
Received: 17 August 2022 Accepted: 20 February 2023 Published online: 2 May 2023

DOI: 10.1002/saj2.20539

O R I G I N A L A R T I C L E

S o i l F e r t i l i t y & P l a n t N u t r i t i o n

Combining corn N recommendation tools for an improved
economical optimal nitrogen rate estimation

Curtis J. Ransom1 Newell R. Kitchen1 James J. Camberato2 Paul R. Carter3

Richard B. Ferguson4 Fabián G. Fernández5 David W. Franzen6

Carrie A. M. Laboski7 David Brenton Myers3 Emerson D. Nafziger8

John E. Sawyer9 John F. Shanahan10

1USDA-ARS Cropping Systems and Water
Quality Research Unit, Columbia, Missouri,
USA
2Department of Agronomy, Purdue
University, West Lafayette, Indiana, USA
3Retired Corteva Agriscience, Johnston,
Iowa, USA
4Department of Agronomy and
Horticulture, University of Nebraska,
Lincoln, Nebraska, USA
5Department of Soil, Water, and Climate,
University of Minnesota, St. Paul,
Minnesota, USA
6Department of Soil Science, North Dakota
State University, Fargo, North Dakota, USA
7USDA-ARS Pasture Systems & Watershed
Management Research Unit, University
Park, Pennsylvania, USA
8Crop Sciences, University of Illinois,
Urbana, Illinois, USA
9Retired Iowa State University, Ames, Iowa,
USA
10Agoro Carbon Alliance, Lincoln,
Nebraska, USA

Correspondence
Curtis J. Ransom, USDA-ARS Cropping
Systems and Water Quality Research Unit,
269 Ag. Eng. Bldg., Columbia, MO 65211,
USA.
Email: curtis.ransom@usda.gov

Assigned to Associate Editor Carl Bolster.

Abstract
Improving corn (Zea mays L.) nitrogen (N) rate fertilizer recommendation tools

can improve farmers’ profits and mitigate N pollution. Numerous approaches have

been tested to improve these tools, but to date improvements for predicting eco-

nomically optimum N rate (EONR) have been modest. This work’s objective was to

use ensemble learning to improve our estimation of EONR (for a single at-planting

and split N application timing) by combining multiple corn N recommendation

tools. The evaluation was conducted using 49 corn N response trials from eight

states in the US Corn Belt and three growing seasons (2014–2016). Elastic net

and decision tree approaches regressed EONR against three unique tools for each

N application timing. Tools used in various combinations included a yield goal

method, two soil nitrate tests (pre-plant and late season), a computer simulation

crop model (Maize-N), and canopy reflectance sensing. Any combination of two

or three N recommendation tools improved or maintained performance metrics (R2,

root-mean square error , and number of sites close to EONR). The best results for a

single at-planting recommendation occurred when combining the three at-planting

N recommendation tools (including interactions) with an elastic net regression

model. This combined recommendation tool had a significant linear relationship

with EONR (R2 = 0.46), an increase of 0.27 over the best tool evaluated alone.

Combining multiple tools increased the implementation cost, but it did not reduce

profitability and, sometimes, improved profitability. These results show tools can

be combined to better match EONR, and thus could aid farmers in improving N

management.

Abbreviations: cEONR, reasonably close to the economical optimal N rate; EONR, economical optimal N rate; LSNT, late-spring soil nitrate test; MRTN,
maximum return to N; PPNT, pre-plant soil nitrate test; RMSE, root mean square error; YG, yield goal.
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1 INTRODUCTION

Maximizing corn grain production and profitability requires
applying nitrogen (N) fertilizer at the economically optimum
N rate (EONR). Applying fertilizer below EONR decreases
grain yield while overfertilization increases the risk of envi-
ronmental degradation. Determining what the EONR will be
for a field is difficult as plant N uptake is affected by many
variables based on genetic (G), environment (E), manage-
ment (M), and the interactions between these factors (G ×
E × M) (Kablan et al., 2017; Scharf et al., 2005; Tremblay
et al., 2012). Understanding how these factors impact plant
N requirements (within and across fields, and from year to
year) has been the focus of significant public resources over
the last six decades, resulting in the development of many pub-
licly available corn N rate recommendation tools (e.g., yield
goal, soil nitrate tests, Maximum Return to Nitrogen (MRTN),
computer simulation models, and canopy reflectance sensors)
(Bean et al., 2018a; Nafziger et al., 2004; Setiyono et al., 2011;
Stanford, 1973). A comprehensive review by Morris et al.
(2018) of many of the publicly available tools outlined well
the strengths and weakness of each and are summarized in
Table S1.

This same review highlighted some of these tools’ perfor-
mance, which showed inconsistency when measured against
EONR (R2 values of 0.00 to 0.68) across a broad geograph-
ical area that included multiple US Midwest states. They
and others (Bean et al., 2018b; Clark et al., 2020a; Ransom
et al., 2020) have attributed this inconsistency to weather
factors. Another reasonable explanation for unreliable N fer-
tilizer recommendations is that they only account for one or
two components of the soil–plant system known to affect
EONR (Morris et al., 2018; Scharf et al., 2005). For example,
most pre-plant and pre-sidedness soil nitrate tests are based on
measured inorganic nitrate and a soybean [Glycine max (L.)
Merr.] credit, but they do not consider precipitation, miner-
alization potential, or soil hydrological properties. Therefore,
incorporating more site-specific weather and soil information
allows them to be more adaptive to differences in growing
conditions. Previous investigations have shown tools can be
improved by incorporating additional soil and weather infor-
mation (coefficient of determination [R2] ≤ 0.57 and root
mean square error [RMSE] ≥ 47 kg N ha−1) (Bean et al.,
2018b; Ransom et al., 2021). To date, these investigations
have focused on individual tools and evaluated their perfor-
mance in a side-by-side manner. Additional effort is needed
to further improve the adaptability of these well-established
tools.

This investigation explores the novel idea of combining
some of these same tools. In other words, multiple tools are
integrated to better inform the decision of how much N fer-
tilizer to apply. The concept of combining two or more of
tools (i.e., tool fusion) deserves consideration, particularly

Core Ideas
∙ Individual corn N recommendation tools poorly

estimated EONR (R2 ≤ 0.24) across many US
Midwest states.

∙ Combining or “ensembling” two or more corn N
recommendation tools improved EONR estimation
(R2 ≤ 0.46).

∙ Both ensembling techniques evaluated proved
effective at combining tools.

when considering the decades worth of field studies estab-
lishing the science of crop and soil N dynamics (Morris et al.,
2018). Strategically combining multiple tools that focus on
measuring different factors affecting soil N supply and crop
N need within the G × E × M framework might be successful
at producing tools that function well across larger regions.

The idea of combining different tools is not unique and
has been implemented successfully across many scientific
fields using statistical or machine learning ensemble learn-
ing techniques. Ensemble learning works by aggregating the
outcome of multiple weak learners (i.e., individual mod-
els of low prediction accuracy) into strong learners. Some
common examples include boosting (modeling using sequen-
tial steps where each attempt learns from the previous step,
e.g., Adaboost), bagging (an average of multiple models that
are created simultaneously where each model is developed
using a random bootstrapped subset of the data, e.g., ran-
dom forests), and stacking (a weighted average of multiple
weak learners, e.g., regression models). Ensemble learning
has been used to produce more accurate predictive models
than the best weak learner used alone (Hansen & Salamon,
1990; Mendes-Moreira et al., 2012; Rosenzweig et al., 2013;
Unger et al., 2009; Wallach et al., 2016). Within agriculture,
these techniques have been implemented with crop simulation
models for improved accuracy and reduced uncertainty—as
demonstrated by the Agricultural Model Inter-Comparison
and Improvement Project when they ensembled 15 wheat
models (Maiorano et al., 2017). Similar findings have been
reported when ensembling spectral data from different remote
sensing platforms for estimating plant and soil parameters
(Dobarco et al., 2017; Fei et al., 2021; Feng et al., 2020;
Shahhosseini et al., 2020; Wang et al., 2021). This technique
has also been used successfully to improve weather predic-
tions (Aleksovska et al., 2021; Brown et al., 2018; Gu et al.,
2021). However, using these machine learning techniques
to integrate multiple publicly available N recommendation
tools has not been tested. The objective of this investigation
was to use ensemble learning techniques for combining N
recommendation tools for improved corn EONR estimation.
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904 RANSOM ET AL.

2 MATERIALS AND METHODS

2.1 Experimental design

This research was conducted as a part of a public–private
collaborative project between Corteva Agriscience, USDA
Agricultural Research Service, and eight US Midwest univer-
sities (Iowa State University, University of Illinois Urbana–
Champaign, University of Minnesota, University of Missouri,
North Dakota State University, Purdue University, Univer-
sity of Nebraska–Lincoln, and University of Wisconsin–
Madison). A total of 49 site-year field trials were conducted
from 2014 to 2016, with each state conducting research on
two sites each year with a third site in Missouri (MO) in
2016. About half the sites were on farmers’ fields and the
remaining sites were on university research stations. A com-
mon protocol for plot research established at the onset of the
project was followed across all site-years, which included site
selection, weather data collection, soil, plant sample timing
and collection methodology, N application timing, N source,
and N rates. Specific protocol details have been described
in Kitchen et al. (2017), and the data and meta-data have
been published in Ransom et al. (2021). Treatments included
ammonium nitrate applied at rates between 0 and 315 kg N
ha−1 either in a single application at-planting (referred to as
“single N application”) or a split application where 45 kg N
ha−1 was applied at-planting with the remaining N fertilizer
broadcast at the V9 ± 1 corn developmental stage (referred
to as “split N application”) (Abendroth et al., 2011). This
investigation was applied to each of these fertilizer application
timings.

