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Abstract
Determining which corn (Zea mays L.) N fertilizer rate recommendation tools best

predict crop N need would be valuable for maximizing profits and minimizing envi-

ronmental consequences. Simultaneous comparisons of multiple tools across various

environmental conditions have been limited. The objectives of this research were

to evaluate the performance of publicly-available N fertilizer recommendation tools

across diverse soil and weather conditions for: (i) prescribing N rates for planting

and split-fertilizer applications, and (ii) economic and environmental effects. Corn

N-response trials using standardized methods were conducted at 49 sites, spanning

eight US Midwest states and three growing seasons. Nitrogen applications included

eight rates in 45 kg N ha−1 increments all at-planting and matching rates with

45 kg N ha−1 at-planting plus at the V9 development stage. Tool performances were

compared to the economically optimal N rate (EONR). Over this large geographic

region, only 10 of 31 recommendation tools (mainly soil nitrate tests) produced N

rate recommendations that weakly correlated to EONR (P ≤ .10; r2 ≤ .20). With

other metrics of performance, the Maximum Return to N (MRTN) soil nitrate tests,

and canopy reflectance sensing came close to matching EONR. Economically, all

tools but the Maize-N crop growth model had similar returns compared to EONR.

Environmentally, yield goal based tools resulted in the highest environmental costs.

Results show that no tool was universally reliable over this study’s diverse growing

environments, suggesting that additional tool development is needed to better

represent N inputs and crop utilization at a larger regional level.

Abbreviations: cEONR, close to EONR; EONR, economically optimal nitrogen rate; LSNT, late spring soil nitrate test; MRTN, maximum return to

nitrogen; NDRE, normalized difference red-edge index; NR, nitrogen rate; PPNT, pre-plant soil nitrate test; PSNT, pre-sidedress soil nitrate test; SI,

sufficiency index; YG, yield goal.
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1 INTRODUCTION

Nitrogen fertilizer inputs are generally necessary for optimiz-

ing corn (Zea mays L.) yields, but N is the most challenging

plant nutrient to manage optimally. The difficulty arises from

biophysical complexity driving soil N mineralization, crop

uptake, and N loss (Lory and Scharf, 2003; Meisinger, 1984).

The complexity is magnified as N transport and transforma-

tion processes vary considerably within and between fields

because of spatially variable soil properties and temporally

variable weather (Tremblay et al., 2012). Soil variability

affecting the N cycle arises from both short- and long-range

spatial differences in properties such as texture, organic

matter, plant-available water, topography, with a major effect

on water redistribution within the landscape, and microbial

populations (Dinnes et al., 2002; Parkin, 1987; Scharf et al.,

2005; Sørensen & Jensen, 1995; Zhu, Schmidt, Lin, &

Sripada, 2009). This complexity challenges farmers to make

accurate N fertilizer rate decisions, both between and within

fields. Since N fertilizer is typically inexpensive relative to the

magnitude of crop N response, farmers most easily deal with

this complexity and uncertainty by erring on the side of over-

application (Vanotti & Bundy, 1994). Over applying decreases

profitability and increases the potential for N loss that con-

tributes to environmental degradation (Maharjan, Venterea,

& Rosen, 2014; van Es, Kay, Melkonian, & Sogbedji, 2007).

Multiple N fertilizer rate decision tools have been devel-

oped in an attempt to help farmers make better N management

decisions. An extensive review of the history, pros and cons,

and current use of many corn N recommendation tools used

within the United States has recently been published by Mor-

ris et al. (2017). Many of those tools are also included in our

investigation (Table 1): (i) mass balance calculations based

on an expected yield or yield goal (YG), (ii) preplant soil

nitrate test (PPNT), (iii) pre-sidedress soil nitrate test (PSNT)

and late-spring soil nitrate test (LSNT), (iv) maximum return

to N (MRTN) calculation, (v) Maize-N crop growth model,

and (vi) canopy reflectance sensing.

One of the first methods developed in the early 1970s

for estimating corn N fertilizer rates was the mass balance

approach. Based on information about the N cycle and

plant uptake, a value of 0.55 kg ha−1 of added N was

estimated to produce 25 kg ha−1 of corn grain (1.2 lbs

N bu−1; Stanford, 1973; Table 2). This value multiplied

by a multi-year expected yield or YG produced the rate

recommendation. Limitations of this method have been

documented showing that the YG and actual yield do not

correlate well with economically optimal N rate (EONR) or

optimal N rates (Blackmer, Voss, & Mallarino, 1997; Fox

& Piekielek, 1995; Kachanoski & Fairchild, 1996; Lory &

Scharf, 2003; Vanotti & Bundy, 1994). Because of these

limitations, the YG approach has been discontinued in humid

areas where year-to-year weather variations make it difficult

Core Ideas
• A comparison of 31 corn nitrogen recommenda-

tion tools across the US Midwest.

• No one nitrogen recommendation tool was univer-

sally reliable across the US Midwest.

• Across all metrics of success, several of the soil

nitrate tests performed the best.

• Relative to economically optimal N rate, all tools

but Maize-N had similar profitable returns.

• Yield-goal based tools resulting in the highest

environmental costs.

to predict N availability (i.e., amount of N supplied to the

plants through mineralization of organic N and N loss in the

environment; Lory & Scharf, 2003). The weakness of YG

recommendations has been attributed to the variability of N

use efficiency arising from different hybrid or fertilizer types,

variable soil N supply, and poor estimation of YG (Lory &

Scharf, 2003; Vanotti & Bundy, 1994). To account for these

limitations, many state N fertilizer recommendations were

modified merely by adjusting the coefficients within the

YG equation. Even with these modifications, year-to-year

soil and weather variability produced an inconsistent perfor-

mance for making N fertilizer recommendation with this tool.

Therefore, most land-grant universities within the US Corn

Belt region discontinued YG N rate recommendations in the

1990s and early 2000s (Morris et al., 2017). Regardless, this

tool is still widely used by growers due to simplicity and

perception.

Other tools have emerged specifically to address soil N

contributions. The PPNT tool measures soil NO3–N prior

to planting as a credit to the N recommendation (Table 2).

This test effectively reduces over-application of N fertilizer

in fields that have large residual NO3–N concentrations, such

as excessively manured fields (Bundy & Andraski, 1995),

or fields following drought-like conditions with significant

amounts of unused N carried over from previous crops

(Meisinger, Schepers, & Raun, 2008). Summarizing, the

PPNT tool performs best in medium- to fine-textured soils

where the previous year’s precipitation was at or below

average and when excessive N was applied (Gelderman

& Beegle, 1998; Schröder, Neeteson, Oenema, & Struik,

2000). In contrast, this tool is less useful when excessive

rainfall after sampling causes either extended periods of

ponding (notably on fine-textured soils) or leaching (notably

on coarse-textured soils) promoting environmental N loss

(van Es et al., 2007). Since sampling occurs prior to planting,

PPNT does not account for N mineralization during the

growing season, which could result in overfertilization if

in-season mineralization is high (Schröder et al., 2000).



472 RANSOM ET AL.

T A B L E 1 Strengths and weaknesses of N fertilizer recommendation tools included in this investigation (YG, yield goal; EONR, economically

optimal nitrogen rate; PPNT, pre-plant nitrate test; PSNT, pre-sidedress nitrate test; LSNT, late spring nitrate test; MRTN, Maximum Return to N)

Tools Pros Cons Citations
Yield goal A mass balance approach that is easily

calculated. Nitrogen

recommendations can be adjusted to

account for soil N using credits

(previous crop and residual soil

NO3–N measurements).

Poor relationships were observed between

YG calculations and EONR due to the

uncertainty of final yields,

management, previous crop effects, soil

N supply, corn and fertilizer prices, and

fertilizer use efficiency. Additionally,

this method does not account for

within-field variability due to soil and

water properties.

Stanford, 1973; Lory and

Scharf, 2003; Sawyer

et al., 2006

PPNT Soil NO3–N levels can be assessed for

residual N and N supplied by

manure that could be available for

plant use. Can be used as an

adjustment to other N

recommendations. Sampling can be

taken during a lull in seasonal work.

Not a useful tool in more humid regions

due to N loss during wet springs.

Inaccurate test results due to varying

weather affecting N mineralization

rates. Additional cost and labor is

required. Requires deep sampling,

down to 0.60 m or deeper.

Magdoff, Ross, & Amadon,

1984; Bundy and

Andraski, 1995; Schröder

et al., 2000; Lory and

Scharf, 2003; van Es

et al., 2007

PSNT and LSNT Has potential for better accounting

than PPNT of N loss from leaching

or denitrification and N inputs from

mineralization. Successful at

identifying N-sufficient sites.

Additional in-season sampling required

and limited by wet conditions and short

laboratory turn around. Limited by N

loss due to temperature and rainfall

immediately before and after sampling.

Does not account for within-field

spatial variability that results from

variable soil and water interactions.

Magdoff et al., 1984; Fox

et al., 1989; Magdoff,

1991; Meisinger et al.,

1992; Andraski and

Bundy, 2002; Sawyer and

Mallarino, 2017

MRTN Nitrogen response trials are used to

determine N rates. Data are easily

updated with additional

experimental N-rate trials.

Calculations reflect current

economic status by including the

price of fertilizer and corn. Provides

a range within $1.00 that farmers

can use, depending on their risk

level.

Does not address the issue of the

year-to-year temperature or rainfall

variability. Cannot predict site-specific

N requirements and unlikely to

accurately estimate EONR for each

specific environment. Does not account

for within-field spatial variability due

to soil and water properties.

Nafziger, Sawyer, & Hoeft,

2004; Sawyer et al.,

2006; van Es et al., 2007

Crop growth

models

Estimates possible weather scenarios

during a growing season to

minimize N loss and predict N

supplied by the soil. Non-static N

recommendation based on the

genetic, environmental, and

management conditions.

Initial inputs require time and money.

Models may need to be calibrated to

specific climate and soil conditions.

Many parameters are estimated or

generalized.

van Es et al., 2007;

Setiyono et al., 2011;

Sawyer, 2013

Canopy

reflectance

sensing

Nitrogen recommendations can be

adjusted for plant response to soil

and water variability within fields.

Provides a real-time assessment of

corn N status during the season.

Various algorithms allow for

adaptability for different conditions.

Works well with high soil variability

or in scenarios of uncertain N.

