model development of this investiga-
tion. For convenience, the five distinct groups will be referred
to as HGDC A and D, HGDC B-WD, HGDC B-PD, HGDC
C-WD, and HGDC C-PD.

2.6 Statistics for model development and
validation

Data were analyzed using SAS version 9.2 (SAS Institute
Inc.) by delineated HGDC. The proc REG linear regression
function was used for evaluating EONR (both N fertilizer
timings) as a function of soil properties (both depth inter-
vals of 0–30 and 0–60 cm) and weather variables (Table 4).
Included were all two-way interactions between these vari-
ables. All at-planting models excluded measurements that
were collected after planting (i.e., weather and soil respira-
tion tests). Regression model outcomes producing the greatest
probability significance (either single or two-way interaction

variable) were used to generate N recommendation models
within each HGDC delineation. Assessment of all HGDC N
recommendation models was based on the RMSE of the dif-
ference between N recommendation and EONR, and by the
percentage of sites within 34 kg N ha−1 of EONR. This value
represents the amount of uncertainty around the EONR calcu-
lations and was based on 95% confidence intervals and prof-
itable margins of $2.50 ha−1

. The value of 34 kg N ha−1 is
similar to what others have used for testing the performance of
N recommendation tools (Laboski et al., 2014; Sawyer, 2013),
and is similar to an economic-environmental threshold value
identified with this same dataset (Bandura, 2017).

The HGDC N recommendations were validated using the
same performance metrics described previously (i.e., RMSE
and the percentage of sites within 34 kg N ha−1). Additionally,
this validation dataset was used to compare the HGDC N rec-
ommendations to the state-specific N recommendations. For
Iowa, Indiana, North Dakota, and Wisconsin the Maximum
Return to Nitrogen (MRTN) tool was used while for Mis-
souri and Nebraska a state-specific yield goal approach was
used. The MRTN values are derived for specific geographies
(state, substate, or region) using many N yield response trials
across multiple years (Nafziger et al., 2004; J. Sawyer et al.,
2006). The Nebraska yield goal is calculated using expected
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T A B L E 5 Soil and weather variables related (p < .05) to the economic optimum nitrogen rate (EONR) as delineated by USDA-NRCS defined
hydrologic soil groups and drainage class (HGDC). Results shown are for both N timings (at-planting and side-dress). Weather variables were used
only for side-dress treatments and calculated from time of planting to time of side-dress (V9 ±1 stage)

N timing HGDC Delineation Variable Model r2 p value
At-planting A and D – – –

B-WD SOM30 y = 251 – 44 – SOM30 0.64 .001

B-PD PAWC30 × SOM60 y = 83 + 340 × (PAWC30 × SOM60) 0.74 .039

C-WD Clay30 × SOM30 y = −296 + 447 × (Clay30 × SOM30) 0.78 .012

C-PD Total C30 y = 260 – 75 × Total carbon30 0.32 .016

Side-dress A and D SDI y = 265 + 645 × SDI 0.54 .015

B-WD Soil respirationa y = 193 – 0.6 × Soil respiration 0.55 .003

B-PD SDI × Clay60 y = 11 + 929 × (SDI × Clay60) 0.85 .017

C-WD SDI × Clay30 y = −191 + 1324 × (SDI × Clay30) 0.70 .023

C-PD SDI × SRGO_PAWC60 y = −171 + 100 × (SDI × SRGO_PAWC60) 0.48 .003

Note.SOM30 , soil organic matter in the upper 30 cm of soil; PAWC30, plant available water content in the upper 30 cm of soil (%); SOM60, soil organic matter in the upper
60 cm of soil; Clay30, percentage clay in the upper 30 cm of soil; Total C30, percentage carbon in the first 30 cm of soil; SDI, Shannon Diversity Index calculated from
the time of planting to the time of N side-dress; Clay60, percentage clay in the upper 60 cm of soil; SRGO_PAWC60, SSURGO gathered plant available water content in
the upper 60 cm of soil (%).
aSoil respiration in the first 30 cm of soil as measured using the 4-d Cornell Soil Health Assessment test.

yield, estimated soil nitrate and N supplied from SOM, N sup-
plied from irrigation, with an N credit applied for any previous
year’s soybean crop (Shapiro et al., 2008). The recommenda-
tion can then be adjusted based on soil texture and application
timing. Similarly, the Missouri yield goal approach uses an
expected yield and N supplied from the soil based on SOM
and cation exchange capacity. A credit is also given for any
previous grown soybean (Buchholz et al., 2004).