2.2 Calculating the economic optimal
nitrogen rate

To calculate EONR for each site and N application timing,
grain yield was modeled as a function of N fertilizer rate,
across all four replicates. Four different models were evalu-
ated (linear, quadratic, linear-plateau, and quadratic-plateau)
and the best model was selected based on the R2, RMSE, and
significance of model probability values (Cerrato & Black-
mer, 1990; Scharf et al., 2005). Using the best fit model,
EONR values were calculated using a price for N at US$0.88
kg N−1, and the price of corn at US$0.158 kg grain−1 (equiv-
alent to US$0.40 lb N−1 and US$4.00 bu−1). The EONR was
set to not exceed the maximum N rate applied (315 kg N ha−1)
and EONR was set to equal 0 kg N ha−1 if the models were
insignificant (p ≤ 0.10). Five of the seven irrigated sites had
N applied through irrigation >12 kg N ha−1, and this was
included in determining the EONR of these sites. The EONR
results were used as the standard for evaluating all N recom-

mendation tools and combinations of tools. Additional details
about which models were used at each site and N application
timing can be found in Table 4 of Kitchen et al. (2017).

2.3 Recommendation tools considered

There are many publicly available N recommendation tools
currently available for farmers to use, as outlined by Mor-
ris et al. (2018), and many of them have been evaluated
using this same dataset by Ransom et al. (2020). For this
investigation, a subset of the tools was selected. From a
practical standpoint, the total number of tools a farmer
would be willing to invest in for a single N rate decision
would be limited by costs and logistics (i.e., labor, analysis
costs, equipment). Ideally, the best candidates for a com-
bination would occur when N recommendation inputs are
diverse (i.e., each tool measured a different aspect of the
soil–plant N dynamic) and accurate—similar to requirements
for “ensembling” in machine learning (Hansen & Salamon,
1990). Following these accuracy (Ransom et al., 2020) and
diversity guidelines, three tools for each application timing
were selected. For the single N application, a yield goal
(YG), Wisconsin pre-plant nitrate test (WI PPNT), and the
Maize-N computer simulation model were used. Whereas
for the split N application, a YG, Iowa late spring soil
nitrate test (LSNT), and a canopy reflectance sensor were
used.

2.3.1 Yield goal

Numerous versions of corn YG have been developed start-
ing with the foundational work by Stanford (1973) decades
ago. All of them work on estimating the total N need by mul-
tiplying an expected yield by an internal N use efficiency.
Here, the YG was determined by multiplying the expected
yield by an internal N use efficacy factor of 0.021 kg N (kg
grain)−1, or 1.2 lb N bu−1. A 45 kg N ha−1 credit was sub-
tracted from sites that followed a soybean crop. The expected
yield for each site was determined using the average of the
previous 5-year county corn yields for the respective county
the site was within. This 5-year average was adjusted based
on the soil productivity of the predominantly mapped soil of
each site, similar to that done previously (Laboski & Peters,
2012). This procedure classifies soil productivity as either
low, medium, or high using soil texture, irrigation, depth to
bedrock, drainage class, temperature regime, and plant avail-
able water content information. The expected yield of a site
was then calculated by increasing the 5-year average yield for
low, medium, and high soil productivity by 10%, 20%, or 30%,
respectively.
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RANSOM ET AL. 905

2.3.2 WI PPNT

The WI PPNT was calculated based on guidelines outlined by
Laboski and Peters (2012) using soil NO3–N samples taken to
a depth of 90 cm. For this investigation, details of the sampling
and NO3–N analysis protocols were previously documented
in a project overview article (Kitchen et al., 2017). The mea-
sured NO3–N (converted to mass by using an assumed bulk
density of 1.3 g cm−3) was subtracted from N recommenda-
tions developed using the MRTN. The MRTN recommended
application rates for all years were based on the reported 2016
values. The MRTN application rates for Iowa, Illinois, Indi-
ana, Minnesota, and Wisconsin were from the online Iowa
State Extension N Rate Calculator (cnrc.agron.iastate.edu).
The MRTN rates for North Dakota were from the North
Dakota Corn Nitrogen Calculator (www.ndsu.edu/pubweb/
soils/corn). The price of corn to N fertilizer ratio used was
10:1. Since neither Missouri nor Nebraska currently have a
compiled database and online tool for an MRTN recommen-
dation, sites from these states (n = 13) used their respective
YG-based recommendations (Buchholz et al., 2004; Shapiro
et al., 2008):

MissouriYG = 1.12 × (0.9 × YG + 4 × Pop

−𝑁OM−credit −𝑁Credit ) (1)

NebraskaYG = 1.12 × [35 + (1.2 × YG) − 0.14

×YG × OM −𝑁Credit ] × Priceadj (2)

where Missouri or Nebraska’s YG is the expected yield
calculated using the same protocol described previously,
“Pop” is the plant population, “NOM-credit” is a measure
of the soil N supplying capacity based on organic mat-
ter and cation exchange capacity, “Ncredit” is a soybean
credit of either 34, 39, or 50 kg N ha−1 for Missouri,
Nebraska sandy, or Nebraska non-sandy soils, respectively.
The Nebraska YG used “OM” for organic matter and
“Priceadj” is the adjustment factor for the price of corn and N
fertilizer.

Two of the 49 sites (2016 Nebraska sites) did not com-
plete PPNT sampling, therefore, the PPNT was estimated
using data from the previous years’ Nebraska research sites.
This was justified as one of the 2016 Nebraska sites that was
missing data was on the same research station as the 2014
and 2015 sites. The other 2016 Nebraska site was conducted
on sandy soil and was expected to have minimal measur-
able NO3–N which is consistent with the 2014 and 2015
Nebraska sandy locations. The WI PPNT is not recommended
for sandy soils. However, to keep all observations in the anal-

ysis, the four sandy locations (three from Nebraska and one
from Minnesota) were still included.

2.3.3 Maize-N

The Maize-N crop model version 2016.6.0 (Setiyono et al.,
2011) was used to generate an N fertilizer recommendation
for all sites for a single N application. A total of 30 years of
historical data for each site was obtained from Corteva Agri-
science using a proprietary method for interpolating between
multiple weather stations around each site. These weather
data mostly came from public National Service Storms Lab
(NOAA) weather stations, supplemented with data observed
by Corteva’s internal weather network. The weather data were
collected within the acceptable range of 50 to 100 km radius,
as listed in the Maize-N user guide. Explicit information
required by the Maize-N crop growth model by each site
included management records (i.e., date of planting, plant
population, average historical yield, tillage operations, and
previous crop) and soil information (i.e., bulk density, %
organic matter, rooting zone depth, soil pH, and soil NO3–N).

2.3.4 LSNT

The LSNT was calculated using soil sample NO3–N taken to
a depth of 30 cm at the V5 ± 1 corn development stage. Soil
samples were taken from plots that received 0 kg N ha−1 and
averaged together to obtain a site-level NO3–N concentration.
The site-level NO3–N concentration was used to determine
the amount of N to apply as an in-season N application. Values
above the 25 mg kg−1 critical limit received no additional N.
To determine the N recommendation when NO3–N was below
the critical limit, the difference between the critical limit and
the measured NO3–N concentration was multiplied by 8. The
critical limit was reduced by 3 mg kg−1 when spring rainfall
(April 1 to soil sampling) was 20% above average (Sawyer &
Mallarino, 2017).

2.3.5 Canopy reflectance sensing

Canopy reflectance measurements were obtained using the
RapidSCAN CS-45 (Holland Scientific, Lincoln, NE) the
same day or just before the split N application. For the major-
ity of sites, this was done at the ∼V8–V10 corn development
stage. Measurement details are described in Kitchen et al.
(2017). The Holland and Schepers algorithm (HS; Holland
& Schepers, 2010) was used to calculate an N fertilizer rec-
ommendation derived from these reflectance measurements.

 14350661, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/saj2.20539 by D

avid Franzen , W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://cnrc.agron.iastate.edu
http://www.ndsu.edu/pubweb/soils/corn;
http://www.ndsu.edu/pubweb/soils/corn;


906 RANSOM ET AL.

This algorithm was based on a sufficiency index calculated
using measurements from both well-fertilized corn (“N-rich”)
and minimally fertilized corn that was referred to here as the
“target” corn:

SI =
VITarget
VIN−rich

(3)

where SI was the sufficiency index; “VITarget” was the vege-
tative index obtained from averaging measurements from all
plots that received 0 kg N ha−1 at-planting, and “VIN-Rich”
was the vegetative index obtained by averaging all plots for
two of the high N treatments (225 and 270 kg N ha−1 applied
all at-planting). The NDRE vegetative index was calculated
using the red-edge (730 nm; RE) and near-infrared (780 nm;
NIR) wavelengths as shown:

NDRE = NIR − RE
NIR + RE

(4)

Fertilizer N recommendations were calculated using the
equation described in Holland and Schepers (2010):

NRec =
(
MZ

𝑖
× NOpt − NPreFert − NCRD + NComp

)
×
√

(1 − SI)
ΔSI

(5)
where NRec was the calculated N fertilizer recommendation;
“MZi” was a scaling value (0 ≥ MZi ≤ 2) used to adjust the
N recommendation based on areas of high or low yield per-
formance; “NOpt” was the base N rate, which was determined
by the farmer; “NPreFert” was the amount of N already applied
before sensing; “NCRD” were N credits associated with the
previous crop, NO3–N in irrigation water, manure, or resid-
ual NO3–N; “NComp” was an optional compensation factor for
growth-limiting conditions; SI was the sufficiency index; ΔSI
was a value to define the response range. For this analysis,
MZi was left as the default value of 1.0, Nopt was set as the
recorded farmer’s N rate for each site, and NPreFert = 45 kg N
ha−1. With no supportive information relative to NCRD and
NComp, these two parameters were set to zero. The recom-
mended value of 0.30 was used for ΔSI, which provides a
response range between the measured vegetative index value
between 0.70 and 1.00.