Expensive upfront costs for sensors and

applicators. Depending on sensor type,

a high-N area or virtual reference strip

is required to normalize reflectance

values. Hard to “see” slight N

deficiency. Confounded by other plant

stresses (e.g., sulfur). The amount of

crop canopy closure affects readings,

excessive soil exposure resulting in a

diluted index value, and a closed

canopy can result in saturated

measurements depending on the

reflectance wavebands being used.

Shanahan et al., 2008;

Holland and Schepers,

2010; Kitchen et al.,

2010; Franzen et al.,

2016
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T A B L E 2 Methods and implementation costs associated with corn N recommendation tools included in this investigation. The implementation

cost and required soil analysis are reported in parenthesis. Tools include yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test

(PSNT), late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1 applied at-planting, Maximum Return to N (MRTN), Maize-N crop growth model,

and canopy reflectance sensing using the Holland and Schepers algorithm

Tools Approach and calculation Reference
Implementation
costsc,d,e

General YG Calculation using an expected yield and a soybean credit of 45 kg

N ha−1.

𝑁rec = 1.12(1.2YG −𝑁credit )a

Stanford, 1973 Application

IN YG Calculation using an expected yield and a soybean credit of 34 kg

N ha−1.

𝑁rec = 1.12(−27 + 1.36YG −𝑁credit )a

Vitosh, Johnson, and

Mengel, 1996

Application

MN YG Calculation using an expected yield, organic matter (OM) content,

and soybean credit of 22 to 45 kg N ha−1. Soils are grouped into

either low or high OM content with 30 g OM kg−1 soil being the

threshold. (Table 1 of Schmitt, Randall, & Rehm, 2002)

Schmitt et al., 2002 Application

MO YG Calculation using an expected yield, plant population, and N

supplying power of the soil based on OM and cation exchange

capacity (CEC), and a soybean credit of 34 kg N ha−1.

𝑁rec = 1.12
[
0.9YG + 4(plant population)
−𝑁OM−credit −𝑁credit

]
a

Brown et al., 2004 Application + Sample

Collection &

Analysis ($2.00 ha−1;

OM & CEC)

NE YG Calculation using an expected yield, measured or estimated

inorganic soil NO3–N(0–1.20 m), measured or estimated N

supplied from OM, and a soybean credit of 39 or 50 kg N ha−1,

for sandy and non-sandy soils, respectively. An estimated

amount of N applied through irrigation is also credited. The N

recommendation rate is adjusted for soil texture classification

and time of N fertilizer application.

𝑁rec = 1.12
[
35 + 1.2YG − 8NO3−N(0−1.2m)
−0.14YG(OM −𝑁credit )Timeadj⋅Priceadj

]
a

Shapiro et al., 2008 Application + Sample

Collection &

Analysis ($2.50 ha−1;

OM & NO3–N)

State-specific YG Sites within each state only used their respective state’s YG

method. The WI sites were excluded as no YG tool was available

for WI. Yield goal tools not already listed are as follows:

IAYG = 1.12(1.22YG)
or IAYG = 1.12(0.9YG)a for fine-silty Hapludolls up to 56 kg N

ha−1 soybean credit

IL YG used the General YG, and the ND YG used the ND PPNT.

Voss and Killorn, 1988;

Fernández et al., 2009

Application + Sample

Collection &

Analysis ($2.50 ha−1;

OM & NO3–N)

General PPNT The calculation is the measured soil NO3–N(0–0.60 m) concentration

(converted to mass) subtracted from MRTN or YGb.

𝑁rec = 1.12(MRTN or YG − 0.60NO3−N(0−0.6m))a,b

Updated from Bundy

et al., 1999

Application + Sample

Collection & Analysis

($1.25 ha−1; NO3–N)

MN PPNT The calculation is 60% of the measured soil NO3–N(0–0.60 m)

concentration (converted to mass) subtracted from MRTN or

YGb.

𝑁rec = 1.12(MRTN or YG − 0.60NO3−N(0−0.6m))a,b

Kaiser et al., 2016 Application + Sample

Collection & Analysis

($1.25 ha−1; NO3–N)

ND PPNT The calculation is the measured soil NO3–N(0–0.60 m) concentration

(converted to mass) subtracted from the ND YG calculation and

using a soybean credit of 45 kg N ha−1.

𝑁rec = 1.12(1.2YG − NO3−N(0−0.60m) −𝑁credit )a

Franzen, 2010 Application + Sample

Collection & Analysis

($1.25 ha−1; NO3–N)

WI PPNT Calculation using the measured soil NO3–N concentration

(converted to mass) in the top 0.90 m (sampled to 0.60 m and

last 0.30 m is estimated; alternatively sampled to 0.90 m with no

estimation) subtracted from MRTN or YGb. To account for

background soil, NO3–N 56 kg N ha−1 is subtracted from the

total profile NO3–N value. It is not recommended on sand and

loamy sand soils.

𝑁rec = 1.12[MRTN or YG − (ΣNO3−N(0−0.90m) − 50)]a,b

No adjustments made if the sum of NO3–N is below 56 kg N ha−1.

Laboski and Peters,

2012

Application + Sample

Collection & Analysis

($1.25 ha−1; NO3–N)

(Continues)
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T A B L E 2 (Continued)

Tools Approach and calculation Reference
Implementation
costsc,d,e

General PSNT MRTN or YG recommendation is adjusted proportionally based on

if soil NO3–N(0–0.30 m) concentration is below 25 mg kg−1 and

above 10 mg kg−1. The full recommended rate is applied if the

soil NO3–N(0– 0.30 m) concentration is below 10 mg kg−1 and no

additional N is applied if it is above 25 mg kg−1.

Fernández et al., 2009 Application + Sample

Collection & Analysis

($0.75 ha−1; NO3–N)

LSNT Calculated using measured soil NO3–N(0– 0.30 m) concentration and

a critical limit of 25 mg kg−1. To determine the N

recommendation when NO3–N(0–0.30 m) is below the critical

limit, the difference between the critical limit and the measured

NO3–N(0–0.30 m) concentration is multiplied by 8. The critical

limit is reduced by 3 to 5 mg kg−1 when spring precipitation is

20% above normal amounts.

𝑁rec = 1.12(25mg kg−1−NO3−N(0−0.30m)mg kg−1)8a

Sawyer and Mallarino,

2017

Application + Sample

Collection & Analysis

($0.75 ha−1; NO3–N)

IN PSNT Calculation using YG and soil NO3–N(0–0.30 m) concentration

(Table 2 of Brouder & Mengel, 2003).

Brouder and Mengel,

2003

Application + Sample

Collection & Analysis

($0.75 ha−1; NO3–N)

WI PSNT A soil N credit is calculated based on soil NO3–N(0–0.30 m)

concentration and on the yield potential of the soil. For all soils,

no N application is recommended if the measured soil

NO3–N(0–0.30 m) concentration is above 21 mg kg−1 and no N

credits are applied if the soil NO3–N(0–0.30 m) concentration is

below 10 mg kg−1. It is not recommended on sand and loamy

sand soils. (Table 6.6 of Laboski & Peters, 2012)

Laboski and Peters,

2012

Application + Sample

Collection & Analysis

($0.75 ha−1; NO3–N)

MRTN Response models accumulated from many N response trials

spanning multiple years. From each trial, yield response is

modeled as a function of N fertilizer rate. For selected state,

substate region, or soil yield potential, the N recommendation is

determined from corresponding accumulated response trials,

adjusted for the price of corn and N fertilizer.

Sawyer et al., 2006 Application

Maize-N Computer simulation of soil and crop processes to account for N

uptake and removal from the root zone. Uses information based

on soil, crop hybrid, management, economic inputs, and

historical and daily weather.

Setiyono et al., 2011 Application + Sample

Collection &

Analysis ($2.75 ha−1;

OM, NO3–N, pH, &

Bulk Density)

Canopy

reflectance

sensing

Nitrogen recommendations are based on reflectance wavelengths

measured with proximal sensors.

Holland and Schepers,

2010

Custom Applicationf

($1.40 ha−1 more than

split application cost)

a1.12 was used to convert N recommendations from lbs N ac−1 to kg N ha−1.
bMRTN values were used except when states did not recommend MRTN, in which case that state’s yield goal calculation was used.
cApplication costs: at-planting ($13.70 ha−1) and split ($13.70 ha−1 + $28.40 ha−1) applications estimated from Iowa Farm Custom Rate Survey using the average reported

cost of applying dry bulk fertilizer (Plastina et al., 2017)
dSample collection costs: $1.90 ha−1, $2.80 ha−1, and $3.80 ha−1 were used for shallow (0–0.30 m), medium (0–0.60 m), and deep (0–0.90 m) soil samples, respectively.

Costs were based on the average reported wages ($15.25 h−1) for operating machinery from the Iowa Farm Rate Survey (Plastina et al., 2017) and assuming a sampling

rate of 8, 6, and 4 ha−1 for shallow, medium, and deep soil samples, respectively.
eSample analysis costs: The cost associated with analyzing samples was determined by taking the average of five soil-testing laboratories throughout the US Midwest

that were either land grant or commercially operated (Agvise Laboratories, Midwest Labs, North Dakota State University, University of Missouri, and University of

Wisconsin-Madison). The cost increased with each additional depth analyzed.
fThe custom application cost was estimated using the reported average sidedress liquid fertilizer application rate ($28.40 ha−1) from the Iowa Farm Rate Survey (Plastina

et al., 2017). It was assumed that 50% of the sidedress application cost comes from machinery upkeep and acquisition, and 50% from labor and fuel (R. Massey, personal

communication, 2017). The cost of using canopy reflectance sensors was calculated as 10% ($1.40 ha−1) of the base machinery upkeep and acquisition costs resulting in

a total sidedress application cost of $29.90 ha−1.
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A tool similar to the PPNT, but also incorporates early

season mineralization, is the PSNT or LSNT (Table 1). Soil

sampling for the PSNT or LSNT tool is delayed 4 to 6 wk

after planting, around the V5 corn developmental stage.

Effectiveness of this tool has been well documented on corn

fields following alfalfa or with manure applications; under

these scenarios, soil test results for PSNT often showed an

increase in NO3–N compared to the PPNT (Bundy, Walters,

& Olness, 1999). However, issues related to soil sampling

when fields often are wet from spring rainfall, nitrate move-

ment below the sample depth, as well as the time required

for sampling and laboratory analysis have hindered PSNT

adoption (Schmidt, Dellinger, & Beegle, 2009; Table 1).