3 RESULTS AND DISCUSSION

3.1 Model development

The number of sites per HGDC were 9, 14, 5, 6, and 15 for
HGDC A and D, B-WD, B-PD, C-WD, and C-PD, respec-
tively. Soil and weather factors most significantly related to
EONR for both N application timings are listed in Table 5.

3.1.1 Fertilization at planting

For the at-planting N application time, no variables were
found related to EONR for HGDC A and D. This is likely
due to the uncertainty of predicting seasonal N need at the
time of planting for these two contrasting soils, which have
different N loss responses to weather events. Since “in sea-
son” weather information was not yet available, understanding
corn N response within this HGDC was ineffective. Soil fac-
tors improved estimation of EONR of the other four HGDC
groups (Table 5). For HGDC B-WD sites, EONR decreased
as SOM increased in the first 30 cm of soil (Figure 2). This

result suggests sites with greater amounts of SOM provided
greater soil N, which led to reduced N fertilizer for EONR.
With greater SOM, other properties also improve, includ-
ing soil aggregation, which promotes infiltration, aeration,
and root growth and development (Boyle et al., 1989). These
properties help buffer against extreme weather conditions by
storing soil water (A. Williams et al., 2016), which in turn
allows for sustained biological activity and therefore condi-
tions for N mineralization. A similar yet weaker response was
found with HGDC C-PD but using total C (Figure 2). Since
total C for these soils is the major portion of SOM, they are
highly related. This property is also typically related to soil
bulk density, a property important for promoting root growth
(Hallmark & Barber, 1981). As total C increased, bulk den-
sity decreased. Although considered poorly drained, sites in
HGDC C-PD with lower bulk densities (1.1–1.3 g cm−3) and
higher total C content were potentially less susceptible to N
loss and/or greater N mineralization due to greater soil aera-
tion. Interestingly, soils within this group had the largest range
in EONR (>150 kg N ha−1), suggesting these soils needed
tools with greater flexibility when making N fertilizer recom-
mendation.

With HGDCs B-PD and C-WD, it showed that EONR
increased with increasing soil values (Figure 2). For HGDC
B-PD the relationship was with the interaction between
PAWC and SOM (60 cm) and for HGDC C-WD the rela-
tionship was with the interaction between clay and SOM
(30 cm). As values of these interactions increase, we would
expect drainage to decrease. An explanation of this outcome
is that since these soils are poorly drained (HGDC B-PD) or
have low saturated hydraulic conductivity (KSAT; HGDC C-
WD), they potentially experience anaerobic conditions during
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F I G U R E 2 Economic optimal nitrogen rate (EONR) related to soil properties for at-planting N application within delineated hydrologic soil
group and drainage class (HGDC; Figure 1). No properties were found significant for HGDC A and D. See Table 5 for details of equations. Values
are represented by U.S. state abbreviations

portions of the growing season. When rainfall is excessive for
these soils, anaerobic conditions persist and substantial inor-
ganic N loss through denitrification may occur, and therefore
high rates of fertilizer N are needed to reach EONR (Blevins
et al., 1996).

3.1.2 Fertilization at side-dress

For HGDC A and D, soil properties were not found to be
as helpful in explaining variation in EONR, but EONR did
increase with increasing rainfall evenness (Figure 3). Distri-
bution of precipitation can be just as important as total precip-
itation, and can influence N uptake, mineralization, leaching,
and denitrification (Tremblay et al., 2012). Hydrologic soil
group A contains coarse-textured soils (>90% sand) with high
KSAT rates and a low runoff potential. Hydrologic soil group
D contains soils that are high in clay content (>40%) with low
KSAT rates and a high runoff potential. Therefore, more evenly
distributed precipitation events (higher SDI values) from the

time of planting to side-dress allowed these soils to stay wet
longer, which is conducive to N loss. Others comparing SDI
to N response have found similar results (Kablan et al., 2017;
Tremblay et al., 2012). It should be noted that temperature
(e.g., growing degree days) was not found related to EONR.
This is similar to other analyzes performed with this dataset
and suggests precipitation is more helpful in understanding
corn N response on a regional basis. These findings demon-
strate that within HGDC A and D, the relationship between
SDI and EONR can help in determining an in-season N fertil-
izer recommendation.