2.4 Ensemble model development

For this investigation, we focused on using the stacking
ensemble approach—as this approach is much easier to
interpret than other ensemble techniques. We evaluated two
algorithms: elastic net and a recursive partitioning decision
tree, computed for both application timings. For each ensem-
ble scenario, EONR was modeled as a function of up to three
N recommendation tools. We judged three tools as the upper

limit of what would be practical for a farmer to implement
(more details below).

The elastic net regression models were evaluated in two
ways: (1) using a combination of each of the three tools as
the main effects and (2) using the same combination of main
effects plus all two- and three-way interactions. This resulted
in a total of 16 modeling scenarios (i.e., 8 modeling scenar-
ios × 2 application timings). This was accomplished using
the {caret} and {glmnet} packages with R Statistical Soft-
ware (R Core Team, 2020; Friedman et al., 2010; Kuhn,
2017). For each elastic net model, the alpha and lambda
tuning parameters (parameters within the model that deter-
mine how the model learns) were optimized using a 10-fold
cross-validation repeated five times, where the data were split
randomly into 10 equal folds or subsets. Nine of the folds
were selected as a training dataset to fit models with all com-
binations of alpha (i.e., five values: 0.10, 0.25, 0.55, 0.75,
and 1) and lambda (i.e., 100 values ranging from 0.001–
50 in increments of 0.505). All models were tested using
the 10th fold, previously not used in the training dataset,
and the RMSE was calculated using the model’s predicted
and actual EONR values. This was repeated until every fold
was used as the testing dataset. This process was then fur-
ther repeated another four times—so new random folds were
created—to where 50 RMSE values were calculated for each
combination of alpha and lambda values. The optimal tuning
parameter values were determined as those that produced the
lowest average RMSE across all 50 cross-validation testing
sets.

For the decision tree models, only the main effects (i.e., the
three tools for the single and split application) were evalu-
ated using the {caret} and {rpart} package in R (Therneau &
Atkinson, 2019). Each tree was developed by selecting vari-
ables at each node of the tree which explained the greatest
homogeneity of the data (Questier et al., 2005). The homo-
geneity was measured as the absolute deviation from the
mean. The decision trees’ performance was optimized by tun-
ing the complexity parameter, a parameter that determines if
additional splits should be done. Tuning occurred using the
same cross-validation methods as the elastic net regression
models (see Supporting Information for example code).

2.5 Evaluating tool improvement

Four different metrics were used to evaluate the performance
of each new combined tool. All metrics were based on the
measured EONR and the predicted values from the combined
tools which included: (1) the coefficient of determination, (2)
RMSE, (3) the average difference, and (4) the percentage of
sites where the tool’s N recommendation came within ± 30 kg
N ha−1 of EONR—this value was considered reasonably close
to EONR (cEONR) based on practicality of generating an
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RANSOM ET AL. 907

N recommendation and the modeling error associated with
EONR (Laboski et al., 2014; Sawyer, 2013; Sela et al., 2017).

2.6 Foregone profit

To determine the amount of profit lost when using each tool
or combination of tools relative to EONR, a “foregone profit”
was calculated. This was done by calculating a partial profit
(i.e., revenue from grain yield minus the cost of N) for each
tool and EONR using $0.158 kg grain−1 and $0.88 kg N−1.
The N rate used in the calculation was the tools’ recom-
mended N rate and EONR, and the grain yield was based
on each site’s N response curve associated with that N rate.
The foregone profit (in $ ha−1) was calculated by subtract-
ing from the partial profit of each tool the partial profit at
EONR and an additional tool implementation cost. The tools’
implantation cost varied based on the N fertilizer application
timing and the labor and costs for obtaining the information
required to produce an N recommendation (e.g., labor for
collecting soil samples, cost of soil analyses, and equipment
acquisition). These costs were based on the Iowa Farm Cus-
tom Rate Survey (Plastina et al., 2021) and the cost of soil
analysis—calculated as the average of six Midwest soil testing
laboratories (University of Minnesota, Midwest Laboratories,
North Dakota State University, University of Missouri, Uni-
versity of Wisconsin–Madison, and Ward Laboratory). To
determine if combining tools minimized forgone profits (i.e.,
a cost-effective approach), an analysis of variance (ANOVA)
model was used to model forgone profits as a function of
each tool and a combination of tools (across both single and
split N application). Significant means were separated using
a Tukey’s honest significance test (p ≤ 0.05).

3 RESULTS

Results for combinations of corn N rate recommendation tools
using ensemble learning modeling are provided in Table 1,
with the resultant recommendation algorithm outcomes pro-
vided in Table S2. Best performance of combined tools is
judged as those with the greatest coefficient of determination,
lowest RMSE, least average difference, and highest cEONR.
These metrics generally track each other when examining tool
combinations. Model outcomes are presented in Table 1 and
are graphically presented in Figures 1–6.

3.1 Elastic net-based combinations for
single and split N applications

The tool with the best performance before combining was
the WI PPNT with an R2 = 0.20, RMSE = 76 kg N ha−1,
and cEONR = 35% (Table 1). The best improvement using

the elastic net for the single N application occurred when all
three N recommendations were combined using all three- and
two-way interaction terms and the main effects resulting in
an R2 = 0.46, RMSE = 60 kg N ha−1, and cEONR = 41%
(Figures 1 and 2; Table 1). The best combination of two
tools occurred with the Maize-N crop growth model and YG.
By themselves, the YG and Maize-N model had only 14%
and 18% of their sites cEONR, respectively. But the cEONR
increased to 41% when combined. In general, the majority
of these improvements occurred by correcting the YG N rec-
ommendation when it overestimated (low EONR values) or
underestimated (high EONR values) a site’s N response.

For the split N application timing, the best tool used alone
was the LSNT with R2 = 0.24, RMSE = 68 kg N ha−1, and
cEONR = 41% (Table 1). The best improvement occurred
when all three split N recommendation tools were combined
by using all three- and two-way interaction terms and the
main effects resulting in a R2 = 0.42, RMSE = 55 kg N
ha−1, and cEONR = 47% (Figure 3; Table 1). The best com-
bination of two tools was the canopy reflectance sensor and
the YG (Table 1). Alone, the YG overestimated many of the
site’s EONR values when recommendations were ≤200 kg
N ha−1 (Figure 4a). Alone, the canopy reflectance sensor
underestimated many of the site’s EONR values when N rec-
ommendations were ≥175 kg N ha−1 (Figures 3 and 4c). The
combination of these tools helped to reduce the error observed
for both tools (Figures 3 and 4c,e,i).

There were some combinations of tools, specifically when
only two tools were used, that showed minimal improvement.
This occurred when the two tool’s performance was not dis-
tinct enough (i.e., similar linear relationship with EONR)
to warrant a combination. For example, the WI PPNT, on
average, came cEONR and had a positive linear relationship
with EONR (Figure 2b), whereas the Maize-N model under-
estimated EONR on average and had no relationship with
EONR (Figure 2c). The resulting ensemble (Figure 2f) there-
fore looked similar to the WI PPNT (Figure 2b). In contrast,
when the YG, which overestimated EONR and had a negative
linear relationship, was combined with the Maize-N model,
which underestimated EONR, greater improvement resulted
(Figure 2a,c,e). Even though some pairs of tools did not sig-
nificantly improve the performance of predicting EONR, the
combinations caused the average difference between N rec-
ommendations and EONR to be close to 0 kg N ha−1 and a
decrease in RMSE (Table 1). Of note, there was no observed
performance loss by combining tools.

3.2 Decision tree-based combination for
single and split N applications

The decision tree-based combination for a single N appli-
cation resulted in a R2 = 0.37, which for this performance
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908 RANSOM ET AL.

T A B L E 1 Elastic net and decision tree combined tools used to predict the economical optimal N rate (EONR) for a single or split N
application. The coefficient of determination calculated by regressing EONR

Main effects only Main and interaction effects
Tools p R2 Average RMSE cEONR p R2 Average RMSE cEONR

kg N ha−1 % kg N ha−1 %

Single
YG 1 0.10 58 117 14 – – – – –

WI PPNT 1 0.20 −7 76 35 – – – – –

Maize-N 1 0.00 −44 116 18 – – – – –

YG + WI PPNT 2 0.29 0 68 35 3 0.37 0 64 33

YG + Maize-N 2 0.33 0 67 41 3 0.37 0 64 41

WI PPNT + Maize-N 2 0.20 0 73 31 3 0.20 0 73 31

YG + WI PPNT +
Maize-N

3 0.39 0 64 41 7 0.46 0 60 41

Decision Tree (Figure 5) 2 0.37 0 53 43 – – – – –

Split
YG 1 0.13 65 113 18 – – – – –

LSNT 1 0.24 −25 68 41 – – – – –

Canopy Ref.a 1 0.19 −23 73 29 – – – – –

YG + LSNT 2 0.29 0 61 45 3 0.29 0 61 45

YG + Canopy Ref. 2 0.25 0 63 37 3 0.33 0 59 43

LSNT + Canopy Ref. 2 0.26 0 63 41 3 0.26 0 62 43

YG + LSNT + Canopy
Ref.

