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Abstract
Improving corn (Zeamays L.) N managementis pertinent to economic andenviron-

mental objectives. However, there are limited comprehensive data sources to develop

and test N fertilizer decision aid tools across a wide geographic range of soil and

weather scenarios. Therefore, a public-industry partnership was formed to conduct

standardized corn N rate response field studies throughout the U.S. Midwest. This

research was conducted using a standardized protocol at 49 site-years across eight

states over the 2014–2016 growing seasons with many soil, plant, and weather related

measurements. This note provides the data (found in supplemental files), outlines the

data, summarizes key findings, and highlights the strengths and weakness for those

who wish to use this dataset.
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1 INTRODUCTION

To improve N management, an extensive amount of data are

needed to understand how genetic x environment x manage-

ment interactions impact corn (Zea mays L.) response to N fer-

tilization and optimal application rate requirements. However,

collecting enough data has historically been difficult, time-

consuming, and expensive. Many efforts have focused on

small geographic regions (e.g., within state/provincial bound-

aries) or the type measurements (e.g., soil, plant, sensor infor-

mation), sampling times, and sampling and analysis protocols

varied within the same study. The lack of common protocols

between datasets has limited the ability to aggregate and ana-

lyze at a regional scale. This has particularly restricted the

evaluation and development of N fertilizer rate recommen-

dation tools across the wide range of growing environments

found in the U.S. Midwest and elsewhere. Therefore, a part-

nership was formed between Corteva Agriscience and eight

land-grant universities, and USDA-ARS to enhance under-

standing of corn N fertilizer response over diverse environ-

mental conditions, and test, improve, and develop N deci-

sion aid tools. Because of a primary emphasis on the decision

tools, the project was entitled “Performance and Refinement

of N Fertilization Tools” or abbreviated PRNT. Here we pro-

vide the PRNT data (in supplemental files), outline the data,

summarize the key findings, and highlight the strengths and

weaknesses of the data in order to better assist those who wish

to use this dataset for additional analyses.

2 DATA OVERVIEW

This dataset contains 49 site-years (2014–2016) of corn grain

yield responses to added N fertilizer from eight U.S. Midwest

states. Each site-year followed a standardized protocol which

included the same 16 N rates, four replicates, two application

timings (all at planting or the majority sidedressed; Table 1),

N source (ammonium nitrate) from the same fertilizer pro-

duction plant, site selection criteria (low and high productive

soils within each state), data management, collaboration pro-

cedures, and explanatory variables. See Table 2 for descrip-

tion of all data sources and Table 3 for a summary of the

sampling times. Additional background information and

details about the standardized materials and methods, data

management, and collaboration protocols are discussed in

Kitchen et al. (2017).

To ensure the completeness and reusability of the data,

each supplemental file (found in Table 2) contains metadata

which explains the variable names, calculations, and provides

references to protocols that were used (when applicable).

To ensure high data quality, all data underwent a certifica-

tion process, which followed several steps. First, principal

investigators entered data into a common data template and

Core Ideas
∙ Data provided from 49 corn N response trials in

eight states across the U.S. Midwest.

∙ Data included a wide range of soil, plant, and

weather measurements.

∙ Published manuscripts show potential methods to

improve N management.

identified suspect measurements that could be explained from

field observations or known equipment malfunctions (e.g.,

clogged rain gauge, combine breakdowns, or weather related

crop damage). Second, all principal investigator certified data

were submitted to a data manager who then compiled the data.

Third, statistical tests (i.e., Cook’s distances) and data com-

parisons (e.g., weather data compared with measurements

from nearby weather stations or gridded data sources) were

done and any additional observations were removed with the

consent of all the principal investigators. Fourth, all com-

piled data were evaluated for completeness (e.g., sufficient

metadata and data spot checks) by the project manager who

then certified the data for use. Of note, during this process we

found weather measurements were often incorrect because of

T A B L E 1 Nitrogen fertilizer application treatments (ammonium

nitrate; 34–0–0) including the rate and timing. Timings included all N

applied at planting (“Planting”) and a split application (“Sidedress”)

with some N applied at planting and the rest applied at the V9 ± 1 corn

growth stage (Abendroth et al., 2011)

Treatment
no. Planting Sidedress Total

kg N ha−1

1 0 0 0

2 45 0 45

3 90 0 90

4 135 0 135

5 180 0 180

6 225 0 225

7 270 0 270

8 315 0 315

9 45 45 90

10 45 90 135

11 45 135 180

12 45 180 225

13 45 225 270

14 45 270 315

15 90 90 180

16 90 180 270
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T A B L E 2 List and description of each supplemental files. Shapefiles of the plot boundaries with the corresponding treatments are available in

the “Plot_Boundaries_Shapefiles.zip” folder (see supplemental material files) and are organized by year and by state with each site-year a separate

shapefile

File ID File name and extension Description
1 1.Site_Characterization.xlsx Physical and chemical soil properties representing each of the four blocks in a study

site. Measurements reported for four to six diagnostic horizons down to ∼120 cm.