The MRTN tool relies on an extensive database of ongoing

field research trials where corn response to applied N rates

is measured, with regression modeling of the individual

response trials (Sawyer et al., 2006). This free web-based

tool (Corn Nitrogen Rate Calculator, http://cnrc.agron.

iastate.edu/; accessed 5 Mar. 2017) determines an N recom-

mendation by grouping and analyzing across sets of response

trial models for user-identified regions, such as a state or

sub-region within a state, and crop rotation. Trials from

continuous corn are distinguished from trials where corn

follows soybean (Glycine max). The economic return to N,

that is, the MRTN rate and most profitable range adjusted by

user-defined fertilizer and corn prices, provides the calculated

N rate or range of N rates used as the N recommendation. To

account for changes in climate and ongoing improved corn

hybrids, the MRTN database is updated with recent years’

results and older years are excluded. The MRTN recommen-

dation can also be credited for manure applications or PPNT

values (Laboski & Peters, 2012). Because the data used for

the MRTN spans many years, recommendations for any given

field will generally be consistent from 1 yr to the next, with

some adjustment as the underlying database changes or prices

fluctuate. Therefore, the MRTN tool provides rate suggestions

that apply for an expected multi-year perspective, not a single

year. This is a weakness if a yearly adjusted recommendation

is desired since the tool does not account for yearly site-

specific weather or soil properties that are unique to the loca-

tion for which the N recommendation is being made (Table 1).

With inexpensive data storage and management with cloud

computing services, crop growth models that take all the

major processes of the N cycle into account have been devel-

oped recently to produce N recommendations. These models

use management inputs and site-specific soil and weather

information to estimate soil N transformations and losses and

plant physiological processes. Several crop growth models

currently being used in the North American and the US

Midwest include Maize-N (Setiyono et al., 2011), Adapt-N

(Melkonian, van Es, DeGaetano, & Joseph, 2008), Granular

Agronomy (https://granular.ag/agronomy; accessed 17 Dec.

2019), FieldView Pro (https://www.climate.com; accessed 17

Dec. 2019), and Effigis’ FieldApex (https://www.fieldapex.

com/; accessed 17 Dec. 2019). This approach for N recom-

mendations allows for a continual model refinement based

on additional field trails (He, Wang, Wang, & Robertson,

2017). A disadvantage of these tools is the costs required to

obtain and incorporate new data into the model and software

maintenance. For commercial N model services, there may

also be a consultant provided with the service built into the

fee. These costs generally will be passed on to farmers using

it (Morris et al., 2017).

Light reflectance from crop leaves can be used to gauge

crop N status and make in-season N management decisions

(Moran, Inoue, & Barnes, 1997; Mulla, 2013; Scharf and

Lory, 2002, 2009; Shanahan et al., 2001; Schepers, Francis,

Vigil, & Below, 1992; Sripada, Heiniger, White, & Meijer,

2006). Included within this diagnostic method is proximal

or near-plant active-optical canopy-reflectance sensing for

corn N management (Dellinger, Schmidt, & Beegle, 2008;

Franzen, Kitchen, Holland, Schepers, & Raun, 2016; Holland

& Schepers, 2010; Kitchen et al., 2010). Active-optical

canopy-reflectance sensing using visible and near-infrared

wavelengths can be used to quantify the crop’s N status, as

a function of the plant’s biomass and color (Kitchen et al.,

2010). This is accomplished using vegetation indices such as

the normalized difference vegetation index (NDVI) or the nor-

malized difference red edge index (NDRE). These indices are

employed in algorithms for N recommendations (Dellinger

et al., 2008; Franzen et al., 2016; Holland & Schepers, 2013;

Raun et al., 2005; Solari, Shanahan, Ferguson, Schepers, &

Gitelson, 2008). In contrast to the previously described tools,

canopy sensing allows for a short-scale (1–5 m) plant N

assessment with a resulting variable N rate recommendation

(Raun et al., 2002). Drawbacks of canopy sensing include

acquisition cost, the requirement for in-season N application,

and the challenges of a representative N rich reference, even

when obtained as a virtual N rich reference (Holland &

Schepers, 2013).

Though corn N rate recommendation tools were exten-

sively described and contrasted in the review of Morris et al.

(2017), limited research has been done simultaneously to

compare the performance of these tools over a wide range of

soil and weather. Previous studies comparing these tools usu-

ally focused on a small geographical area (e.g., within a state)

and/or included only a limited set of decisions tools (e.g., a

tool compared to the farmer’s typical N rate). Furthermore,

these studies often compared the tool’s performance relative

to another tool, not to a measured EONR or optimal N rate;

therefore, it was not possible to quantify the amount of N that

was under- or over-recommended. Thus, there is a need for

tools to be compared side-by-side with a standard optimal

N rate, over a wide range of soil and weather environments.

Such comparisons would provide measures of accuracy and

reliability of each of these decision tools, and a better general

http://cnrc.agron.iastate.edu/
http://cnrc.agron.iastate.edu/
https://granular.ag/agronomy
https://www.climate.com
https://www.fieldapex.com/
https://www.fieldapex.com/
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understanding of the usefulness of N management tools in

the US Corn Belt.

The objectives of this research were to evaluate the per-

formance of publicly-available N fertilizer recommendation

tools across diverse soil and weather conditions for (i)

prescribing N for planting and split fertilizer applications,

and (ii) evaluating their economic and environmental effects.

2 MATERIALS AND METHODS

2.1 Experimental design

This research was conducted as a part of a public-private

collaboration between Corteva Agrisciences and eight US

Midwest universities (Iowa State University, University of

Illinois Urbana-Champaign, University of Minnesota, Uni-

versity of Missouri, North Dakota State University, Purdue

University, University of Nebraska-Lincoln, and University of

Wisconsin-Madison). Each state conducted research on two

sites each year from 2014 to 2016, with a third site in Missouri

in 2016, totaling 49 site-years. About half the sites were on

farmers’ fields and the other half on University research sta-

tions. All states followed a similar protocol for plot research

implementation including site selection, weather data collec-

tion, soil and plant sample timing and collection methodology,

N application timing, N source, and N rates, with specific

details described in Kitchen et al. (2017). The average plot

dimension was 3-m wide and 15-m long. Treatments included

ammonium nitrate fertilizer rates between 0 and 315 kg N

ha−1 in 45 kg N ha−1 increments applied either all at-planting

or split, where 45 kg N ha−1 was surface broadcast at-planting

and the remaining fertilizer N broadcast at the V9 corn devel-

opmental stage (Abendroth, Elmore, Boyer, & Marlay, 2011).

2.2 Determining the economically optimal
nitrogen rate

For this analysis, all tools were evaluated against EONR.

Only a few tools (e.g., MRTN, Nebraska YG, and crop growth

models) have been developed with the inclusion of fertilizer

and grain prices in their N recommendation that warrants

comparison with EONR. All other tools were historically

developed to maximize or reach a target yield, and thus would

be slightly handicapped when comparing to EONR. Still, all

tools were compared against EONR rather than the optimal N

rate, as EONR is more meaningful to farmers for maximizing

their profits, and currently is the more common metric for tool

comparison (Kachanoski & Fairchild, 1996; Lory & Scharf,

2003; Sawyer and Mallarino, 2017; Vanotti & Bundy, 1994).

Grain yield in response to N fertilizer treatments was used to

calculate the EONR on a site level as described in Kitchen

et al. (2017), using proven quadratic or quadratic-plateau

modeling methods (Cerrato & Blackmer, 1990; Scharf et al.,

2005). The EONR values were calculated for all N fertilizer

applied at-planting (hereafter referred to as “at-planting”),

and N split applied between an at-planting and a sidedress

applications (hereafter referred to as “split”). The cost of N

was $0.88 kg N−1, and the price of corn was $0.158 kg grain−1

(equivalent to $0.40 lbs N−1 and $4.00 bu−1). The EONR

was set to not exceed the maximum N rate (315 kg N ha−1).

Five of the seven irrigated sites had additional N applied

through irrigation >12 kg N ha−1, and this was included in

determining the EONR of these sites. For 19 of the 49 sites,

the at-planting and split EONR values were found to be the

same statistically (P ≤ .05) and within $2.50 ha−1 of each

other. Thus for these sites, the EONR used was the average

of the two timings. This approach was also consistent with a

previous separate analysis of this dataset (Bandura, 2017).

2.3 Nitrogen recommendation tools evaluated

2.3.1 Farmer’s N rate and yield goal

The farmer’s historical N rate was the rate the farmer or

research station typically applied to the field site under ideal

corn-growing conditions. The information the farmer or

station manager used to base this N rate was not recorded,

but it was assumed to be based on crop response to N of the

site over multiple years, and not necessarily on any specific

decision tool.

Six YG tools were included in this evaluation as outlined

in Table 2. These included a generic YG tool (General YG)

based on original work of Stanford (1973), four contrasting

US state-level YG tools (Indiana [IN YG], Minnesota [MN

YG], Missouri [MO YG], and Nebraska [NE YG]), and the

state-specific YG (State-Specific YG) tool where sites within

each state only used their respective state’s YG method.

Other states in the Midwest had a documented YG method

that was the same or nearly identical to previously mentioned

states, and therefore these were excluded as individual tools

in this evaluation, but they were included as a part of the

State-Specific YG tool (see Table 2 for details). An exception

was Wisconsin because it had no published YG approach, so

it was excluded from the State-Specific YG evaluation. All

YG methods follow a similar mass balance approach estab-

lished by Stanford (1973), but each was uniquely modified by

adjusting coefficients within the calculation and incorporating

additional soil and/or management information (Table 2). For

example, the Nebraska YG was adjusted with PPNT values

that were either estimated or measured to a depth of 1.20 m.

Each of these six YG tools was used to determine a corn N

fertilizer recommendation for all 49 sites of this investigation.

All YG tools required an expected yield. The expected

yield for each site was determined using the average of the
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previous 5-yr county corn yields for the respective county the

site was within. The 5-yr average was then adjusted based on

the soil productivity of the predominantly mapped soil of each

site, similar to that done by Laboski and Peters (2012). This

procedure classifies soil productivity as either low, medium,

or high using soil texture, drainage class, depth to bedrock,

available water capacity in the upper 150 cm of soil, average

growing degree days, irrigation, and artificial tile drainage.