2 0.31 0 61 41 7 0.42 0 55 47

Decision Tree (Figure 6) 3 0.45 0 53 45 – – – – –

Note: The coefficient of determination calculated by regressing EONR (n = 49) as a function of each tool or combined tool’s N 784 recommendation. The precision and
accuracy of each N recommendation tool were evaluated using the average difference (N 785 recommendation tool – EONR), root mean square error (RMSE) of the
difference, and the percentage of sites within ±30 kg N ha−1 of EONR (cEONR, 786 “relatively close to EONR”). “p” is the number of tools and interaction effects used
in each regression or decision tree model. Tools 787 include the yield goal (YG), Wisconsin (WI) pre-plant nitrate test (PPNT), Iowa late-spring soil nitrate test (LSNT)
with 0 kg N ha−1 applied at788 planting, Maize-N crop growth model, and canopy reflectance sensing using the Holland and Schepers (2010) algorithm. Dashes 789
indicate the test was not applicable.
aCanopy Ref. refers to canopy reflectance sensing.

metric was not as good as the best elastic net combined tool.
However, this method had the lowest RMSE and the highest
percentage of sites cEONR (Figure 1; Table 1). A product of
the decision tree method is a set of discrete N recommenda-
tions, not continuous rates, where it bins N recommendations
based on the number of end nodes in the tree. For the sin-
gle N application decision tree combination, there were five
different end nodes and therefore five different N rate recom-
mendations (Figure 5). For each N recommendation, many of
the sites either under- or overestimated EONR, but on average
came cEONR (Figures 1 and 3). For these tool combinations,
only two of the three N recommendation tools (YG and WI
PPNT) were used. The WI PPNT was used to make splits
throughout the decision tree, with increasing N recommen-
dation with increasing WI PPNT rates, which follows the
positive linear relationship between WI PPNT and EONR.
On the other hand, as the YG recommendations increased
the resulting N recommendations decreased—a result of the
negative linear relationship YG has with EONR.

The split N application decision tree resulted in an
R2 = 0.45 (Figure 4l), which was the best performance of
any split ensemble tool. Also, this method had the lowest
RMSE and the second highest percentage of sites cEONR
(Table 1). This method used all three N recommendation tools
in the combined model (Figure 6). For the LSNT and canopy
reflectance sensor, as their N recommendations increased the
resulting decision tree’s recommendations increased. The YG
effect was in the opposite manner.

3.3 Foregone profits

Mean foregone profit of tools and combination of tools
ranged from $73 to $228 ha−1 (mean of $99 ha−1) for the
single application and from $91 to $132 ha−1 (mean of
$110 ha−1) for the split application (Table 2). A compari-
son between using a tool or combination of tools and not
using any tools (i.e., an average state N rate). Generally,
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RANSOM ET AL. 909

F I G U R E 1 Boxplot and distribution plots showing the difference between N recommendation tools used for a single N application at-planting
and the economically optimal N rate (EONR). Tools included the yield goal (YG), Wisconsin pre-plant soil nitrate test (WI PPNT), and the Maize-N
crop growth model. Tools were combined with either an elastic net regression model or a decision tree. Elastic net combinations were done with and
without interactions. All combinations of main effects and interaction terms are marked with “:”. The boxplots show the median (center line), 25th
and 75th percentiles (lower and upper box limits), and 1.5 × the inter-quartile range (lower and upper whiskers) of the data.

combinations of tools reduced forgone profit over individual
tools. The greatest forgone profit (i.e., highest profitability
loss) for single application was with Maize-N and least was
the decision tree. However, the mean foregone profit was
the same for most tool/combinations. Whereas for the split
application there was no significant difference between the
tools’ forgone profit. The difference between the single and
split application timing was minimal; even though the tools’
implementation cost was much lower for the single applica-
tion (mean of $35 ha−1) compared to the split application
($55 ha−1).

4 DISCUSSION

We found that combining N recommendation tools using
both ensemble learning techniques improved the prediction
of EONR compared with N recommendation tools used alone.
We observed this with both ensemble learning methods tested
(i.e., elastic net and decision tree)—which provides valid-
ity to this approach. These results also show we can take
individual tools that were developed in smaller geographical
regions—which tend to underperform across large varia-
tions in soils and growing conditions—and combine them
to broaden their usability across larger geographical regions

without a decrease in model accuracy or profitability from the
N application.

4.1 Comparing ensemble-based tools

When compared to other investigations using this dataset, the
ensemble-based method (R2 ≤ 0.46 an increase in R2 = 0.26;
and RMSE ≥ 53 kg N ha−1) performed better than anyone
tool evaluated alone (R2 ≤ 0.20 and RMSE ≥ 70 kg N ha−1)
(Ransom et al., 2020). In addition, this method outperformed
some attempts to better predict EONR but not all. For exam-
ple, when incorporating soil and weather information into the
same tools used in this study for a single (i.e., YG and PPNT)
or split (i.e., YG, LSNT, and canopy reflectance sensor) appli-
cation respectively, results for adjusted tools had an R2 ≤ 0.37
and RMSE ≥ 57 kg N ha−1 (an increase in R2 = 0.33 and a
decrease in RMSE = 20 kg N ha−1) and R2 ≤ 0.57 and RMSE
≥ 47 kg N ha−1 (an increase in R2 = 0.44 and a decrease in
RMSE = 38 kg N ha−1) (Bean et al., 2018b; Ransom et al.,
2021). When incorporating potentially mineralizable N with
soil nitrate tests (i.e., PPNT or pre-side dress nitrate tests),
results were promising in coarse-textured soils with an R2 ≤

0.63 (an increase in R2 = 0.35) but showed minimal improve-
ment across all soil types (an increase in R2 ≤ 0.11) (Clark
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910 RANSOM ET AL.

F I G U R E 2 Nitrogen recommendation tools used for a single N application at planting evaluated relative to the economically optimal N rate
(EONR). Tools included the yield goal (YG), Wisconsin pre-plant soil nitrate test (WI PPNT), and the Maize-N crop growth model. Tools’
performances are shown with the tools by themselves (a–c), combined using only main effects (d–g), combined using both main effects and
interaction terms (h–k), and combined using a decision tree (l). The 1:1 line is an indicator of a perfect predictor of EONR. The dashed lines show
the area in which tools are within ± 30 kg N ha−1 of EONR or relatively close to EONR and root mean square error units are in kg N ha−1.

et al., 2020b). Using various machine learning algorithms to
develop a new N recommendation tool resulted in an R2 ≤

0.60 and RMSE ≥ 27.8 kg N ha−1 (Qin et al., 2018). How-
ever, the best attempt to date included using a hierarchical
approach based on hydrologic soil groups and drainage clas-
sifications to adjust N recommendation tools with soil and
weather information, which resulted in an R2 ≤ 0.78 (Bean
et al., 2021).

Compared to the performance of many of the same tools
reported in the literature across the Midwest, either in a sin-
gle state or across multiple states, this ensemble approach
outperformed most tools used by themselves. These included
yield goal-based recommendations (R2 between 0.06 and 0.38
reported by Blackmer et al., 1992; Fox & Piekielek, 1995;
Schmidt et al., 2009; Vanotti & Bundy, 1994), PPNT (R2

between 0.20 and 0.38 reported by Scharf, 2001; Schmidt
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RANSOM ET AL. 911

F I G U R E 3 Boxplot and distribution plots showing the difference between N recommendation tools used for a split N application (at-planting
+ sidedress) and the economically optimal N rate (EONR). Tools included the yield goal (YG), Iowa late-spring nitrate test with 0 kg N ha−1 applied
at-planting (LSNT), and canopy reflectance sensing. Tools were combined with either an elastic net regression model or a decision tree. Elastic net
combinations were done with and without interactions. All combinations of main effects and interaction terms are marked with “:”. The boxplots
show the median (center line), 25th and 75th percentiles (lower and upper box limits), and 1.5 × the inter-quartile range (lower and upper whiskers)
of the data.

et al., 2009), pre-sidedress N tests (R2 between 0.04 and 0.48
reported by Scharf, 2001; Scharf et al., 2006; Schmidt et al.,
2009). Others have reported single tools which had better per-
formance than these ensemble-based methods, such as crop
growth models (R2 between 0.09 and 0.85 reported by Puntel
et al., 2016; Sela et al., 2018; Setiyono et al., 2011; Thomp-
son et al., 2015), canopy reflectance sensors (R2 between 0.02
and 0.72 reported by Bean et al., 2018a; Roberts et al., 2010;
Sripada et al., 2008; Thompson et al., 2015), and chlorophyll
meters (R2 between 0.27 and 0.84 reported by Dellinger et al.,
2008; Scharf, 2001; Scharf et al., 2006; Schmidt et al., 2009).
While many of these high R2 values were from research con-
ducted in a single state; individual tool performance generally
decreased when evaluated across a wider range of growing
conditions (Ransom et al., 2020; Scharf et al., 2006). This
highlights one of the two things. Either tools need to be
developed/tested to be more robust across growing conditions,
or it must be accepted that N fertilizer management is too
complex across diverse environmental conditions—such as
represented by the US Midwest Corn Belt—and that local–
regional specialized tools are the most practical and suitable
approach.