2 2.Soil_ECa.xlsx Plot averages and raw apparent soil electoral conductivity data using a Veris 3100

(Veris technologies).

3 3.SiteHistoryandManagment.xlsx

3.SiteHistoryandManagment_SI.xlsx

Management of current-year research (e.g., dates of research and management

practices, soil fertility tests and supplemental, seeding rates, and herbicide

applications), historical records (e.g., crop rotation), and site description (e.g., GPS

location, grade of slope, and soil series).

4 4.SoilN.xlsx Soil nitrate and ammonium measurements taken to depths of 0–30, 30–60, and

60–90 cm.

5 5.Potentially_MineralizableN.xlsx Potential soil mineralizable N, measured using anaerobic incubations.

6 6.Soil_Respiration.xlsx Soil respiration (i.e., microbial activity) measured using anaerobic incubations.

7 7.RapidScan.xlsx Active optical canopy reflectance measurements of Normalized Difference Vegetation

Index (NDVI) and Normalized Difference Red Edge (NDRE) at V9±1 growth stage

using a handheld RapidSCAN CS-45 (Holland Scientific).

8 8.Yield_Plant_Measurements.xlsx Grain yield, aboveground tissue biomass, and tissue N concentration measurements.

9 9.EONR_by_site-year.xlsx Quadratic-plateau coefficients, agronomic optimal N rates, and economic optimal

nitrogen rates (EONR). All values were calculated using grain and fertilizer prices of

US$0.158 kg−1 ($4.00 bu acre−1) and $0.88 kg N−1 ($0.40 lb N−1), respectively.

10 10.Weather.xlsx Daily temperature (maximum and minimum), precipitation, and solar radiation.

Additional columns indicate which observations were replaced and the source of the

replacement data.

11 11.Irrigation.xlsx Irrigation dates and amounts.

12 Plot Boundaries Shapefiles.zip Shape files containing the boundaries of each plot.

13 Supplemental Descriptions.docx A summary of reported issues and observations that may affect how each site is used in

analyses.

animal interference or dust accumulation on the instrumenta-

tion. As a result, solar radiation consistently underestimated

other validation datasets and therefore all solar radiation

measurements were replaced with modeled data derived

using an optimized Bristow–Campbell model (Bristow &

Campbell, 1984). In addition, some erroneous temperature

and precipitation data were replaced using the highest resolu-

tion of available gridded weather information (i.e., GridMET,

NOAA MRMS, or Corteva Agriscience’s internal weather

network). Each replacement was documented. Of note, soil

moisture data were excluded from this publication because

of our low confidence in the accuracy of the data as a result

of issues with instrumentation. All aerial imagery was also

excluded because of a lack of standardization and usability

as a result of variability in camera types, image resolution,

and timing of image capture.

3 SUMMARY OF FINDINGS

This dataset was used to answer key objectives identified as

important when the PRNT project was initiated by the prin-

cipal investigators, students, and postdoctoral scientists. The

major objectives and findings are summarized in Table 4.

Additional analyses and publications are underway that are

not listed in Table 4. Along with these publications, Corteva

Agriscience used this dataset for internal research on N man-

agement tools.

4 STRENGTHS AND WEAKNESSES OF
THIS DATASET

This dataset is one of a few that contains corn grain yield

response to N fertilization using standardized protocols over a

large regional area. Because of the standardized protocols, the

large number of data sources, and metadata, this dataset will

aggregate well with other data—which could further expand

our understanding of corn N management. Extensive efforts

have been made to overcome typical gaps found in other pub-

lished datasets that would limit their use for future analysis

or synthesis analysis (Eagle et al., 2017; White & van Evert,

2008).
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T A B L E 3 The sampling times for data listed in Table 2 (referenced using File ID numbers in parentheses). Within the table, “X” indicates

sampling at all 49 sites and the “O” indicates sampling at a subset of the sites. Not all measurements were taken for all treatments (Table 1). There

were minor exceptions to this timeline for a few site-years and data sources; see the actual data for more details

Data Type
At or before
planting V5 V9 VT R4 PM Harvest

Post-
harvest

Site characterization
Profile characterization (1) X

Apparent soil electrical conductivity (2) X

Site management
Current and past cropping system and fertility

management history (3)

X

Soil samples
Background soil fertility (4) X

Nitrate-N (4) X X O X O X

Ammonium-N (4) X

Potential mineralizable N (5) X X

Soil respiration (6) X X

Plant samples
Active optical canopy reflectance (7) X

Biomass (8) X O X O X

N concentration (8) X O X O X

Grain samples
Yield (8) X

N concentration (8) X

Economic optimal N rates (9) X

Weather
Photosynthetically active radiation (10) [ ]