The YG of a site was then calculated by increasing the 5-yr

average yield for low, medium, and high soil productivity by

10, 20, or 30%, respectively. This estimated yield value was

used to represent the six different YG tools shown in Table 2.

2.3.2 Soil nitrogen tests

Four distinct PPNT tools were evaluated. They are as follows:

(i) General PPNT, (ii) MN PPNT, (iii) North Dakota (ND)

PPNT, and (iv) WI PPNT (Table 2). Kitchen et al. (2017)

detailed the sampling and NO3–N analysis protocols for

the PPNT tool. Two of the 49 sites did not complete PPNT

sampling, so this tool was evaluated using 47 of the 49 sites.

Four in-season nitrate tests were evaluated, including (i)

General PSNT, (ii) Iowa (IA) LSNT, (iii) IN PSNT, and (iv)

WI PSNT (Table 2). These were tested under two different

conditions. The first used a site average of measured NO3–N

from plots that received 0 kg N ha−1 at-planting. The second

used a site average of measured NO3–N from plots that

received 45 kg N ha−1 at-planting. These are noted as PSNT

or LSNT 0 and PSNT or LSNT 45, respectively. Soil samples

were taken at the V5 ± 1 corn development stage to a depth

of 0.30 m.

2.3.3 Maximum return to nitrogen

The MRTN recommendation rates were determined by using

values obtained in 2016, as only a few states had updated the

MRTN database during the 3 yr of this project. The MRTN

values for IA, IL, IN, MN, and WI were obtained from

the online Corn N Rate Calculator (cnrc.agron.iastate.edu;

accessed 5 Mar. 2017). The MRTN values for ND were

obtained from the North Dakota Corn Nitrogen Calculator

(www.ndsu.edu/pubweb/soils/corn; accessed 5 Mar. 2017).

The price of corn/N fertilizer ratio used was 10:1. Since

neither MO nor NE currently have a compiled database

supporting the MRTN approach, sites from these states were

excluded from this tool’s evaluation.

2.3.4 Maize-N crop growth model

The Maize-N crop model version 2017.1.0 (Setiyono et al.,

2011) was used to generate an N fertilizer recommendation

for all sites. Required in-season weather data were obtained at

each site using a HOBO (model U30) weather station (Onset,

Bourne, MA). Weather data were subjected to a quality

check and then aggregated into a daily summary of minimum

and maximum temperature, average solar radiation, and

precipitation as explained in Kitchen et al. (2017). Additional

historical weather data was required to generate an N rec-

ommendation. For this, 30 yr of site-specific weather data

were obtained from Corteva Agrisciences using a proprietary

method for interpolating between multiple weather stations

around each site. These weather data mostly came from

the public National Service Storms Lab (NOAA) weather

stations, supplemented with data observed by Corteva Agri-

sciences’ internal weather network (HOBO stations). The

weather data were collected within the acceptable range of 50

to 100 km radius as listed in the Maize-N user guide. Explicit

site information required by the Maize-N crop growth model

included management records (e.g., date of planting, plant

population, average historical yield, tillage operations, and

previous crop) and soil information (e.g., bulk density, %

organic matter, rooting zone depth, soil pH, and soil NO3–N).

2.3.5 Canopy reflectance sensing

Canopy Reflectance measurements were obtained using the

RapidSCAN CS-45 (Holland Scientific, Lincoln, NE) prior to

the split N application (i.e., generally within 2 d of sensing).

For the majority of sites, this was done at the ∼V8 to V10

corn development stage. Measurement details are described

in Kitchen et al. (2017). The Holland and Schepers algorithm

(Holland & Schepers, 2010) was used to calculate an N fertil-

izer recommendation derived from these reflectance measure-

ments. All reflectance measurements were taken from plots

that received 45 kg N ha−1 at-planting and where a sidedress

fertilizer was to be applied. A sufficiency index (SI) was deter-

mined on a site level as the ratio between minimally-fertilized

corn NDRE and a virtual reference “N rich” corn NDRE:

SI = VI45∕VIVR (1)

where VI45 was the vegetative index obtained by averaging

NDRE values from all plots that received 45 kg N ha−1 at-

planting, and VIVR was the vegetative index obtained by aver-

aging all plots’ 95th percentile NDRE values (calculated by

taking VI45 + two standard deviations of measured NDRE

values). The NDRE vegetative index was calculated using

the red-edge (730 nm; RE) and near-infrared (780 nm; NIR)

wavelengths as shown:

NDRE = NIR − RE
NIR + RE

(2)

http://cnrc.agron.iastate.edu
http://www.ndsu.edu/pubweb/soils/corn
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Fertilizer N recommendations were then calculated as

described in Holland and Schepers (2010) as follows:

𝑁rec =
(
MZ

𝑖
⋅𝑁Opt −𝑁PreFert −𝑁CRD +𝑁Comp

)
√

(1 − SI)
ΔSI

(3)

where Nrec is the calculated N fertilizer recommendation;

MZi is a scaling value (0 ≥ MZi ≤ 2) used to adjust the

N recommendation based on areas of high or low yield

performance; NOpt is the base N rate, which is determined by

the farmer; NPreFert is the amount of N already applied prior to

sensing; NCRD is N credits associated with the previous crop,

NO3–N in irrigation water, manure, or residual soil NO3–N;

NComp is an optional compensation factor for growth-limiting

conditions; SI is the sufficiency index, and ΔSI is a value to

define the response range. For this analysis, MZi was left as

the default value of 1.0, Nopt was set as the recorded farmer’s

N rate for each site, and NPreFert = 45 kg N ha−1. With no

supportive information relative to NCRD and NComp, these two

parameters were set to zero for all sites. The recommended

value of 0.30 was used for ΔSI, which provides a response

range for the measured vegetative index value between 0.70

and 1.00.

2.4 Economic assessment of tools

For an economic analysis of each tool, the implementation

costs (e.g., soil sampling, sample analysis, and procurement

costs) and the cost of N fertilizer were subtracted from the

yield revenue at each of the tool’s N recommendation rates

(Table 2). Then each tool’s partial profit was determined

relative to EONR as follows:

Partial Prof it =
[(
GYTool ⋅ $0.158 kg grain−1

)
−
(
𝑁Tool ⋅ $0.88 kg N−1) − IPC

]
−
[(
GYEONR ⋅ $0.158 kg grain−1

)
−
(
EONR ⋅ $0.88 kg N−1)] (4)

where GYTool and GYEONR were the estimated yields

associated with the tool’s N recommendation and EONR,

respectively; NTool was the N rate associated with a tool’s

N recommendation; IPC was the implementation costs. The

price of corn grain and the cost of N fertilizer was fixed at

$0.158 kg grain−1 ($4.00 bu−1) and $0.88 kg N−1 ($0.40 lb

N−1), respectively. Corn grain yields were estimated using

the same N response curves developed to calculate each site’s

EONR value (see Figure 1 for an example). Implementation

costs varied for each of the N recommendation tools based on

the timing of N fertilizer application and the costs associated

F I G U R E 1 An example of response models for one site’s EONR

partial profit and environmental cost evaluation. Shown as a function of

N applied, are values of grain yield and estimated total season N loss

and their respective best-fit models (Table 3). Grain yield is shown as a

quadratic-plateau model (squares and solid line) and N loss as a

quadratic model (open circles and small dash line). The partial profit at

EONR was calculated using the interpolated grain yield from the

best-fit line (for this example, 13.5 Mg ha−1 times $158

Mg−1 = $2133 ha−1). Environmental costs at EONR was calculated by

multiplying the estimated total season N loss by a prevention cost (for

this example, 69 kg NO3–N ha−1 times $2.75 kg−1

NO3–N = $190 ha−1). The partial profit and environmental cost for

each tool were based on model outcomes using their respective N

recommendation. Additional implementation costs associated with

utilizing tools were subtracted from the partial profit (Table 2). Each

assessment was made relative to EONR. Tools that underestimated

EONR (light green) resulted in decreased partial profits but provided an

environmental credit. Tools that overestimated EONR (light red)

resulted in decreased partial profits and greater environmental costs.

This assessment was done for all 49 sites for both at-planting and split

conditions

with sampling and analyzing soils as needed to implement the

tool. Both the cost of N fertilizer applications and soil sam-

pling were obtained from the Iowa Custom Application Sur-

vey (Plastina, Johanns, & Wood, 2017). The cost of analyzing

the soil samples was calculated by averaging reported values

from 2016 obtained from five soil testing laboratories across

the US Midwest (Agvise Laboratories, Iowa State University

Soil and Plant Analysis Laboratory, University of Minnesota

Soil Testing Laboratory, University of Missouri Soil and Plant

Testing Laboratory, and University of Wisconsin-Madison

Soil and Forage Analysis Lab). An additional equipment cost

was included in the canopy reflectance sensing analysis. All

these implementation costs are described in Table 2. It was

recognized that additional indirect costs for time and labor
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that are related to completing forms, inputting information,

and interpreting results could be accrued. However, for this

analysis, only direct costs required to obtain an N recommen-

dation were used. Note, this partial profit metric (Eq. (4))

used to compare tools will always be negative unless a tool

exactly matched EONR at all sites and had no implementation

cost, thus the evaluation is relative of tools to each other.