For HGDC B-WD, EONR decreased as soil respiration
increased (Figure 3). This negative relationship was simi-
lar to that reported by Yost et al. (2018). As soil respira-
tion increased, presumably the amount of plant-available N
being supplied by soil became more abundant via increased
microbial activity (i.e., mineralization), resulting in less need
for inorganic N fertilizer to reach EONR. Not surprisingly,
the coarse-textured Indiana sites with little organic mat-
ter (0.8 and 1.4%, respectively) and lower PAWC had the
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F I G U R E 3 Economic optimal nitrogen rate (EONR) related to soil properties for side-dress N application within delineated hydrologic soil
group and drainage class (HGDC; Figure 1). See Table 5 for details of equations. Values are represented by U.S. state abbreviations

lowest soil respiration and therefore the highest amount of
inorganic N fertilizer required to reach EONR. In contrast,
two of the Wisconsin sites (classified as either loam or silt
loam) with greater amounts of organic matter (3.5 and 4.4%,
respectively) and PAWC had the highest soil respiration and
therefore the lowest amount of inorganic N fertilizer required
to reach EONR. Soil microbial activity largely depends on
soil temperature and moisture (Davidson & Janssens, 2006;
Howard & Howard, 1993; Linn & Doran, 1984). Further, nitri-
fying bacteria are aerobic, requiring oxygen to make NO2

–

and NO3
– and are therefore favored in well- drained soils

(Goreau et al., 1980). Soils within HGDC B-WD seem to
have been buffered against extreme temperature and mois-
ture events, lessening the likelihood of leaching and den-
itrification, ultimately creating a suitable environment for
microbial activity. Therefore, the sites in this group were
less subject to year-to-year variations due to weather, allow-
ing lab-derived soil respiration measurements to relate to
EONR.

For both HGDCs B-PD and C-WD, EONR increased with
the interaction between SDI and clay (Figure 3). Relative to
HGDC B-WD sites, these sites were characterized by either
poor drainage (i.e., wet at shallow depths during much of the
growing season), a shallow water table, or greater clay con-
tent. As such, distribution of early season rainfall mattered.
When precipitation distribution was high (i.e., high SDI),

anoxic conditions in the root zone likely resulted, with denitri-
fication following. These findings are similar to those found
elsewhere (Tremblay et al., 2012). In other work, soil N sup-
ply was found to be greater on soils with relatively lower clay
content (Shahandeh et al., 2011).

For HGDC C-PD, EONR was similarly related to SDI, but
as an interaction with PAWC (Figure 3). A primary determi-
nant of PAWC is soil texture, so not surprisingly the rela-
tionship for HGDC C-PD looks a lot like B-PD and C-WD.
The HGDC C-PD sites had a great amount of clay and a low
saturated hydraulic conductivity (KSAT) (0.36–3.6 cm h−1),
which likely indicates a restrictive layer or shallow water
table and with substantial or evenly distributed precipitation
events caused periods of standing water during the grow-
ing season. It is possible that during years of sufficient but
evenly distributed rainfall, these site characteristics resulted
in higher fertilizer N need for optimal yield. Sites that were
unique to the SDI x PAWC relationship typically had a rea-
sonable explanation. For example, the high EONR seen with
2015 Missouri site was next to the Missouri River and had
a near-surface elevated water table because of extended high
water in the river. Thus, most of the soil profile was sat-
urated for an extended period during the growing season,
resulting in an abnormally high amount of N loss. As such,
a higher N rate was needed for EONR (270 kg N ha−1). In
summary, this analysis showed that SDI was one of the more
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T A B L E 6 Performance metrics for each hydrologic soil group and drainage class (HGDC) based model for estimating the economic optimal
nitrogen rate (EONR) at validation sites. Results shown are for both N timings (at-planting and side-dress)

N time HGDC delineation n r2 Percentage sites within 34 kg N ha−1

At-planting A and D – – –

B-WD 22 .16 46

B-PD 10 .11 44

C-WD 3 .99 66

C-PD 24 .09 26

Overall 59 .19 37

Side-dress A and D 35 .40 49

B-WD 14 .15 39

B-PD 21 .16 52

C-WD 10 .68 70

C-PD 26 .11 15

Overall 106 .25 42

F I G U R E 4 Performance of all hydrologic soil group and
drainage class (HGDC) based N recommendations compared with the
economically optimum nitrogen fertilizer rate (EONR). The dashed line
is the resulting regression relationship. The solid diagonal line
represents a 1:1 relationship between HGDC recommendations and
EONR with sites within the yellow shaded region being within 34 kg N
ha−1 of EONR. Values are represented by U.S. state abbreviations

impactful variables for estimating corn N need even though
SDI is difficult to interpret because values do not represent
precipitation quantity (i.e., the same SDI value can be derived
with different total precipitation amounts).