Temperature (10) [ ]

Precipitation (10) [ ]

Irrigation (11) [ ]

Like most research, a few sites encountered various

weather-related problems which dramatically affected corn

response to N fertilization. Major issues were noted within the

dataset and separately in a summary document. Those inter-

ested in using these data for further analysis are advised to

familiarize themselves with these issues and are encouraged

to consider working with authors that have first-hand knowl-

edge of the study. The most prominent issues are listed here:

∙ A 2015 Nebraska site showed a limited response to N which

was believed to result from the previous soybean [Glycine
max (L.) Merr.] crop being severely damaged from hail,

resulting in grain left on the soil—which was a source of

mineralizable N.

∙ Intensive precipitation events caused ponding with sub-

stantial N lost from the 2015 Missouri sites and extensive

anoxic plant stress from the anaerobic conditions in the root

zone.

∙ An errant 45 kg N ha−1 was applied on all treatments

on a 2016 North Dakota site. For some analyses, adjust-

ments taking this error into account were done (e.g.,

EONR).

∙ A high wind event late in the vegetative growth develop-

ment stages resulted in lodging at one of the 2016 Iowa

sites for all treatments, but especially affected treatments

that received high N rates at planting.

5 FUTURE USE OF THIS DATASET

While there were considerable investigations with this dataset

and documented through publications, other objectives could

be explored. For example, these data could be used for validat-

ing or developing simulation models, relating remote sensing

satellite imagery to plant growth and N need, or evaluating

how soil sensing measurements relate to N management. As
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T A B L E 4 List of published journal articles and theses using this dataset with their major objectives and key findings

Number Citation Objectives and main findings
1 Bandura, 2017 Objective: Evaluate the effect of N application timing on EONR, N use efficiency, profitability,

and residual soil nitrate. Also determine the residual soil nitrate and N use efficiency values at

economic optimal nitrogen rates (EONR).

Key results: Differences in EONR as a result of N application timings were most prominent with

contrasting soil drainage classes, texture, and organic matter. Nitrogen application timings had

the greatest influence on when N was lost but had less influence on plant N uptake and N use

efficiency. Achieving a single N use efficacy value for all production systems is not plausible.

Applying N rates at EONR did not increase the potential risk of N loss to the environment.

2 Bean et al., 2018b Objective: Evaluate across the U.S. Midwest Corn Belt region the performance of three locally

derived active optical reflectance sensor algorithms for making in-season corn N fertilizer

recommendations.

Key results: Locally derived algorithms performed poorly on a regional scale. Farmers should use

locally derived algorithms or new regional algorithms should be developed using regional based

data.

3 Qin et al., 2018 Objective: Develop machine learning models to predict EONR at planting and for split application

timings.

Key results: Machine learning models found soil hydrological features useful for predicting EONR

(R2 ≤ .60). Additional model improvements could occur when better estimates of in-season soil

hydrological status, genetic data, and management information are used as predictors.

4 Bean et al., 2018a Objective: Determine if soil and weather measurements could be used with active optical

reflectance sensors to improve in-season N recommendations.

Key results: Active optical reflectance sensor algorithms improved (r2 of .14–.43) when soil and

precipitation-based variables were included—showing the importance of considering

site-specific soil and weather measurements in N management decisions.

5 Yost et al., 2018 Objective: Determine if N recommendations based on the Haney Soil Health Test or any of the

test’s components relate to EONR.

Key results: The Haney Soil Health Test related poorly to EONR. Of the components in the Haney

Soil Health Test, soil health score and the Solvita carbon dioxide-burst explained the most

variability related to EONR.

6 Shafer, 2019 Objective: Evaluate the accuracy and variability of corn internal N efficiency values (i.e., the

amount of grain dry matter produced per unit of N at physiological maturity).

Key results: The internal N efficiency value (often used in yield-based N recommendations)

varied considerably, was not related to EONR, and was difficult to predict—contributing to the

inaccuracy of yield-goal based N recommendations.

7 Clark et al., 2019a Objective: Evaluate using an anaerobic potentially mineralizable N test with additional variables

(i.e., sampling timings, N fertilizer rates, incubation lengths, soil texture, and initial ammonia

values) for predicting EONR.

Key results: The anaerobic potentially mineralizable N poorly predicted EONR (r2 ≤ .08) even

with improvements from partitioning soils by texture and including initial soil ammonium (r2 ≤

.33). This mineralization test does not improve N management compared to already established

N rate recommendation tools.

8 Clark et al., 2019b Objective: Determine the effect of soil and weather information on predicting anaerobic

potentially mineralizable N.