2.5 Environmental assessment of tools

An environmental evaluation for each tool was performed by

accounting for the potential N loss from the time of planting

to the end of the year. This was calculated using an N balance

procedure with known N inputs and removals. This procedure

did not attempt to identify N loss pathways. The estimation

was as follows:

N loss =
(
𝑁Fert +𝑁Irr +𝑁min + PPNT

)
−𝑁uptake −𝑁roots (5)

where NFert was the treatment N fertilizer rate (by plot);

NIrr was the inorganic N applied through irrigation (site

level); Nmin was the potential N mineralization measured

(by replication block) (Clark, 2018); PPNT was the preplant

soil NO3–N in the profile (0–0.90 m; by replication block);

Nuptake was the measured above-ground grain and biomass

total N at plant maturity (by plot); and Nroots was an estimated

N content in the roots at plant maturity (by plot). Nitrogen

mineralization was measured using the surface (0–0.30 m)

PPNT soil samples with a 7-d anaerobic incubation procedure

(Bundy & Meisinger, 1994; Clark, 2018; Keeney & Bremner,

1966). This procedure provides a potential mineralization

rate under optimal conditions. While a full season N mineral-

ization was not measured, Nmin was used as an approximation

for this and allows for comparisons of potential mineral-

ization between and across sites. Nitrogen mineralization

and NO3–N concentrations were converted to an area basis

(kg N ha−1) using a four-core averaged bulk density for each

site, determined for each soil depth increment. Since no soil

samples were preserved for Nmin from the Nebraska 2015

and 2016 and North Dakota 2016 sites, mineralization values

from samples of nearby fields from other years of this study

were substituted. The Nuptake was calculated as the product

of the R6 developmental growth stage dry-matter mass and

the N concentration for grain and stover samples (details

described in Kitchen et al., 2017). To account for N immo-

bilized by roots, N content was estimated using the measured

shoot N content at plant maturity and using a root N/shoot

N ratio of 0.20:1 (Crozier & King, 1993; Merbach et al.,

1999).

Equation (5) was calculated for each site plot giving a total

of >3000 experimental units (i.e., 49 sites with 16 N treat-

ments and 4 replications). A linear, quadratic, plateau-linear,

plateau-quadratic, or exponential model was used to fit N loss

relative to N fertilizer rates for each site, with both at-planting

and split N application treatments. A model for each site

was selected based on the assessed goodness-of-fit, the

significance of the model, and the lowest root-mean-square

error (RMSE; Table 3). The best-fit models for each site were

then used to interpolate the N loss associated with each N

recommendation tool. A similar interpolated N loss value

was determined at each site’s EONR value (see Figure 1 for

an example).

To calculate an environmental cost, the difference between

the tool N loss and the EONR N loss were multiplied by a

prevention cost of $2.75 kg−1 NO3–N. This value was based

on the average of previously reported implementations costs

associated with reducing soil and water NO3–N through var-

ious practices, such as drainage water management (Cooke,

Sands, & Brown, 2008), buffers and vegetative strips

(Helmers, Dosskey, Dabney, & Strock, 2008), erosion con-

trol (Czapar, Laflen, Mclsaac, & McKenna, 2008), and cover

crops (Kaspar, Kladivko, Singer, Morse, & Mutch, 2008).

These costs were adjusted for inflation from their reported val-

ues to a 2015-dollar amount using an average inflation rate of

1.95%, calculated using the FinanceRef inflation Calculator

(www.in2013dollars.com; accessed 15 Dec. 2017).

2.6 Statistical analysis

Tools that could provide N fertilizer recommendations for

both at-planting and split applications were initially assessed

with both timings and treated as two different tools. Even

though N recommendations averaged over all sites did

not change drastically between the at-planting to the split

application timing, the EONR values varied between the two

N application times within sites (30 of the 49 sites; Bandura,

2017).

Two different metrics were used to evaluate the perfor-

mance of each tool for predicting and matching EONR. To

determine how well a tool predicted EONR, a tool’s N recom-

mendation was compared to the EONR across all sites using

a simple linear regression model. Only if this relationship

was positive and significant (P ≤ .10) was a tool considered

successful at predicting EONR. To determine how well a tool

matched EONR, the average and the RMSE were evaluated

based on the difference between a tool’s N recommendation

and EONR. Using this approach, tools were compared within

a family of tools, between at-planting and split N applications

(when applicable), and across all tools and N application

timings (average only). An additional performance metric

examined the percentage of sites when a tool’s recommen-

dation came close to EONR. Sites within ± 30 kg N ha−1 of

EONR were considered reasonably close to EONR (cEONR

http://www.in2013dollars.com
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T A B L E 3 The best-fit models (Linear, Quadratic, Plateau-Linear, Plateau-Quadratic, and Exponential) relating N loss from the soil profile

(0–0.90 m) in-season and residual soil NO3–N (measured post-harvest) as a function of N fertilizer rate for each site and N application timing. The

goodness of fit (R2) values of each model are also reported for each significant (P ≤ .05) model

At-planting Split
Year State Site N loss model R2 N loss model R2

2014 IA Ames Quadratic .55 Plateau-Linear .58

IA Mason City Quadratic .79 Plateau-Linear .88

IL Brownstown Linear .89 Plateau-Linear .78

IL Urbana Quadratic .56 Linear .55

IN Loam Quadratic .96 Plateau-Linear .93

IN Sand Quadratic .69 Quadratic .64

MN New Richland Linear .73 Linear .76

MN St Charles Plateau-Linear .57 Plateau-Linear .65

MO Bay Plateau-Linear .66 Plateau-Linear .75

MO Troth Plateau-Linear .38 Plateau-Linear .57

ND Amenia Plateau-Linear .61 Plateau-Linear .62

ND Durbin Quadratic .93 Linear .88

NE Brandes Plateau-Linear .66 Plateau-Linear .74

NE South Central

Agricultural

Laboratory (SCAL)

Plateau-Linear .84 Plateau-Linear .85

WI Steuben Plateau-Linear .81 Plateau-Linear .82

WI Wauzeka Plateau-Linear .90 Plateau-Linear .90

2015 IA Boone Quadratic .86 Quadratic .92

IA Lewis Plateau-Linear .93 Plateau-Linear .94

IL Brownstown Plateau-Linear .87 Plateau-Linear .86

IL Urbana Quadratic .87 Quadratic .88

IN Loam Linear .86 Linear .78

IN Sand Plateau-Linear .70 Plateau-Linear .70

MN New Richland Plateau-Linear .75 Plateau-Linear .76

MN St Charles Plateau-Linear .63 Quadratic .75

MO Lone Tree Linear .86 Linear .62

MO Troth Linear .76 Linear .89

ND Amenia Plateau-Linear .98 Plateau-Linear .98

ND Durbin Plateau-Linear .45 Linear .46

NE Brandes Linear .96 Quadratic .91

NE SCAL Linear .92 Linear .94

WI Belmont Linear .90 Linear .93

WI Darlington Linear .78 Plateau-Linear .90

2016 IA Crawford Plateau-Linear .62 Quadratic .69

IA Story Quadratic .60 Plateau-Linear .67

IL Shumway Quadratic .74 Plateau-Linear .80

IL Urbana Quadratic .90 Plateau-Linear .94

IN Loam Quadratic .81 Plateau-Linear .80

IN Sand Plateau-Linear .67 Plateau-Linear .81

MN Becker Linear .83 Plateau-Linear .72

MN Waseca Linear .76 Plateau-Linear .87

MO Bradford Plateau-Linear .79 Plateau-Linear .80

MO Loess Plateau-Linear .26 Plateau-Linear .56

(Continues)
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T A B L E 3 (Continued)

At-planting Split
Year State Site N loss model R2 N loss model R2

MO Troth Linear .30 Plateau-Linear .68

ND Amenia Linear .87 Quadratic .84

ND Durbin Linear .90 Linear .92

NE Kyes Quadratic .79 Plateau-Linear .83

NE SCAL Plateau-Linear .95 Quadratic .94

WI Lorenzo Linear .39 Linear .43

WI Plano Quadratic .72 Plateau-Linear .76

or ‘Good’). This value around EONR was chosen as it was the

average range of values calculated using ± $2.00 from EONR

which also aligns with what others have suggested as both

reasonable and practicable for evaluating a tool’s successful

performance (Laboski, Camberato, & Sawyer, 2014; Sawyer,

2013; Sela et al., 2017). The percentages of sites cEONR

not classified as ‘Good’ were classified either as “Mediocre”

(within ± 60 kg N ha−1 of EONR) or poor (> ± 60 kg N ha−1

of EONR). An optimal tool performance would consist of

an average difference between that tool’s N recommendation

and EONR being close to zero (accurate), having a low

RMSE (precise), and a high percentage of sites cEONR.

For additional comparisons of all tools, the difference

between the N recommendation, partial profit, and envi-

ronmental costs were made relative to EONR. For each of

these three analyses, an ANOVA model was examined using

the response variable (N recommendation, partial profits, or

environmental cost) as a function of the interaction between

N application timing and tool type. The Tukey’s honest sig-

nificant test was used for any post hoc pairwise comparisons

using a significance threshold of .05. All calculations and

analyses were conducted using the R Statistical Program

(R Development Core Team, 2016).

3 RESULTS AND DISCUSSION

3.1 Corn nitrogen response and EONR

Growing season precipitation at these sites ranged from 245–

1000 mm. Based on visual observations, investigators noted

only a few days of crop stress from water deficiency at any

site. Given the varied soil environments represented across

the 49 sites, and excessive precipitation at some sites (Kitchen

et al., 2017), a wide range of corn response to N fertilizer rates

occurred. The EONR values across both application timings

ranged from 0–315 kg N ha−1. Of the 49 sites, three were non-

responsive to added N fertilizer, and another had an EONR

less than 40 kg N ha−1. In contrast, five sites resulted in high

EONR values (>300 kg N ha−1), assumed to be the result of

excessive precipitation likely resulting in conditions produc-

ing denitrification at sites with fine-textured soils and leach-

ing at sites with coarse-textured soils. A summary of the yield

response to added N in this study has been previously pub-

lished (Kitchen et al., 2017). Average EONR across all sites

was 169 kg N ha−1 (SD = 83) and 159 kg N ha−1 (SD = 70)

for at-planting and split N applications, respectively.

3.2 Which tools gave recommendations
related to EONR?

The first metric for evaluating a tool was determining when

the variation in a specific tool N recommendation across

sites and years exhibited a positive linear relationship with

variation in EONR at a P value ≤ .10. Evaluating tools with

this metric determines which tools were best able to predict

EONR at a site-year level. Only 10 of 31 tools resulted in

having a significant positive and linear relationship with

EONR (see tools bolded in Table 4), which included 3 of

13 at-planting application tools and 7 of 18 split application

tools. Of these, no tool produced a recommendation rate that

predicted EONR well, with the best tool (LSNT 0) giving an

r2 = .20 (P ≤ .01). Furthermore, 6 of these 10 tools examined

by individual year were only successful for one of the 3 yr,

three tools were successful in two of the 3 yr, and one tool

only successful when combined across all years (Table 5).