Using the models reported in Table 5 and illustrated in
Figures 2 and 3, N fertilizer recommendations were applied
to these same 49 sites and contrasted with actual EONR
(Figure 4). Even though doing this utilizes the same data for
both developing and testing, it is only an initial evaluation in
order to compare with past and future efforts. These HGDC-
based models performed better than previous efforts with r2 ≥

.61, RMSE ≤ 55 kg N ha−1, and ≥55% of sites within 34 kg N
ha−1 of EONR. Whereas previous efforts–which used a mini-
mal number of soil and weather variables to estimate EONR–
were only able to achieve results of r2 ≤ .60, RMSE ≥ 50 kg N
ha−1, and ≤55% of sites within 34 kg N ha−1 of EONR (Bean

F I G U R E 5 Recommended N rate from the models of this
analysis (Table 5) as related to the economically optimum nitrogen
fertilizer rate (EONR) of the validation sites at two N application
timings. Site color matches the hydrologic soil group and drainage class
(HGDC) colors found in Figure 1. Measures of performance include
coefficient of determination (r2), root mean square error (RMSE) of the
difference between N recommendation and EONR, and percentage of
sites within 34 kg N ha−1 of EONR (area shown in yellow). Values are
represented by U.S. state abbreviations

et al., 2018b; Clark et al., 2020; Qin et al., 2018; Ransom et al.,
2020; Ransom, Kitchen, et al., 2021).

3.2 Validation of models

Using the 181 site-year validation dataset, delineation resulted
in 51, 36, 31, 13, and 50 site-years for HGDC A and D, B-
WD, B-PD, C-WD, and C-PD, respectively. A total of 16
of the 181 site-years collected were not used for validation
analysis as these sites fell within the HGDC A and D at-
planting delineation, which had no model (Table 5). Within
each HGDC group, there was a large variation in performance
for both at-planting and side-dress timings, with the best per-
formance observed in the C-WD group and the worst in the C-
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PD group (Figure 5, Table 6). A static outcome was seen in the
at-planting HGDC recommendations for individual locations
due to the sole dependency on soil variables. These variables
(e.g., clay, total C, SOM, and PAWC) are not easily changed
from season to season, resulting in the same N fertilizer rate
across growing seasons. With weather factors included for the
side-dress application timing, recommendations were much
more variable.

Overall, considering all the HGDC groups, the perfor-
mance was promising but still needing improvement with 37
and 42% of sites within 34 kg N ha−1 for at-planting and
side-dress, respectively. This performance was worse than the
model development’s outcomes (Figure 4), but compared to
what others have reported, results were interesting (Laboski
et al., 2014; Ransom et al., 2020). Upon closer examination,
several possible reasons exist for this performance difference,
the biggest being the need to fill in missing soil information
(e.g., respiration) using samples collected in 2018 in order to
represent corn yield responses as far back as 2000. We assume
performance would have been better if we had the required
soil information from the year of the study. Another issue was
that some soils information was outside the original range of
the model (e.g., one location had 10% SOM, approximately
three times higher than any in the original dataset). Addi-
tionally, it was difficult to calculate SDI when there was no
record of when and how much irrigation was applied–which
caused HGDC C-WD models to overestimate EONR. Next,
models may have performed better if actual measured soil val-
ues had been used to classify sites into HGDC groups rather
than SSURGO.

Overall, results of this study show the impact of weather
and the difficulty in estimating season long N fertilizer need.
And as others have observed, N recommendation tools may
be successful in one specific field or during one growing
season, but reliably predicting the correct EONR over a
spatially and temporally diverse landscape is still difficult
(Morris et al., 2018; Scharf et al., 2005; Scharf & Lory,
2009). Lastly, while most of the locations with both the model
development and validation datasets were corn rotated after
soybean, a few locations were continuous corn. Since rota-
tion was not included (i.e., too few observations), we expect
additional improvement had such been included with this
analysis.

