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Over application of N fertilizer in cereal produc-
tion systems continues to be problematic (Biello, 
2008). The environmental costs of over applying 

fertilizer N are highlighted by iconic examples of hypoxia in 
the Gulf of Mexico and Chesapeake Bay (Ribaudo et al., 2011). 
This work further noted that N applied at rates that exceed 
crop needs has a greater risk of leaving the field and degrad-
ing water supplies. For Iowa (largest tonnage of fertilizer N 
purchased and applied in the United States), this has become 
somewhat uncomfortable as within-state lawsuits have been 
filed against maize (Zea mays L.) producers surrounding the 
Des Moines and Raccoon rivers for over applying N (Charles, 
2015). Solutions exist but involve practices that will require a 
significant investment in equipment and management (Roberts 
et al., 2012).

Use of sensors in agriculture has advanced from measuring 
transpiration rates in 1917 (Briggs and Shantz, 1917) to on-
the-go sensing and application of fertilizer on a by-plant scale 
(Kelly et al., 2015). Other work has suggested that the highest 
precision in N management for maize can be achieved through 
in-season N applications that are based on early-season N 
dynamics using models that dynamically simulate soil and crop 
processes (van Es et al., 2007).

The adoption of sensor-based nutrient management has 
been slow, but consistent with the delayed adoption of other 
agricultural technologies (Fuglie and Kascak, 2015). This work 
further noted that diffusion of new agricultural technologies 
improved with increased farm size and producer education.

Work by Holland and Schepers (2010) reports a function 
that delivers N fertilizer recommendations based on in-season 
remote sensing and local production information. Solie et al. 
(2012) developed a methodology using a sensor-based approach 
that is applicable for both wheat (Triticum aestivum L.) and 
maize, and that works over different stages of growth. Even so, 
both of these approaches rely on in-season measurements of a 
growing crop canopy.
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AbstrAct
The demand for improved decision-making products for cereal 
production systems has placed added emphasis on using plant 
sensors in-season, and that incorporate real-time, site specific, 
growing environments. The objectives of this work were to 
describe validated in-season sensor-based algorithms presently 
being used in cereal grain production systems for improving 
nitrogen use efficiency (NUE) and cereal grain yields. A review 
of research programs in the central Great Plains that have devel-
oped sensor-based N recommendations for cereal crops was per-
formed. Algorithms included multiple land-grant university, 
government, and industry programs. A common thread in this 
review is the use of active sensors, particularly those using the 
normalized difference vegetation index (NDVI) for quantify-
ing differences in fertilized and non-fertilized areas, within a 
specific cropping season. In-season prediction of yield potential 
over different sites and years is possible using NDVI, planting 
date, sensing date, cumulative growing degree days (GDD), and 
rainfall. Other in-season environment-specific inputs have also 
been used. Early passive sensors have advanced to by-plant N 
fertilization using active NDVI and by-plant statistical proper-
ties. Most recently, sensor-based algorithm research has focused 
on the development of generalized mathematical models for 
determining optimal crop N application. The development and 
promotion of fee-based modeling approaches for nutrient man-
agement continues. Nonetheless, several algorithms using active 
sensors for in-season N management are available from state 
and government sources at no cost and that have been exten-
sively field tested and can be modified by producers.
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core Ideas
•	 Normalized difference vegetation index algorithms can improve 

fertilizer N efficiency.
•	 Normalized difference vegetation index sensors currently sold 

employ these algorithms.
•	 Algorithms rely on knowledge that increased yields increase 

fertilizer N demand.
•	 Yield potential and N response are independent.
•	 Nitrogen-rich strips help to predict in-season grain yields.
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YIeld And envIronment 
Influence nItrogen demAnd

Noteworthy in the literature is that as yield levels increase, 
the demand for increased nutrients also increases (Ciampitti 
and Vyn, 2014; Fowler, 2003). Spiertz and DeVos (1983) noted 
that an accurate assessment of the potential yield level for 
different growing conditions would improve the recommenda-
tions and optimize use of N fertilizers. Mullen et al. (2003) 
found that in-season computation of N response using NDVI 
measurements, identified those environments that would 
respond to additional N, and noted where increased N uptake 
was expected. This work further reported that N response was 
highly variable over sites and years. Shanahan et al. (2008) 
hypothesized that visual appraisals of crop N response (N 
Reference, or N Ramps) were tools that could entice farmers 
into being involved, and that would encourage them to think 
about agronomic principles relative to their N management. 
This work also reported that farmer adoption of these new 
approaches will likely be accelerated as they are embedded 
within a strategy that provides positive visual feedback.