This lack of success across years suggests the dominating

effect that weather has on tool performance since many

sites within a state were close to each other and similar in

soil type and management from 1 yr to the next. Since the

primary objective here was to test tools across diverse soil

and weather environments, the performance was evaluated

as an aggregate of all years (see Table 5 for significant linear

positive relationships of each tool by individual year).

Of the 31 tools, 21 were not positive and linearly related to

EONR across all 3 yr (see tools not bolded in Table 4). These

included nearly all YG methods (which were negatively

related with EONR), Farmer’s N rate, ND PPNT, MRTN,

Maize-N crop growth model, IN PSNT 0, WI PSNT 45, and
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T A B L E 4 Significant linear regression relationships between each N recommendation tool and the economically optimal N rate (EONR). Both

at-planting and split N application tools are reported. Tools include yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test (PSNT)

and late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1 applied at-planting, Maximum Return to N (MRTN), Maize-N crop growth model, and

canopy reflectance sensing using the Holland and Schepers algorithm. Bolded tool names indicate a significant and positive relationship between

recommendations and EONR were found (P ≤ .10). If blank, then nonsignificant. Dashes indicate not applicable

At-planting Split
N recommendation tool n P-value r2 Intercept Slope P-value r2 Intercept Slope
Farmer NR 49 .51 .89

General YG 49 .01 .13 339 −0.74 .01 .13 311 −0.65

IN YG 49 .02 .10 316 −0.60 .02 .10 291 −0.53

MN YG 49 .11 .06 .07 298 −0.82

MO YG 49 .02 .10 329 −0.68 .02 .11 306 −0.61

NE YG 49 .47 .67

State-specific YGa 43 .17 .04 .10 74 0.51
General PPNT 47 <.01 .15 63 0.83 – – – –

MN PPNT 47 .01 .13 49 0.84 – – – –

ND PPNT 47 .70 – – – –

WI PPNT 44 <.01 .16 50 0.72 – – – –

MRTN 36 .53 .45

Maize-N 49 .12 .84

General PSNT 0 49 – – – – .01 .13 76 0.55
LSNT 0 49 – – – – <.001 .20 59 0.76
IN PSNT 0 49 – – – – .21

WI PSNT 0 49 – – – – .02 .11 90 0.46
General PSNT 45 49 – – – – .07 .07 126 0.31
LSNT 45 49 – – – – <.01 .12 105 0.45
IN PSNT 45 49 – – – – .01 .12 91 0.43
WI PSNT 45 49 – – – – .13

Canopy reflectance sensing 49 – – – – .89

aIndicates that each state used their respective state yield goal recommendation.

canopy reflectance sensing. A lack of relationship was not

surprising with some of these tools. For example, MRTN

was established as a long-term N recommendation system

developed from an aggregation of N rate response trials over

multiple site years. As such, MRTN does not specifically

account for local soil or weather conditions of the growing

season for which the recommendation is being made, but

known to greatly affect crop N response (Morris et al., 2017;

Tremblay et al., 2012). A comparable conclusion could also be

made for the Farmer’s N rate and YG, as they would generally

be the result of an average of past years’ experiences of corn N

response. Yet other tools that do account for site-specific soil

(e.g., PPNT, PSNT) and weather (e.g., Maize-N) were also not

related to EONR. These tools are unique in that they attempt

to account for soil NO3–N and N mineralization, which could

improve their ability to identify sites with no response to N fer-

tilizer. Tools that can predict the extremes of a site’s response

to N fertilizer (e.g., no response, or high fertilizer need as a

result of conditions that promote N loss to the environment)

would have a better chance of being related with EONR.

3.3 Which tools gave recommendations close
to EONR?

The second metric of evaluating these tools included using

the average difference between a tool’s N recommendation

and EONR, RMSE, and the percentage of sites cEONR.

Under these conditions, there was a wide range of responses

for each of these three metrics (Table 6). This included a

range for the average difference between the tool’s N rec-

ommendation and EONR to be between −70–80 kg N ha−1.

The RMSE values ranged from 70–122 kg N ha−1, while

the percentage of site cEONR ranged from 13–43%. When

evaluating a tool based on having the closest average dif-

ference between the tool’s N recommendation and EONR,

lowest RMSE, and the highest percentage of sites cEONR,

the five best tools used at-planting were MRTN, WI PPNT,

MN PPNT, NE YG, and Farmer’s N rate. Whereas the best

tools used for a split application were canopy reflectance

sensing, MRTN, General PSNT 0, WI PSNT 0, IN PSNT

45, and MN YG (See bolded values in Table 6; Figure 2).
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F I G U R E 2 The percentage and number of sites for the at-planting and sidedress tools’ recommendations that came within: ± 30 kg N ha−1 of

economically optimal N rate (EONR; “Good”), ± 60 kg N ha−1 of EONR (“Mediocre”), and > 60 or < −60 kg N ha−1 of EONR (“Bad”). Tools

include yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test (PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1

applied at-planting, Maximum Return to N (MRTN), Maize-N crop growth model, and canopy reflectance sensing using the Holland and Schepers

algorithm

T A B L E 5 Coefficients of determination between N

recommendation tools and economically optimal N rate (EONR) by

year and combined for all years. Only tools with a significant (P ≤ .10)

and positive relationship between the tool’s recommendations and the

EONR are reported. If blank, then nonsignificant or significant but with

a negative relationship between recommendations and EONR. Both

at-planting and split N application tools are reported. Tools include

yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test

(PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1

applied at-planting, and Maximum Return to N (MRTN)

2014 2015 2016 All
N recommendation tool r2

At-planting
General PPNT .27 .20 .15

MN PPNT .32 .13

WI PPNT .31 .22 .16

MRTN .31

Split
State-specific YGa .10

MRTN .41

General PSNT 0 .33 .13

LSNT 0 .19 .35 .20

IN PSNT 0 .24

WI PSNT 0 .32 .11

General PSNT 45 .07

LSNT 45 .19 .12

IN PSNT 45 .19 .12

aIndicates that each state used their respective state yield goal recommendation.

Using an ANOVA to compare the average differences of

the tools’ N recommendations relative to EONR resulted in

a significant main effect for unique tools (P ≤ .001) with

no significant results for N application timing (P = .33) or

the two-way interaction between tool and application timing

(P = .97). After averaging across application timing, there

were significant differences between tools (Figure 3).

Using these above-described metrics, a discussion of

performance by general tool type is provided below.

3.4 Performance by tool

3.4.1 Farmer’s N rate

The Farmer’s N rate (NR) did not have a significant rela-

tionship with EONR (Table 4), and on average, this tool

overestimated EONR (Figure 3, 4). However, regarding the

RMSE calculated using the difference between a tool’s N

recommendation rate and EONR, few tools performed better

than the Farmer’s NR with 88 and 84 kg N ha−1 RMSE values

for planting and split applications, respectively (Table 6). Of

those tools that did perform better the MRTN, WI PPNT, Gen-

eral PSNT 0, LSNT 0, WI PSNT 0, and canopy reflectance

sensing were the only ones that showed a strong improvement

with decreased RMSE ≥ 10 kg N ha−1 and/or an improved

average percentage of sites cEONR > 5% (Figure 2). Even

with the improved metrics, no significant difference between

these tools and the Farmer’s NR were found (Figure 3).

3.4.2 Yield goal

Three of the six YG approaches (General YG, IN YG, and

MO YG) were poor performing tools. All of these tools were

significant but had a negative linear relationship with EONR;

Table 4). On average, they all overestimated EONR ≥

58 kg N ha−1, had RMSE ≥ 113 kg N ha−1, and had a
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T A B L E 6 The precision and accuracy of each N recommendation tool was evaluated using the average difference [N recommendation tool –

economically optimal N rate (EONR)], root mean square error (RMSE) of the difference between a tool’s N recommendation and EONR, and the

percentage of sites ± 30 kg N ha−1 of the EONR or “close to EONR” (cEONR). Tools were evaluated across a maximum of 49 sites from 2014 to

2016, however, the number of sites (n) included in the evaluation differed among tools based on the availability of information needed to test the tool.

Tools included yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test (PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg N

ha−1 applied at-planting, maximum return to N (MRTN), Maize-N crop growth model, and canopy reflectance sensing using the Holland and

Schepers algorithm. The best performing tools for each metric evaluated at-planting and split application timings are bolded. Dashes indicate not

applicable

At-planting Split
Average difference RMSE cEONR Average difference RMSE cEONR

N recommendation tool n kg N ha−1 % kg N ha−1 %
Farmer NR 49 24 88 31 31 84 29

General YG 49 58 117 14 65 113 18

IN YG 49 73 127 14 80 125 14

MN YG 49 −6 90 24 2 81 41
MO YG 49 65 120 16 72 117 20

NE YG 49 −12 86 35 −27 81 37

State-Specific YGa 43 20 83 23 22 72 37

General PPNT 47 −40 85 21 – – –

MN PPNT 47 −26 80 32 – – –

ND PPNT 47 7 93 13 – – –

WI PPNT 44 −5 71 34 – – –

MRTN 36 16 77 39 19 72 42
Maize-N 49 −70 126 18 −48 122 14

General PSNT 0 49 – – – −4 70 43
LSNT 0 49 – – – −26 70 37

IN PSNT 0 49 – – – 40 83 24

WI PSNT 0 49 – – – −5 73 41
General PSNT 45 49 – – – −44 92 29

LSNT 45 49 – – – −34 81 43
IN PSNT 45 49 – – – 2 75 41
WI PSNT 45 49 – – – −38 90 35

Canopy Reflectance Sensing 49 – – – –7 83 44
aIndicates that each state used their respective state yield goal recommendation.

percentage of sites cEONR ≤ 20% (Table 6; Figure 2). In

contrast, the NE YG and MN YG on average underestimated

EONR ≤ 2 kg N ha−1, had RMSE values ≤ 90 kg N ha−1, and

had a percentage of sites cEONR between 24–41%. The NE

YG was unique in that it required the most inputs, such as a

measure of soil NO3–N, estimated amount of N in irrigation

water, the price of N fertilizer and corn grain, and adjustment

for application timing (Table 2). All of these adjustments

caused the NE YG to underestimate EONR on average. In con-

trast, the MN YG is distinctive from all other YG approaches

as it categorizes sites as either being low or high in organic

matter. Due to the high organic matter (>30 g kg−1) measured

at most of the sites (Kitchen et al., 2017), this resulted in

similar recommendations across all sites that averaged close

to 168 kg N ha−1, whereas the average EONR values were

171 and 162 for planting and split applications, respectively.