4.2 Strengths and limitations of tools

Current N recommendation tools poorly predict when sites
will be non/low N-responsive (i.e., low EONR values) or
highly N responsive (i.e., high EONR values) to N fertilization
(Ransom et al., 2020). This is often because of uncertainty
about seasonal weather. To account for this uncertainty, and
the knowledge that underfertilization rapidly decreases yield
and profitability, farmers tend to over apply N to maximize
yield. This practice will not change unless farmers are con-
fident that N recommendation tools are more reliable. The
current tools being recommended by university extension
agencies in the US Midwest (e.g., YG approach and the
“MRTN”) do not account for seasonal site-specific conditions
which influence when EONR values will be high or low (Mor-
ris et al., 2018; Ransom et al., 2020). There are only a few
tools that recommend low N rates (i.e., PPNT and LSNT,
crop growth models, and canopy reflectance sensors [based
on user inputs]) and even fewer that will recommend high N
rates (e.g., crop growth models). Thus, the potential value of
using an ensemble method, as it could optimize the strengths
of each tool to improve recommendations and confidence in
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912 RANSOM ET AL.

F I G U R E 4 Nitrogen recommendation tools used for a split N application (at-planting + sidedress) evaluated relative to the economically
optimal N rate (EONR). Tools included the yield goal (YG), Iowa late spring nitrate test with 0 kg N ha−1 applied at-planting (LSNT), and canopy
reflectance sensing. Tools performances are shown with the tools by themselves (a-c), combined using only main effects (d-g), combined using both
main effects and interaction terms (h-k), and combined using a decision tree (l). The 1:1 line is an indicator of a perfect predictor of EONR. The
dashed lines show the area in which tools are within ± 30 kg N ha−1 of EONR or relatively close to EONR and root mean square error units are in kg
N ha−1.

minimizing errors. This is made evident in how ensembling
helps overcome the weakness of other tools. For example, the
YG approach tends to overestimate EONR as it is based on an
expected yield estimation and does not consider N mineral-
ization or soil nitrate (Morris et al., 2018). When ensembled
with other tools that do account for these and other aspects
soil and plant N dynamics (e.g., WI PPNT, LSNT, and canopy

reflectance sensors) this overestimation is reduced especially
when EONR is low. These same tools underestimate corn N
need when EONR is high. Coupling them with the YG helps
to compensate for this underestimation. This results in much
better relationships with EONR—as shown by the decrease
in regressed intercept terms and an increase in slope terms
(Figures 2 and 4).
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RANSOM ET AL. 913

T A B L E 2 The implementation costs used to calculate foregone profits and the corresponding range of foregone profits (relative to EONR)
associated with each tool and combination of tools.

Main effects foregone profit
Main and interaction effects foregone
profit

Tools Implementation costa Max Min Mean Max Min Mean
US$ ha−1 US$ ha−1

Single N application
YG 13.70 342 14 103ab – – –

WI PPNTb 31.70 367 32 92ab – – –

Maize-Nc 34.27 933 34 228c – – –

YG + WI PPNT 31.00 256 32 81ab 201 32 77ab

YG + Maize-N 32.30 350 34 84ab 337 32 82ab

WI PPNT + Maize-N 52.27 318 32 86ab 316 32 87ab

YG + WI PPNT + Maize-N 52.27 290 52 98ab 247 52 94ab

Decision Tree 31.00 233 32 73a – – –

Split N application
YG 42.85 449 43 130ab – – –

LSNTd 60.15 495 60 131b – – –

Canopy Ref.e 44.31 331 44 132b – – –

YG + LSNT 60.15 357 60 106ab 367 60 106ab

YG + Canopy Ref. 44.31 312 44 91ab 291 44 88ab

LSNT + Canopy Ref. 61.61 377 62 110ab 372 62 110ab

YG + LSNT + Canopy Ref. 61.61 328 62 107ab 369 62 102ab

Decision Tree 61.61 329 62 102ab – – –

Note: Tools include the yield goal (YG), Wisconsin (WI) pre-plant nitrate test (PPNT), Iowa 795 late-spring soil nitrate test (LSNT) with 0 kg N ha−1 applied at-planting,
Maize-N crop growth model, and canopy reflectance sensing 796 using the Holland and Schepers (2010) algorithm. All significant mean differences (using Tukey’s honest
significant difference test across both N application 797 timings; p ≤ 0.05) are shown with unique lower-case letters.
aThe implementation cost was calculated as the sum of the cost for the N application and using the tool(s). The costs for the single ($13.70 ha−1) and split ($13.70 ha−1

+ 29.15 ha−1) applications were based on the Iowa Farm Custom Rate Survey using the average cost of applying dry bulk fertilizer (at-planting) and sidedressing liquid
fertilizer (split) (Plastina et al., 2021).
bThe WI PPNT tool cost ($18.00) was based on GPS grid soil sampling ($16.67 ha−1; Plastina et al., 2021) and the cost of analyzing two depths (0–30 and 30–60 cm)
for soil nitrate ($5.30/sample or $1.31 ha−1; based on the average cost from six Midwest soil testing laboratories [University of Minnesota, Midwest Laboratories, North
Dakota State University, University of Missouri, University of Wisconsin−Madison, and Ward Laboratory]) for an 8-ha area (Laboski & Peters, 2012).
cThe Maize-N tool cost ($20.57 ha−1) was based on GPS grid soil sampling ($16.67 ha−1; Plastina et al., 2021), cost of analyzing soil for organic matter, bulk density, pH,
and nitrate ($31.58/sample or $3.90 ha−1; based on the average costs reported from the six Midwest soil testing laboratories) for an 8-ha area.
dThe LSNT tool cost ($17.30 ha−1) was based on GPS grid soil sampling ($16.67 ha−1; Plastina et al., 2021) and the cost of analyzing one depth of soil (0–30 cm) for soil
nitrate ($5.30/sample; based on the average costs reported from six Midwest soil testing laboratories) for an 8-ha area.
eThe canopy reflectance sensing tool cost ($1.46 ha−1) was estimated as an additional cost to the application cost ($29.15 ha−1) using the reported average sidedress liquid
fertilizer application rate from the Iowa Farm Rate Survey (Plastina et al., 2021). It was assumed that 50% of the sidedress application cost comes from machinery upkeep
and acquisition, and 50% from labor and fuel (R. Massey, personal communication, 2017). The additional cost of using canopy reflectance sensors and a variable rate
application was calculated as 10% of the base machinery upkeep and acquisition costs ($1.46 ha−1).

The ensemble methods evaluated here are based on a sim-
ple principle of weighted averaging, with the weights being
optimized by the different machine learning processes. We
perceive that additional improvement could be observed by
using other techniques such as boosting (i.e., continually
fitting models by using the previous’ models residuals) or bag-
ging (i.e., using bootstrapping methods to minimize bias in
the models). These methods would also work by combining
site-specific soil, weather, or management information to bet-
ter account for situations where no additional N is required
(e.g., from mineralization) or where additional fertilizer is
needed (e.g., excessive rainfall events). That said, most of

those methods do not represent growth and yield potential
determined during the late vegetative and reproductive phases
of the growing season. Thus, to expect these tools to be per-
fect predictors of seasonal crop N need before or early in the
season is unrealistic.

As many of the tool ensembles combinations the perfor-
mance over any one tool used alone, ensemble evaluation
would allow farmers the flexibility of using the N manage-
ment information they have on hand. For example, if they
typically rely on LSNT results for their N rate management
decisions, then they could evaluate how N recommendations
may change based on incorporating a YG recommendation.
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914 RANSOM ET AL.

F I G U R E 5 The decision tree model used to predict the
economically optimal N rate (EONR) for a single N application
at-planting using the yield goal (YG) and the Wisconsin pre-plant soil
nitrate test (WI PPNT). Values at each split represent each tool’s N
recommendation in kg N ha−1. Values at each terminal node show the
resulting N recommendation (kg N ha−1) and number of sites (n).

F I G U R E 6 The resulting decision tree model used to predict the
economically optimal N rate (EONR) for a split N application
(at-planting + sidedress) using the yield goal (YG), Iowa late spring
soil nitrate test with 0 kg N ha−1 applied at-planting (LSNT), and
canopy reflectance sensing. Values at each split represent each tool’s N
recommendation in kg N ha−1. Values at each terminal node show the
resulting N recommendation (kg N ha−1) and number of sites (n).

From a practical standpoint, this would best be accomplished
with an online interface, where users could input the tools’
information, select one or more ensembling techniques, and
observe N recommendation changes.