3.2.1 Comparing HGDC models with
state-specific recommendations

An appropriate comparison would be to examine the HGDC-
based model recommendations of this study alongside current
state-specific recommendations for those states contributing
sites to the validation datasets. This was accomplished
by evaluating both N timing recommendations relative to

F I G U R E 6 Recommended N fertilization rate from the
hydrologic soil group and drainage class (HGDC) models (left) and
state-specific recommendations tools (right) are shown relative to the
economically optimum nitrogen fertilizer rate (EONR) for validation
sites (timings combined). Measures of performance include coefficient
of determination (r2), root mean square error (RMSE) of the difference
between N recommendation and EONR, and percentage of sites within
34 kg N ha−1 of EONR. Sites fall within the yellow shaded region are
those within 34 kg N ha−1 of EONR. Values are represented by U.S.
state abbreviations

EONR (Figure 6). Using RMSE and percentage of sites
within 34 kg N ha−1 of EONR, the HGDC model recom-
mendations performed slightly better than state-specific
recommendations.

Differences between HGDC and state-specific recommen-
dations were apparent. First, few state-specific recommenda-
tions fell below 125 kg ha−1, while many HGDC recommen-
dations did. Next, four of the six states in the validation dataset
employ the MRTN approach to corn N management (Iowa,
Indiana, North Dakota, and Wisconsin). They use N response
trials over multiple years and soils within states to generate
an average EONR response function. In this way, the MRTN
approach is like other state-specific recommendations, where
temporal and spatial variability are averaged (Morris et al.,
2018). This averaging built into state-specific recommenda-
tions results in sites being fixed along horizontal lines in the
state-specific panel of Figure 6. In contrast, since four of five
in-season HGDC models employ an element of weather (i.e.,
SDI from planting to side-dress application), greater variabil-
ity exists with these recommendations.

Generally, state-specific recommendations overestimated
N needed for more sites than the HGDC model approach,
particularly for sites where EONR was <150 kg N ha−1. An
overestimation with state-specific recommendations might be
expected since these approaches do not recommend applying
N <100 kg N ha−1. Thus, sites needing <100 kg N ha−1 or
no N were better estimated with HGDC models. Yet for sites
where EONR was >150 kg N ha−1, HGDC models resulted
in greater underestimation of corn N need compared to state-
specific recommendations.
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4 SUMMARY AND CONCLUSIONS

Estimating EONR is challenging due to soil and weather vari-
ability. However, increasing the accuracy of N fertilizer rec-
ommendations is imperative for sustainable corn N manage-
ment. Most factors identified in the models as contributing to
corn N need included a combination of weather and soil mea-
surements (Figure 3 in Morris et al., 2018). Previous efforts to
capture variability with N recommendation tools have focused
either on early season soil or plant sampling, spectral sensing
of the crop canopy, or soil–crop simulation modeling (Morris
et al., 2018). Our approach was novel. Using USDA HGDC
as a framework, we examined which soil and weather fac-
tors best explained corn N need. The most important soil and
weather factors for characterizing N needs in corn production
included SOM, clay content, and evenness of rainfall distri-
bution prior to side-dress application. The fact that rainfall
evenness (i.e., SDI) was important for side-dress applications
for most HGDCs demonstrates the value of utilizing weather
and in-season applications to improve N applications.

Overall, HGDC model performance at validation sites was
poor compared to the model development sites, but slightly
better than current state-specific recommendations. Results
were, however, better with some HGDC categories than
with others. Those showing strong performance (e.g., C-WD)
deserve further attention with additional validation work.
Poor performance in some cases may have resulted from sam-
ples or information that did not match the same informa-
tion used for developing the models. For sites where EONR
was <100 kg N ha−1, the HGDC models outperformed state-
specific recommendations. In contrast, the model predictions
would underestimate fertilizer N needs for many sites with
EONR above 150 kg N ha−1. Many farmers would not accept
recommendations that risk lower yield and income. Regard-
less, these findings show that over an extensive region, the
HGDC framework has potential for improving the accuracy
of N fertilizer recommendations and deserves further testing
and refinement.
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