Conversely, using the State-Specific YG for a split N

application was positively related with EONR, though this

relationship was weak (r2 = .10; P = .04). Others have also

shown YG N recommendation tools were weakly related

to EONR (r2 ≤ .21; Blackmer, Morris, & Binford, 1992;

Fox & Piekielek, 1995; Vanotti & Bundy, 1994). Regarding

other metrics of performance, this YG approach on average

overestimated EONR ≥ 22 kg N ha−1, had a lower RMSE

than the NE YG and MN YG at 72 kg N ha−1, and a similar

percentage of sites cEONR of 37% (Table 6). Sidedress

N recommendation rates utilizing the State-Specific YG

were less for some states than all at-planting, helping to

align recommendations with EONR. For example, all NE

YG-based N recommendations for the split application were

reduced by 5%, which gave results slightly closer to EONR

(Figure 4).
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F I G U R E 3 Graph shows the mean difference (in kg N ha−1)

between each N recommendation tool and the economically optimal N

rate (EONR). Tools used for both planting and split N application

timing were not different (P = 0.97), and therefore recommendations

shown are averaged across timings. Tools include farmer’s nitrogen rate

(NR), yield goal (YG), preplant nitrate test (PPNT), pre-sidedress

nitrate test (PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg

N ha−1 applied at-planting, Maximum Return to N (MRTN), Maize-N

crop growth model, and canopy reflectance sensing using the Holland

and Schepers algorithm. Significance means separation was determined

using Tukey’s honest significant test with a significance threshold of

0.05. Tools with the same letter are not significantly different from each

other. Tools with the same letter, indicate that means are not

significantly different from each other

3.4.3 Preplant soil nitrate tests

Three PPNT tools produced N recommendations that were

related to EONR (General, MN, and WI), but explained

no better than 16% of the variability in EONR (P ≤ .01;

Table 4). These tools work by adjusting a base N recom-

mendation (State-Specific YG or MRTN) with a preplant

assessment of soil NO3–N, applying a soil measurement

into the mass balance. As such, these tools helped adjust

sites that overestimated EONR. By themselves, the base N

recommendations from YG or MRTN overestimated EONR,

but after adjustment, these PPNT tools underestimated

EONR by an average of 40, 26, and 5 kg N ha−1 for General,

MN, and WI, respectively (Table 6 and Figure 5). Whereas

the ND PPNT, was not significantly related to EONR, but on

average overestimated EONR by 9 kg N ha−1.

Of these four PPNT tools, the WI PPNT on average gave

a recommendation closest to EONR. While this tool was not

statistically different from the other PPNT tools (Figure 3),

the RMSE was 14, 22, and 9 kg N ha−1 lower than the General

PPNT, ND PPNT, and MN PPNT, respectively (Table 6).

F I G U R E 4 Box and whisker plots showing the difference (in kg

N ha−1) between the farmer’s nitrogen rate (NR) and each yield goal

(YG) based N recommendation and the economically optimal N rate

(EONR) for both at planting and split N application timings. The

median is reported by the value in the middle of the box. Notches on the

side of each box indicate the 95% confidence interval around the

median. Limits of the box indicate the first and third quartile, whiskers

indicate 1.5 times interquartile range, and small circles indicate outliers

F I G U R E 5 Box and whisker plots showing the difference (in kg

N ha−1) between each preplant soil nitrate test (PPNT) and the

economically optimal N rate (EONR). The median is reported by the

value in the middle of the box. Notches on the side of each box indicate

the 95% confidence interval around the median. Limits of the box

indicate the first and third quartile, whiskers indicate 1.5 times

interquartile range

Furthermore, the WI PPNT tool had 34% sites cEONR

compared to 21, 13, and 32% of sites for the General PPNT,

ND PPNT, and MN PPNT, respectively (Table 6; Figure 2).

The improved performance of this tool was attributed to

two features. First, it does not recommend adjustments if
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NO3–N levels are below 56 kg N ha−1 (Table 2). As such, no

adjustments to the base N recommendation were made for 22

of the 44 sites evaluated (Figure 2a, 2b). However, for eight

of those 22 sites, an adjustment would have been beneficial

as the base N recommendation overestimated EONR by as

much as 30 kg N ha−1. Second, the WI PPNT adjustments

were more substantial as it accounted for NO3–N levels

down to 0.90 m rather than 0.60 m. This improved the final

WI PPNT recommendation for those nonresponsive sites

over the other two PPNT tools. Of note, we used measured

NO3–N data down to 0.90 m. However, the WI PPNT allows

for samples to be taken to a depth of 0.60 m and estimates the

remaining NO3–N amounts in the bottom 0.60–0.90 m depth.

One factor of this study that may have reduced the pre-

dictability of PPNT N recommendations was that most of

the study sites were corn following soybean. Soybean have

been shown to be an excellent scavenger of soil NO3–N,

resulting in a minimal amount of NO3–N remaining in the

soil the following spring (Kaiser, Fernandez, Lamb, Coulter,

& Barber, 2016; Shapiro, Ferguson, Hergert, Wortmann, &

Walters, 2008). The PPNT may be better suited for conditions

where residual soil NO3–N would accumulate, such as with

manured fields or when precipitation was lower than average

in the previous growing season.

3.4.4 Pre-sidedress soil nitrate test and late
spring nitrate test

The PSNT and LSNT tools generally performed slightly

better when evaluated under the conditions of 0 kg N ha−1

applied at-planting compared to when 45 kg N ha−1 was

applied at-planting (Table 4; Figure 6). Of the PSNT methods

evaluated with 0 kg N ha−1 applied at-planting, the General

PSNT, LSNT, and WI PSNT tools were found to be sig-

nificant and positively related to EONR. These three tools

performed similarly when comparing average recommenda-

tions relative to EONR, RMSE, and the percentage of sites

cEONR (Table 6; Figure 2). While the LSNT 0 tool on aver-

age underestimated EONR by ∼20 kg N ha−1 more than the

General PSNT 0 and WI PSNT 0, its predicted N rate had the

best linear relationship with EONR (r2 = .20, P < .001) of all

N recommendation tools evaluated (Table 4). Nevertheless,

this relationship was not particularly strong and substantially

less than what other researchers have reported for other

PSNT tools. Schmidt et al. (2009) reported the Pennsylvania

PSNT to have an r2 = .48 with EONR. The weak relationship

found in our work compared to other studies could be the

result of diverse environmental conditions represented by

the extensive geographic region of this study relative to the

area from which the tool was developed and calibrated for N

recommendations. A similar finding was reported by Scharf,

Brouder, and Hoeft (2006) where pre-sidedress NO3–N

F I G U R E 6 Box and whisker plots showing the difference (in kg

N ha−1) between each pre-sidedress soil nitrate test (PSNT) and late

spring nitrate test (LSNT) N recommendation and the economically

optimal N rate (EONR). The PSNT and LSNT tools evaluated for both

0 and 45 kg N ha−1 applied at-planting. The median is reported by the

value in the middle of the box. Notches on the side of each box indicate

the 95% confidence interval around the median. Limits of the box

indicate the first and third quartile, whiskers indicate 1.5 times

interquartile range, and small circles indicate outliers

concentrations from 66 sites across seven Midwest states had

weak linear relationships with EONR (r2 ≤ .16).

Of the four in-season soil nitrate tools evaluated with

45 kg N ha−1 applied at-planting, the General PSNT, LSNT,

and IN PSNT tools were found to be successful (Table 4). Of

these, the IN PSNT 45 had one of the lowest RMSE and on

average came closest to EONR (Table 6). The IN PSNT dif-

fers from the other PSNT methods, as the N recommendation

is categorized into six groups of N rates based on expected

yield (Brouder & Mengel, 2003). While this method had

a significant relationship when 45 kg N ha−1 was applied

at-planting, no significant relationship was observed with

EONR when evaluated with no N applied at-planting. The

reason for this difference is unknown.

A possible explanation for why the PSNT 45 tools under-

estimated N recommendations relative to EONR, was that

the added 45 kg N ha−1 masked the N-supplying capacity of

the soil. Others have found limits as to how much N could be

applied at-planting before the PSNT becomes ineffective in

predicting N requirements. Fernández, Nafziger, Ebelhar, and

Hoeft (2009) stated that the PSNT tool should not be used

if >22–30 kg N ha−1 was applied at-planting, while Blackmer

et al. (1997) reported limiting N up to 84 kg N ha−1 with

corn following soybean. Additionally, Ketterings, Albrecht,

Czymmek, and Stockin (2012) documented the limit to be

no more than 45 kg N ha−1 when fertilizer was banded. Our
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research supports the conclusions of others that applying N

at-planting can reduce the effectiveness of PSNT tools.

The PSNT is not currently recommended under certain

situations, such as sandy soils or soils with low organic

matter (Fox, Roth, Iversen, & Piekielek, 1989; Meisinger,

Bandel, Angle, O’Keefe, & Reynolds, 1992; Sawyer &

Mallarino, 2017). Nevertheless, removing the three sites

with sand >80% from the analysis resulted in little or no

improvement for all of the PSNT and LSNT tools (reduced

RMSE < 5 kg N ha−1; data not shown). As such, all sites

were included in this analysis regardless of soil texture.

3.4.5 MRTN

The MRTN tool was a poor predictor of EONR with no signif-

icant linear relationship across all site-years (Table 4, 5). This

is consistent with how this tool functions, as MRTN recom-

mendations are based on a regional aggregation of numerous

site-years of N response trials, and does not currently allow

for making site-specific recommendations (based on variation

in temporal and spatial N response). Thus, MRTN will tend

to perform poorly when N response is abnormal to what was

used to develop the tool. As such, this approach failed on 3

of the 36 sites used to evaluate MRTN, where no or minimal

N response was observed (EONR ≤ 50 kg N ha−1), and

for one coarse-textured site with a high propensity toward

N leaching (EONR ≥ 270 kg N ha−1). However, evaluated

MRTN using other metrics resulted in this tool as one of the

top five top-performing tools for both at-planting and split

applications (Table 6; Figure 7). On average it overestimated

EONR by 16 and 19 kg N ha−1, had an RMSE value of 77 and

72 kg N ha−1, and the percentage of sites cEONR were 39

and 42% for at-planting and split applications, respectively

(Figure 2).