A concern with combining multiple tools is the implemen-
tation cost increases with each additional tool added to the
ensemble. Ideally, the increase in accuracy of combining mul-
tiple tools would increase the revenue from higher yields and
lower fertilizer costs, which would offset the implementation
costs. While this was true to an extent, there never was a point
where the ensemble-based method significantly improved
profitability. However, the ensemble-based method never sig-
nificantly decreased profitability either. This is encouraging,
as the implementation cost for many of these tools could
become more economical with the advancement of low-price
information technologies. For example, using a more accu-
rate crop growth model that relies on publicly available data
could reduce this particular tool’s usage costs down to $0 as
compared to the $20.57 required to have soil samples col-
lected and analyzed for the inputs necessary to run Maize-N.
Until acquisition and implementation costs are reduced it is
unlikely that farmers and advisors will collect multiple types
of measurements. However, there are times where farmers
will have multiple sources of information (e.g., routine soil
fertility samples, aerial imagery) and therefore this approach
could be used to adjust or validate their current N fertilization
management.

5 CONCLUSION

Determining the optimal rate of N fertilizer to apply to
optimize corn grain yields while minimizing environmen-
tal degradation is a difficult task. Solving similarly complex
problems by using ensemble learning have shown promise in
multiple scientific fields. A similar approach was used in this
investigation to combine or “fuse” multiple N recommenda-
tion tools. Combining two or more tools together lead to an
increased ability to estimate EONR (R2 = 0.46, an increase
of 0.27 over the best tool evaluated alone) will decrease error
(RMSE = 43 kg N ha−1, a decrease of 33 kg N ha−1) without
decreasing profitability across a wide range of soils and grow-
ing conditions. Combining tools worked with both ensemble
learning methods and for both a single at-planting and split N
application. Using this ensembling approach, farmers could
be more confident they are applying close to the right N rate.
But additional work is needed to make this approach more
practical for farmers and advisors. Future efforts will need to
evaluate which additional N recommendation tools could be
included, developing an online tool for users to interactively
select which tools to combine based on the information they
have, determine if auxiliary information (e.g., weather, soil
characteristics, management, drainage classification) could be
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RANSOM ET AL. 915

used to further improve ensemble models, and provide further
validation with more on-farm N response data and at a more
local scale.

It is not possible to explain all the variability around EONR
especially when recommendations are made before planting
or early in the growing season and without knowing if the
subsequent growing conditions would optimize or limit plant
growth. However, finding ways to utilize multiple sources of
data will be paramount for decreasing the uncertainty around
nutrient management decisions and thereby improving our
ability to produce corn adaptively and sustainably.

AU T H O R C O N T R I B U T I O N S
Curtis J. Ransom: Conceptualization; data curation; formal
analysis; investigation; methodology; project administration;
validation; visualization; writing—original draft. Newell R.
Kitchen: Conceptualization; data curation; funding acqui-
sition; investigation; methodology; project administration;
resources; supervision; writing—review and editing. James
J. Camberato: Data curation; investigation; methodology;
resources; writing—review and editing. Paul R. Carter:
Data curation; funding acquisition; investigation; methodol-
ogy; project administration; resources; writing—review and
editing. Richard B. Ferguson: Data curation; investigation;
methodology; resources. Fabián G. Fernández: Data cura-
tion; investigation; methodology; resources; writing–review
and editing. David W. Franzen: Data curation; investiga-
tion; methodology; resources; writing–—and editing. Carrie
A. M. Laboski: Data curation; investigation; methodol-
ogy; resources; writing—review and editing. David Brenton
Myers: Methodology; validation; writing—review and edit-
ing. Emerson D. Nafziger: Data curation; investigation;
methodology; resources. John E. Sawyer: Data curation;
investigation; methodology; resources; writing—review and
editing. John F. Shanahan: Funding acquisition; inves-
tigation; methodology; project administration; resources;
supervision; writing—review and editing.

O R C I D
Curtis J. Ransom https://orcid.org/0000-0002-1268-7247
Fabián G. Fernández https://orcid.org/0000-0002-9539-
0050
David W. Franzen https://orcid.org/0000-0003-4862-8086
Carrie A. M. Laboski https://orcid.org/0000-0003-2050-
767X
John E. Sawyer https://orcid.org/0000-0003-4080-9616

R E F E R E N C E S
Abendroth, L. J., Elmore, R. W., Boyer, M. J., & Marlay, S. K. (2011).

Corn growth and development (PMR 1009). Iowa State University,
Agronomy Extension.

Aleksovska, I., Raynaud, L., Faivre, R., Brun, F., & Raynal, M. (2021).
Design and evaluation of calibrated and seamless ensemble weather
forecasts for crop protection applications. Weather and Forecasting,
36(4), 1329–1342. https://doi.org/10.1175/WAF-D-20-0128.1

Bean, G. M., Kitchen, N. R., Camberato, J. J., Ferguson, R. B.,
Fernandez, F. G., Franzen, D. W., Laboski, C. A. M., Nafziger, E.
D., Sawyer, J. E., Scharf, P. C., Schepers, J., & Shanahan, J. S.
(2018a). Active-optical reflectance sensing corn algorithms evaluated
over the United States Midwest Corn Belt. Agronomy Journal, 110(6),
2552–2565. https://doi.org/10.2134/agronj2018.03.0217

Bean, G. M., Kitchen, N. R., Camberato, J. J., Ferguson, R. B.,
Fernandez, F. G., Franzen, D. W., Laboski, C. A. M., Nafziger, E. D.,
Sawyer, J. E., Scharf, P. C., Schepers, J., & Shanahan, J. S. (2018b).
Improving an active-optical reflectance sensor algorithm using soil
and weather information. Agronomy Journal, 110(6), 2541–2551.
https://doi.org/10.2134/agronj2017.12.0733

Bean, G. M., Ransom, C. J., Kitchen, N. R., Scharf, P. C., Veum, K. S.,
Camberato, J. J., Ferguson, R. B., Fernandez, F. G., Franzen, D. W.,
Laboski, C. A. M., Nafziger, E. D., Sawyer, J. E., & Nielsen, R. L.
(2021). Soil hydrologic grouping guide which soil and weather prop-
erties best estimate corn nitrogen need. Agronomy Journal, 113(6),
5541–5555. https://doi.org/10.1002/agj2.20888

Blackmer, A. M., Morris, T. F., & Binford, G. D. (1992). Predicting N
fertilizer needs for corn in humid regions: Advances in Iowa. In B. R.
Brock & K. R. Kelley (Eds.), Predicting N fertilizer needs for corn in
humid regions. Y226. TVA Bulletin.

Brown, H., Huth, N., & Holzworth, D. (2018). Crop model improve-
ment in APSIM: Using wheat as a case study. European Journal of
Agronomy, 100, 141–150. https://doi.org/10.1016/j.eja.2018.02.002

Buchholz, D. D., Brown, J. R., Crocker, D. K., Garrett, J. D., Hanson,
R. G., Lory, J. A., & Nathan, M. V. (2004). Soil test interpretations
and recommendations handbook. University of Missouri-College of
Agriculture, Division of Plant Sciences.

Cerrato, M. E., & Blackmer, A. M. (1990). Comparison of models
for describing corn yield response to nitrogen fertilizer. Agron-
omy Journal, 82(1), 138–143. https://doi.org/10.2134/agronj1990.
00021962008200010030x

Clark, J. D., Fernández, F. G., Camberato, J. J., Carter, P. R., Ferguson,
R. B., Franzen, D. W., Kitchen, N. R., Laboski, C. A. M., Nafziger,
E. D., Sawyer, J. E., & Shanahan, J. F. (2020a). Weather and soil
in the US Midwest influence the effectiveness of single- and split-
nitrogen applications in corn production. Agronomy Journal, 112(6),
5288–5299. https://doi.org/10.1002/agj2.20446

Clark, J. D., Fernández, F. G., Veum, K. S., Camberato, J. J., Carter,
P. R., Ferguson, R. B., Franzen, D. W., Kaiser, D. E., Kitchen, N.
R., Laboski, C. A. M., Nafziger, E. D., Rosen, C. J., Sawyer, J. E.,
& Shanahan, J. F. (2020b). Adjusting corn nitrogen management by
including a mineralizable-nitrogen test with the preplant and preside-
dress nitrate tests. Agronomy Journal, 112(4), 3050–3064. https://doi.
org/10.1002/agj2.20228

Dellinger, A. E., Schmidt, J. P., & Beegle, D. B. (2008). Developing
nitrogen fertilizer recommendations for corn using an active sen-
sor. Agronomy Journal, 100(6), 1546–1552. https://doi.org/10.2134/
agronj2007.0386

Dobarco, M. R., Arrouays, D., Lagacherie, P., Ciampalini, R., & Saby, N.
P. A. (2017). Prediction of topsoil texture for Region Centre (France)
applying model ensemble methods. Geoderma, 298, 67–77. https://
doi.org/10.1016/j.geoderma.2017.03.015

 14350661, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/saj2.20539 by D

avid Franzen , W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-1268-7247
https://orcid.org/0000-0002-1268-7247
https://orcid.org/0000-0002-9539-0050
https://orcid.org/0000-0002-9539-0050
https://orcid.org/0000-0002-9539-0050
https://orcid.org/0000-0003-4862-8086
https://orcid.org/0000-0003-4862-8086
https://orcid.org/0000-0003-2050-767X
https://orcid.org/0000-0003-2050-767X
https://orcid.org/0000-0003-2050-767X
https://orcid.org/0000-0003-4080-9616
https://orcid.org/0000-0003-4080-9616
https://doi.org/10.1175/WAF-D-20-0128.1
https://doi.org/10.2134/agronj2018.03.0217
https://doi.org/10.2134/agronj2017.12.0733
https://doi.org/10.1002/agj2.20888
https://doi.org/10.1016/j.eja.2018.02.002
https://doi.org/10.2134/agronj1990.00021962008200010030x
https://doi.org/10.2134/agronj1990.00021962008200010030x
https://doi.org/10.1002/agj2.20446
https://doi.org/10.1002/agj2.20228
https://doi.org/10.1002/agj2.20228
https://doi.org/10.2134/agronj2007.0386
https://doi.org/10.2134/agronj2007.0386
https://doi.org/10.1016/j.geoderma.2017.03.015
https://doi.org/10.1016/j.geoderma.2017.03.015