Key results: Measurements of soil, weather, and their interactions were good predictors of

potentially mineralizable N (R2 ≤ .69). Using these measurements as surrogates to

mineralization tests could help with fertilizer rate guidelines and not require additional

laboratory tests.

9 Ransom et al., 2019 Objective: Compare statistical and machine learning algorithms for selecting and incorporating

soil and weather variables into N recommendation tools.

Key results: Machine learning algorithms helped select important variables for adjusting N

recommendation tools even with a minimal number of observations. Further consideration

should be given to using machine learning algorithms for developing or improving N

management strategies.

(Continues)
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T A B L E 4 (Continued)

Number Citation Objectives and main findings
10 Ransom et al., 2020 Objective: Evaluate the performance of publicly available N recommendation tools across for

prescribing N for planting and split fertilizer applications; and their economic and

environmental effects.

Key results: Of the 31 N rate decision tools tested, no one tool was universally reliable across the

U.S. Midwest, but several tools that included soil nitrate tests were among the top performers.

The implication of this outcome is that a generalized N recommendation tool may not be

possible and that N recommendation tools should be developed based on smaller regions, unless

more dynamic variables (e.g., weather) are to be included.

11 Clark et al., 2020a Objective: Determine the effect of N fertilizer timing on soil nitrate, plant N uptake, and corn

grain yield. Determine under what soil and weather conditions single- or split-N applications

should be used to optimize corn production and minimize potential N loss.

Key results: Split N applications resulted in similar soil nitrate, plant N uptake, and con grain

yield as a single N application with noticeable exceptions based on soil (e.g., soils with high

propensity for N loss, or soils that support high N mineralization and improved nutrient and

water retentions) and weather measurements (e.g., uniform precipitation around the sidedress

timing).

12 Clark et al., 2020b Objective: Evaluate the effect of soil sampling timing, N fertilization, and incubation length on

anaerobic potentially mineralizable N.

Key results: Anaerobic potentially mineralizable N was sensitive to soil properties, weather,

sampling time (pre-plant vs. in-season), N fertilization (high vs. low), and incubation period.

Therefore, if used for N management, a common protocol should be established.

13 Clark et al., 2020c Objective: Identify the predictability of relative yield and the frequency of over- and

under-applying N fertilizer with pre-plant and pre sidedress nitrate tests in conjunction with

potentially mineralizable N.

Key results: Including an estimate of mineralizable N with other soil N tests marginally improved

the predictability of relative yield (R2 increase up to .10). This marginal improvement was not

enough to promote the potentially mineralizable N test for predicting N fertilization needs.

14 Clark et al., 2020d Objective: Evaluate the pre-plant and pre-sidedress nitrate tests as predictors of grain yield, N

uptake, and EONR when adjusted by soil sampling depth, soil texture, temperature, and

potentially mineralizable N from different sampling times and N fertilization rates.

Key results: Grain yield, N uptake, and EONR were best predicted using the pre-sidedress nitrate

test instead of the pre-plant nitrate test. Including mineralization estimates with nitrate tests only

marginally improved predictions of grain yield, N uptake, and EONR and, therefore, is not

suggested as a method for improving N fertilizer management.

15 Bean et al., 2020 Objective: Assess the relationship of soil respiration to EONR.

Key results: Across all site-years, soil respiration was moderately related to EONR (r2 = .21).

When analyzed by year, the relationship improved in 2016 (r2 = .50) but was poorly related in

the other 2 yr (r2
< .20). Soil respiration is an inconsistent stand-a-lone predictor of corn N need

but has the potential to improve estimations of EONR when coupled with other variables or N

recommendation tools.

16 Ransom et al., 2021 Objective: Improve publicly available N recommendation tools by integrating soil and weather

information.

Key results: Incorporating site-specific soil and weather information into N recommendation tools

is a viable approach for improving regional corn N recommendations [r2 values increased from

≤ .24 (unadjusted tools) to ≤ .57 (adjusted tools with soil and weather information)].

17 Bean et al., 2021 Objective: Explore, within the framework of hydrologic soil groups and drainage classifications,

which site-specific soil and weather properties best estimated corn N needs.

Key results: Soil hydrologic and drainage classifications with soil and weather measurements

improved corn N need estimations when compared with state-specific N recommendations,

especially when EONR <100 kg N ha−1.
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noted, the authors are receptive to working with those who

want to use this dataset for further analyses.

The major scientific contribution of this dataset would be

to continue to assist public and private institutions with devel-

oping or validating N fertilizer rate recommendation tools.

Nitrogen management remains a major issue and solving it

will be made easier when similar field research from dif-

ferent growing conditions (i.e., weather, soil, and manage-

ment factors) are made available to both public and private

sectors. Similar public-industry partnerships like this should

be encouraged.
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