In contrast to the majority of the YG based tools that are

also based on multiple years of information (5+ years of yield

data), MRTN had recommendations much closer to EONR,

resulting in lower RMSE values and a higher percentage

of sites cEONR. These results are consistent with previous

research that showed MRTN recommended less N but had

greater profitability compared to YG based methods (Sawyer

& Nafziger, 2010). Nevertheless, further improvements to

MRTN could be made by combining it with a soil nitrate test

(similar to what is done with the WI PSNT). Being able to

adjust MRTN based on current soil and weather conditions

would help identify sites where no additional N fertilizer is

needed.

3.4.6 Maize-N

The Maize-N crop growth model was one of the poorest per-

forming tools, as it greatly underestimated EONR (Figure 3),

F I G U R E 7 Box and whisker plots showing the difference (in kg

N ha−1) between each of the tools’ N recommendation and the

economically optimal N rate (EONR) for both at-planting and split N

application timings. Tools include Maximum Return to N (MRTN),

Maize-N crop growth model, and canopy reflectance sensing using the

Holland and Schepers algorithm. The median is reported by the value

in the middle of the box. Notches on the side of each the box indicate

the 95% confidence interval around the median. Limits of the box

indicate the first and third quartile, whiskers indicate 1.5 times

interquartile range, and small circles indicate outliers

had the largest RMSE ≥ 122 kg N ha−1 (Table 6), and the

lowest percentage of sites cEONR (Figure 2). Crop growth

models show promise as they attempt to predict if sites will be

responsive or nonresponsive to N fertilizer applications. They

do this by incorporating mechanistic modeling routines that

estimate crop N need and soil N, management inputs, and in-

season and long-term (≥10 yr) weather data. With this mech-

anistic approach, Maize-N correctly identified two of the four

nonresponsive sites for both at-planting and split N applica-

tions, but falsely identified five at-planting and three split sites

as nonresponsive. One might assume with actual in-season

weather information, the Maize-N split N recommendation

would better match EONR than when used for an at-planting

application. However, for about half the sites (23 of 49) the

split N recommendations from Maize-N were weaker predic-

tors of EONR than at-planting N recommendations (Figure 7).

These results suggest improvements are needed for the

Maize-N model to better account for the year-to-year and

location-to-location soil and weather variability repre-

sented by the US Corn Belt. Currently, many of the model
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coefficients used in Maize-N are simplified estimates of

management, soil, and genetic parameters. These parameters

may have worked well for the western Corn Belt where the

model was developed (Setiyono et al., 2011), but perhaps

need altering in other regions of the Corn Belt.

3.4.7 Canopy reflectance sensing

Nitrogen recommendations using canopy reflectance sensing

and the Holland-Schepers algorithm was not linearly related

with EONR (P = .89). On average canopy reflectance

sensing underestimated the amount of N required by

7 kg N ha−1, which was one of the top five tools for this

metric of performance (Table 6; Figure 7). Using this tool

resulted in 44% of sites cEONR, the highest percentage of any

tool. This tool did not perform well at sites where corn had

no or a limited response to N fertilizer. Using an SI based on

the 95th percentile of data on plot research will always result

in the Holland-Schepers algorithm recommending N rates

>45 kg N ha−1. Removing these sites from the analysis

results in the Holland-Schepers algorithm underestimating

EONR by 25 kg N ha−1.

An evaluation of the Holland-Schepers algorithm was

previously performed on this same dataset (Bean et al.,

2018). However, their findings resulted in a poorer perform-

ing Holland-Schepers algorithm-based recommendation,

as they used N rich values derived from the mean NDRE

measurements taken from plots that received 225 and

270 kg N ha−1 at-planting. This approach caused the Holland

and Schepers algorithm recommendations to decrease by an

average of about 40 kg ha−1 compared to the virtual N rich ref-

erence based recommendation reported here. The reason for

this large difference in recommendations is that the virtual-

based N rich reference had higher NDRE values (an average

of 11% higher) compared with using an established high N

rich reference, thus resulting in smaller SI values, which indi-

cate more N stress and result in higher N recommendations.

3.5 Economic and environmental assessment
of tools

Separate from how well tools performed making an N rate

recommendation relative to EONR, each tool was also

assessed on an economic and environmental basis.

3.5.1 Economic assessment

An analysis of variance (ANOVA) model comparing mean

differences of the tools’ partial profit relative to the EONR’s

partial profit showed a significant main effect for tool type

(P ≤ .001) with no significant results for N application timing

F I G U R E 8 Mean partial profit (in $ ha−1) for N

recommendation tools relative to the economically optimal N rate

(EONR). Tools used for both planting and split N application timing

were not different (P = 0.99), and therefore recommendations shown

are averaged across timings. Tools include farmer’s nitrogen rate (NR),

yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test

(PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1

applied at-planting, Maximum Return to N (MRTN), Maize-N crop

growth model, and canopy reflectance sensing using the Holland and

Schepers algorithm. Significance means separation was determined

using Tukey’s honest significant test with a significance threshold of

0.05. Tools with the same letter, indicate that means are not

significantly different from each other

(P = .44) or the two-way interaction between tool type and

application timing (P = .99). As a result, partial profit was

averaged across timings for tools that gave recommendations

for both (Figure 8). Statistically, there is little difference

among tools in partial profits, despite profit ranging from

−$50– −154 ha−1 (excluding Maize-N; Figure 8).

The Maize-N crop growth model underestimated EONR

and had more implementation costs compared to all other

tools, which lead to an average loss in partial profits of

−$269 ha−1 (Table 2). While unrealistic to think any tool

could generate an N recommendation equivalent to EONR

all the time, this analysis shows that most any tool would be

profitable.

For farmers to adopt N recommendation tools, tools need

to be affordable, simple to use, and profitable (Stuart, Schewe,

& Mcdermott, 2014). Much of corn N for the US Midwest is

currently applied in the fall or early spring before planting for

convenience. Tools requiring soil or plant information and/or
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F I G U R E 9 Mean environmental cost (in $ ha−1) for N

recommendation tools relative to the economically optimal N rate

(EONR). Tools used for both planting and split N application timing

were not different (P = 0.98), and therefore recommendations shown

are averaged across timings. Tools include farmer’s nitrogen rate (NR),

yield goal (YG), preplant nitrate test (PPNT), pre-sidedress nitrate test

(PSNT) and late-spring nitrate test (LSNT) with 0 and 45 kg N ha−1

applied at-planting, Maximum Return to N (MRTN), Maize-N crop

growth model, and canopy reflectance sensing using the Holland and

Schepers algorithm. Significance means separation was determined

using Tukey honest significant difference test with a significance

threshold of 0.05. Tools with the same letter, indicate that means are

not significantly different from each other

implemented in-season need to perform as well or better

at determining N recommendations than tools that can be

utilized any time of the year without specialized information

to compensate for the inconvenience. This performance

comparison also needs to consider specialized and sometimes

expensive application equipment and the need to cover many

acres within a narrow time frame.

3.5.2 Environmental assessment

An ANOVA model comparing mean differences of the tools’

environmental cost and the EONR’s environmental cost

showed a significant main effect for tool type (P ≤ .001), but

no significant difference for N application timing (P = .12)

or the two-way interaction between tool type and application

timing (P = .93). As such, tools that gave recommendations

at both timings have environmental costs averaged across

timings (Figure 9). The tools’ average environmental costs

ranged from –$185–54 ha−1 relative to EONR, and statisti-

cally, these values were significantly different among tools. A

positive cost indicates that a tool’s recommendation resulted

in less N loss compared to EONR, giving an environmental

credit. The General PPNT and General PSNT 45 (highest

values) were significantly different from the IN YG, MO

YG, General YG, IN PSNT 0, and Farmer NR (Figure 9).

The majority of other N recommendation tools did not have

environmental costs that were significantly different from

each other. In general, the environmental costs are inversely

related to how well the tool’s N recommendation comes close

to EONR. Tools that overestimate EONR have negative envi-

ronmental costs, while tools that underestimate EONR have

positive costs.

The lack of significant difference between the majority of

the tools observed in our work is consistent with the results

of Hong, Scharf, Davis, Kitchen, & Sudduth (2007) and

Bandura (2017) who found no significant increase in residual

soil NO3–N (i.e., N loss) until N rates exceeded EONR

by about 30 kg N ha−1. As only four tools recommended

an N rate in excess of EONR by more than an average of

30 kg N ha−1 (Figure 3), minimal differences in total N loss

between the majority of tools (i.e., tools close to EONR such

as IN PSNT 45) and those with the largest negative costs

(i.e., IN YG) were observed.

4 CONCLUSIONS

Many N recommendation tools are available to help farmers

make N management decisions. An analysis was conducted

using six metrics of performance for each of the tools based

on their ability to: (i) predict EONR using a simple linear

regression; (ii) match EONR based on the average difference

between the N recommendation and EONR being close to

zero, lowest RMSE, and the percentage of site cEONR; (iii)

partial profits relative to EONR; and (iv) environmental

costs relative to EONR. No N recommendation tool was a

good predictor of EONR for all growing conditions of this

study. Only 10 of the 31 tools evaluated had a significant

positive (but weak) linear relationship with EONR (r2 ≤ .20;

P ≤ .07). This poor relationship could be the result of

diverse soil and environmental conditions represented by

the extensive geographic region of this study relative to the

area from which the tool was developed and calibrated for

N recommendations. Given this observation, successful tools

were those based on soil sampling (e.g., PPNT and PSNT).

When trying to match EONR (cEONR), there were

several tools that performed poorly (e.g., nearly all the YG

approaches and the Maize-N crop growth model) while others

did better (e.g., MRTN, PPNT, PSNT, and canopy reflectance

sensing). None of these “better” performing tools showed any

statistical difference for partial profits or environmental costs.

These findings demonstrate the difficulty of predicting

EONR correctly, and that while current publicly-available N

recommendation tools may be successful on individual fields
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or sub-regions, they were not universally reliable over the

diversity of soils and weather in this study. Refinement of

current tools or development of new tools that are adaptive

and more responsive to soil and weather conditions have

the potential for improved performance. Potentially utilizing

multiple tools together to form an N recommendation may

leverage the strengths of individual tools for better corn N

management decisions. However, cost and implementation

requirements need to be considered.
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