916 RANSOM ET AL.

Fei, S., Hassan, M. A., He, Z., Chen, Z., Shu, M., Wang, J., Li, C., &
Xiao, Y. (2021). Assessment of ensemble learning to predict wheat
grain yield based on UAV-multispectral reflectance. Remote Sensing,
13(12), 2338. https://doi.org/10.3390/rs13122338

Feng, L., Zhang, Z., Ma, Y., Du, Q., Williams, P., Drewry, J., &
Luck, B. (2020). Alfalfa yield prediction using UAV-based hyperspec-
tral imagery and ensemble learning. Remote Sensing, 12(12), 2028.
https://doi.org/10.3390/rs12122028

Fox, R. H., & Piekielek, W. P. (1995). The relationship between corn
grain yield goals and economic optimum nitrogen fertilizer rates.
Penn State University.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths
for generalized linear models via coordinate descent. Journal of
Statistical Software, 33(1), 1–22. https://doi.org/10.18637/jss.v068.
c02

Gu, Z., Zhu, T., Jiao, X., Xu, J., & Qi, Z. (2021). Evaluating the
neural network ensemble method in predicting soil moisture in
agricultural fields. Agronomy, 11(8), 1521. https://doi.org/10.3390/
agronomy11081521

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 12(10),
993–1001.

Holland, K. H., & Schepers, J. S. (2010). Derivation of a vari-
able rate nitrogen application model for in-season fertilization of
corn. Agronomy Journal, 102(5), 1415–1424. https://doi.org/10.2134/
agronj2010.0015

Kablan, L. A., Chabot, V., Mailloux, A., Bouchard, M.-È., Fontaine, D.,
& Bruulsema, T. (2017). Variability in corn yield response to nitrogen
fertilizer in eastern Canada. Agronomy Journal, 109(5), 2231–2242.
https://doi.org/10.2134/agronj2016.09.0511

Kitchen, N. R., Shanahan, J. F., Ransom, C. J., Bandura, C. J., Bean,
G. M., Camberato, J. J., Carter, P. R., Clark, J. D., Ferguson, R. B.,
Fernández, F. G., Franzen, D. W., Laboski, C. A. M., Nafziger, E.
D., Qing, Z., Sawyer, J. E., & Shafer, M. (2017). A public–industry
partnership for enhancing corn nitrogen research and datasets: Project
description, methodology, and outcomes. Agronomy Journal, 109(5),
2371–2388. https://doi.org/10.2134/agronj2017.04.0207

Kuhn, M. (2017). caret: Classification and regression training (R
Package Version 6.0-76).

Laboski, C. A. M., Camberato, J. J., & Sawyer, J. E. (2014). Evaluation
of adapt-N in the corn belt. Proceedings of the 2014 North Central
Extension-Industry Conference, 30, 7–14.

Laboski, C. A. M., & Peters, J. B. (2012). Nutrient application guide-
lines for field, vegetable, and fruit crops in Wisconsin. Division of
Cooperative Extension of the University of Wisconsin.

Maiorano, A., Martre, P., Asseng, S., Ewert, F., Müller, C., Rötter, R. P.,
Ruane, A. C., Semenov, M. A., Wallach, D., Wang, E., Alderman, P.
D., Kassie, B. T., Biernath, C., Basso, B., Cammarano, D., Challinor,
A. J., Doltra, J., Dumont, B., Rezaei, E. E., & Zhu, Y. (2017). Crop
model improvement reduces the uncertainty of the response to tem-
perature of multi-model ensembles. Field Crops Research, 202, 5–20.
https://doi.org/10.1016/J.FCR.2016.05.001

Mendes-Moreira, J., Soares, C., Jorge, A. M., & De Sousa, J. F. (2012).
Ensemble approaches for regression. ACM Computing Surveys, 45(1),
1–40. https://doi.org/10.1145/2379776.2379786

Morris, T. F., Murrell, T. S., Beegle, D. B., Camberato, J. J., Ferguson,
R. B., Grove, J., Ketterings, Q., Kyveryga, P. M., Laboski, C. A.
M., McGrath, J. M., Meisinger, J. J., Melkonian, J., Moebius-Clune,
B. N., Nafziger, E. D., Osmond, D., Sawyer, J. E., Scharf, P. C.,

Smith, W., Spargo, J. T., & Yang, H. (2018). Strengths and limita-
tions of nitrogen rate recommendations for corn and opportunities
for improvement. Agronomy Journal, 110(1), 1–37. https://doi.org/10.
2134/agronj2017.02.0112

Nafziger, E. D., Sawyer, J. E., & Hoeft, R. G. (2004). Formulating
n recommendations for corn in the Corn Belt using recent data.
Proceedings of the North Central Extension-Industry Soil Fertility
Conference, 20, 5–11.

Plastina, A., Johanns, A., Gleisner, A., & Qualman, A. (2021).
2021 Iowa farm custom rate survey. In Ag Decision Maker (Issue
File A3-10). https://www.extension.iastate.edu/ag/2022-iowa-farm-
custom-rate-survey

Puntel, L. A., Sawyer, J. E., Barker, D. W., Dietzel, R., Poffenbarger, H.,
Castellano, M. J., Moore, K. J., Thorburn, P., & Archontoulis, S. V.
(2016). Modeling long-term corn yield response to nitrogen rate and
crop rotation. Frontiers in Plant Science, 7, 1–18. https://doi.org/10.
3389/fpls.2016.01630

Qin, Z., Myers, D. B., Ransom, C. J., Kitchen, N. R., Liang, S.-Z.,
Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernandez, F. G.,
Franzen, D. W., Laboski, C. A. M., Malone, B. D., Nafziger, E. D.,
Sawyer, J. E., & Shanahan, J. F. (2018). Application of machine learn-
ing methodologies for predicting corn economic optimal nitrogen
rate. Agronomy Journal, 110(6), 2596–2607. https://doi.org/10.2134/
agronj2018.03.0222

Questier, F., Put, R., Coomans, D., Walczak, B., & Vander Heyden,
Y. (2005). The use of cart and multivariate regression trees for
supervised and unsupervised feature selection. Chemometrics and
Intelligent Laboratory Systems, 76(1), 45–54. https://doi.org/10.1016/
j.chemolab.2004.09.003

Ransom, C. J., Clark, J., Bean, G. M., Bandura, C., Shafer, M. E.,
Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B.,
Fernández, F., Franzen, D. W., Laboski, C. A. M., Myers, D. B.,
Nafziger, E. D., Sawyer, J. E., & Shanahan, J. (2021). Data from
a public–industry partnership for enhancing corn nitrogen research.
Agronomy Journal, 113(5), 4429–4436. https://doi.org/10.1002/agj2.
20812

Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R.
B., Fernández, F. G., Franzen, D. W., Laboski, C. A. M., Nafziger, E.
D., Sawyer, J. E., Scharf, P. C., & Shanahan, J. F. (2020). Corn nitro-
gen rate recommendation tools’ performance across eight US midwest
corn belt states. Agronomy Journal, 112, 470–492. https://doi.org/10.
1002/agj2.20035

Ransom, C. J., Kitchen, N. R., Sawyer, J. E., Camberato, J. J., Carter,
P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski,
C. A. M., Myers, D. B., Nafziger, E. D., & Shanahan, J. F. (2021).
Improving publicly available corn nitrogen rate recommendation tools
with soil and weather measurements. Agronomy Journal, 113(2),
2068–2090. https://doi.org/10.1002/agj2.20627

R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. http://www.R-
project.org

Roberts, D. F., Kitchen, N. R., Scharf, P. C., & Sudduth, K. A. (2010).
Will variable-rate nitrogen fertilization using corn canopy reflectance
sensing deliver environmental benefits? Agronomy Journal, 102(1),
85–95. https://doi.org/10.2134/agronj2009.0115

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K.
J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen,
S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., &
Winter, J. M. (2013). The agricultural model intercomparison and

 14350661, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/saj2.20539 by D

avid Franzen , W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3390/rs13122338
https://doi.org/10.3390/rs12122028
https://doi.org/10.18637/jss.v068.c02
https://doi.org/10.18637/jss.v068.c02
https://doi.org/10.3390/agronomy11081521
https://doi.org/10.3390/agronomy11081521
https://doi.org/10.2134/agronj2010.0015
https://doi.org/10.2134/agronj2010.0015
https://doi.org/10.2134/agronj2016.09.0511
https://doi.org/10.2134/agronj2017.04.0207
https://doi.org/10.1016/J.FCR.2016.05.001
https://doi.org/10.1145/2379776.2379786
https://doi.org/10.2134/agronj2017.02.0112
https://doi.org/10.2134/agronj2017.02.0112
https://www.extension.iastate.edu/ag/2022-iowa-farm-custom-rate-survey
https://www.extension.iastate.edu/ag/2022-iowa-farm-custom-rate-survey
https://doi.org/10.3389/fpls.2016.01630
https://doi.org/10.3389/fpls.2016.01630
https://doi.org/10.2134/agronj2018.03.0222
https://doi.org/10.2134/agronj2018.03.0222
https://doi.org/10.1016/j.chemolab.2004.09.003
https://doi.org/10.1016/j.chemolab.2004.09.003
https://doi.org/10.1002/agj2.20812
https://doi.org/10.1002/agj2.20812
https://doi.org/10.1002/agj2.20035
https://doi.org/10.1002/agj2.20035
https://doi.org/10.1002/agj2.20627
http://www.R-project.org
http://www.R-project.org
https://doi.org/10.2134/agronj2009.0115


RANSOM ET AL. 917

improvement project (AGMIP): Protocols and pilot studies. Agricul-
tural and Forest Meteorology, 170, 166–182. https://doi.org/10.1016/
j.agrformet.2012.09.011

Sawyer, J. E. (2013). Comparison of the MRTN and adapt-N derived
N rates for corn. Proceedings of the 2013 North Central Extension-
Industry Conference, 29, 60–67.

Sawyer, J., & Mallarino, A. (2017). Use of the late-spring soil nitrate test
in Iowa corn production. https://store.extension.iastate.edu/Product/
5259

Scharf, P. C. (2001). Soil and plant tests to predict optimum nitrogen
rates for corn. Journal of Plant Nutrition, 24(6), 805–826. https://doi.
org/10.1081/PLN-100103775

Scharf, P. C., Brouder, S. M., & Hoeft, R. G. (2006). Chlorophyll meter
readings can predict nitrogen need and yield response of corn in the
north-central USA. Agronomy Journal, 98(3), 655–665. https://doi.
org/10.2134/agronj2005.0070

Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V.
C., & Lory, J. A. (2005). Field-scale variability in optimal nitrogen
fertilizer rate for corn. Agronomy Journal, 97(2), 452–461. https://
doi.org/10.2134/agronj2005.0452

Schmidt, J. P., Dellinger, A. E., & Beegle, D. B. (2009). Nitrogen
recommendations for corn: An on-the-go sensor compared with cur-
rent recommendation methods. Agronomy Journal, 101(4), 916–924.
https://doi.org/10.2134/agronj2008.0231x

Sela, S., van Es, H. M., Moebius-Clune, B. N., Marjerison, R., &
Kneubuhler, G. (2018). Dynamic model-based recommendations
increase the precision and sustainability of N fertilization in midwest-
ern us maize production. Computers and Electronics in Agriculture,
153, 256–265. https://doi.org/10.1016/j.compag.2018.08.010

Sela, S., van Es, H. M., Moebius-Clune, B. N., Marjerison, R., Moebius-
Clune, D., Schindelbeck, R., Severson, K., & Young, E. (2017).
Dynamic model improves agronomic and environmental outcomes for
maize nitrogen management over static approach. Journal of Envi-
ronment Quality, 46(2), 311–319. https://doi.org/10.2134/jeq2016.
05.0182

Setiyono, T. D., Yang, H., Walters, D. T., Dobermann, A., Ferguson,
R. B., Roberts, D. F., Lyon, D. J., Clay, D. E., & Cassman, K.
G. (2011). Maize-N: A decision tool for nitrogen management in
maize. Agronomy Journal, 103(4), 1276–1283. https://doi.org/10.
2134/agronj2011.0053

Shahhosseini, M., Hu, G., & Archontoulis, S. V. (2020). Forecasting corn
yield with machine learning ensembles. Frontiers in Plant Science,
11, 1120. https://doi.org/10.3389/FPLS.2020.01120/BIBTEX

Shapiro, C. A., Ferguson, R. B., Hergert, G. W., Wortmann, C. S.,
& Walters, D. T. (2008). Fertilizer suggestions for corn. EC117.
Nebraska Extension, Lincoln.

Sripada, R. P., Schmidt, J. P., Dellinger, A. E., & Beegle, D. B. (2008).
Evaluating multiple indices from a canopy reflectance sensor to esti-
mate corn n https://cran.r-project.org/package=rpartrequirements.
Agronomy Journal, 100(6), 1553–1561. https://doi.org/10.2134/
agronj2008.0017

Stanford, G. (1973). Rationale for optimum nitrogen fertilization in corn
production. Journal of Environmental Quality, 2(2), 159–166. https://
doi.org/10.2134/jeq1973.00472425000200020001x

Therneau, T., & Atkinson, B. (2019). rpart: Recursive partitioning and
regression trees. R package version 4.1-15).

Thompson, L. J., Ferguson, R. B., Kitchen, N. R., Franzen, D. W., Mamo,
M., Yang, H., & Schepers, J. S. (2015). Model and sensor-based
recommendation approaches for in-season nitrogen management in
corn. Agronomy Journal, 107(6), 2020–2030. https://doi.org/10.2134/
agronj15.0116

Tremblay, N., Bouroubi, Y. M., Bélec, C., Mullen, R. W., Kitchen, N. R.,
Thomason, W. E., Ebelhar, S., Mengel, D. B., Raun, W. R., Francis,
D. D., Vories, E. D., & Ortiz-Monasterio, I. (2012). Corn response
to nitrogen is influenced by soil texture and weather. Agronomy
Journal, 104(6), 1658–1671. https://doi.org/10.2134/agronj2012.01
84

Unger, D. A., van den Dool, H., O’Lenic, E., & Collins, D. (2009).
Ensemble regression. Monthly Weather Review, 137(7), 2365–2379.
https://doi.org/10.1175/2008MWR2605.1

Vanotti, M. B., & Bundy, L. G. (1994). An alternative rationale
for corn nitrogen fertilizer recommendations. Journal of Produc-
tion Agriculture, 7(2), 243–249. https://doi.org/10.2134/jpa1994.02
43

Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S.
(2016). Lessons from climate modeling on the design and use of
ensembles for crop modeling. Climatic Change, 139(3–4), 551–564.
https://doi.org/10.1007/s10584-016-1803-1

Wang, L.-J., Cheng, H., Yang, L.-C., & Zhao, Y.-G. (2021). Soil organic
carbon mapping in cultivated land using model ensemble methods.
Archives of Agronomy and Soil Science, 68, 1711–1725. https://doi.
org/10.1080/03650340.2021.1925651

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Ransom, C. J., Kitchen, N.
R., Camberato, J. J., Carter, P. R., Ferguson, R. B.,
Fernández, F. G., Franzen, D. W., Laboski, C. A. M.,
Myers, D. B., Nafziger, E. D., Sawyer, J. E., &
Shanahan, J. F. (2023). Combining corn N
recommendation tools for an improved economical
optimal nitrogen rate estimation. Soil Science Society
of America Journal, 87, 902–917.
https://doi.org/10.1002/saj2.20539

 14350661, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/saj2.20539 by D

avid Franzen , W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
https://store.extension.iastate.edu/Product/5259
https://store.extension.iastate.edu/Product/5259
https://doi.org/10.1081/PLN-100103775
https://doi.org/10.1081/PLN-100103775
https://doi.org/10.2134/agronj2005.0070
https://doi.org/10.2134/agronj2005.0070
https://doi.org/10.2134/agronj2005.0452
https://doi.org/10.2134/agronj2005.0452
https://doi.org/10.2134/agronj2008.0231x
https://doi.org/10.1016/j.compag.2018.08.010
https://doi.org/10.2134/jeq2016.05.0182
https://doi.org/10.2134/jeq2016.05.0182
https://doi.org/10.2134/agronj2011.0053
https://doi.org/10.2134/agronj2011.0053
https://doi.org/10.3389/FPLS.2020.01120/BIBTEX
https://cran.r-project.org/package=rpartrequirements
https://doi.org/10.2134/agronj2008.0017
https://doi.org/10.2134/agronj2008.0017
https://doi.org/10.2134/jeq1973.00472425000200020001x
https://doi.org/10.2134/jeq1973.00472425000200020001x
https://doi.org/10.2134/agronj15.0116
https://doi.org/10.2134/agronj15.0116
https://doi.org/10.2134/agronj2012.0184
https://doi.org/10.2134/agronj2012.0184
https://doi.org/10.1175/2008MWR2605.1
https://doi.org/10.2134/jpa1994.0243
https://doi.org/10.2134/jpa1994.0243
https://doi.org/10.1007/s10584-016-1803-1
https://doi.org/10.1080/03650340.2021.1925651
https://doi.org/10.1080/03650340.2021.1925651
https://doi.org/10.1002/saj2.20539

	Combining corn N recommendation tools for an improved economical optimal nitrogen rate estimation
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Experimental design
	2.2 | Calculating the economic optimal nitrogen rate
	2.3 | Recommendation tools considered
	2.3.1 | Yield goal
	2.3.2 | WI PPNT
	2.3.3 | Maize-N
	2.3.4 | LSNT
	2.3.5 | Canopy reflectance sensing

	2.4 | Ensemble model development
	2.5 | Evaluating tool improvement
	2.6 | Foregone profit

	3 | RESULTS
	3.1 | Elastic net-based combinations for single and split N applications
	3.2 | Decision tree-based combination for single and split N applications
	3.3 | Foregone profits

	4 | DISCUSSION
	4.1 | Comparing ensemble-based tools
	4.2 | Strengths and limitations of tools

	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