Scharf et al. (2011) reported that sensor-based N applications 
represented a reduction of approximately 25% in the amount 
of N applied beyond what was removed in the grain. Their 
results showed that sensors can quantify N rates for maize 
that perform better than those directed by producers. Arnall 
et al. (2009) observed temporal variability in NUE and fur-
ther noted that NUE could be predicted, but that it was site-
specific. Added site-to-site variability was reported by Bundy 
and Andraski (2004) who showed that the economic optimum 
nitrogen rate (EONR) varied dramatically, ranging from 0 to 
168 kg N/ha over 21 winter wheat locations.

Work by Lory and Scharf (2003) with maize noted that 
fertilizer recommendation systems that ignore yield are lim-
ited to explaining <50% of the variation in optimum N rates, 
highlighting the importance of projecting crop N removal. 
Field experiments conducted throughout Oklahoma (Mullen 
et al., 2003) showed that in-season N demand for added N 
fertilizer in winter wheat could be detected using NDVI read-
ings collected at Feekes growth stage 5 (Large, 1954). This was 
advanced from earlier findings where early-season NDVI read-
ings were used to predict yield potential, and later employed to 
refine in-season fertilizer N rate recommendations (Raun et al., 
2001). Similar work by Varvel et al. (1997) showed that early-
season maize N deficiencies could be corrected using chloro-
phyll meter readings and a sufficiency index approach.

The objective of this paper was to describe validated in-
season sensor-based algorithms presently being used in cereal 
grain production systems for improving NUE and grain yields.

mAterIAls And methods
Research programs in the central Great Plains that have 

developed sensor-based N recommendations for cereal crops 
were targeted to provide an outline and justification for in-sea-
son sensor-based algorithms widely used for maize and wheat. 
These embodied algorithms were generated by multiple entities 
coming from land grant universities and government programs 
that were recognized, published, and well known in the crop 
sensor discipline.

Active-sensor research programs participating in the annual 
Nitrogen Use Efficiency Workshop (most recently held in 
Auburn, AL, August 2015) were asked to provide a summary/
synopsis of the sensor-based N rate algorithms developed for 
their regions over the years and that could be included in a joint 
manuscript. Several of the published in-season sensor-based 
N algorithms and associated summaries developed from each 
group were thus included.

results
holland–schepers

The Holland–Schepers algorithm is based on the shape of a 
typical N rate by yield response function (quadratic or quadratic 
plateau)(Holland and Schepers, 2010). The quadratic portion 
of the function near maximum yield is particularly important 
because producers strive to achieve near maximum yield with 
the least amount of N fertilizer. Active crop canopy sensors are 
unable to quantify the amount of excess N in plants, so for in-
season N management to be effective, producers should expect 
parts of a field to show less than adequate vigor and greenness 
at the time of sensing. It is important that maize plants are not 
exposed to stresses during the V5 to V7 growth stages. This may 
require more modest pre-plant N to avoid early season N stress. 
Excess pre-plant soil N availability (>25–30% of the total N 
uptake) will delay the growth stage at which the crop becomes 
sensitive to N status and could be problematic unless high-
clearance applicators are available. Plant N uptake for maize is 
rapid between V6 and silking and from Feekes 4 until heading 
for wheat. Evidence of N deficiency during these periods depends 
on the amount of pre-plant N application, residual soil N, or N 
credits. Because N stress can be subtle and visually difficult to 
quantify, it is important that plants with adequate N within the 
field be identified as a reference. The soil N supply required to 
meet the “adequate N” criteria increases from about 20% of the 
total crop N uptake at V6 to about 70% at silking. A so-called 
high-N reference that equates to a modest excess above the pro-
ducer’s typical N rate is unnecessary and can reduce early season 
vigor by inducing a nutrient imbalance as with S. As such, estab-
lishing a N-rich strip as a reference for the purpose of calibrating 
active sensors can be problematic (Schepers and Holland, 2012).

The anchor of the Holland–Schepers algorithm is a term 
called Nopt, which is the optimum N rate provided by produc-
ers. The EONR can be substituted for Nopt if it is known. The 
Nopt value is reduced by N credits as appropriate. It is impor-
tant to note that at the time of sensing, plants have already 
responded to some N credits like early season mineralization 
following soybean [Glycine max (L.) Merr.], but is also affected 
by N losses (leaching or denitrification) or N immobilization 
following incorporation of high C residues (maize stalks or 
wheat stubble). It should be noted that Nopt embeds producer 
experiences and field-specific considerations, including previ-
ous yield levels (i.e., realistic yield goal).

The active sensor component of the algorithm has its base 
in how the adequately fertilized reference value is established. 
Rather than contending with the uncertainties associated with 
a high-N reference strip, the Holland–Schepers algorithm 
uses a statistical approach (frequency distribution or cumula-
tive percentile) that identifies plants in the more fertile parts 
of a field strip or two to characterize plants with adequate N 
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(Holland and Schepers, 2011, 2012). Hence, this approach 
minimizes the potential for nutrient imbalances caused by 
excess N availability. For example, a growing database shows 
that when the leaf N/S (sulfur) ratio exceeds 15:1 (10:1 to 12:1 
is optimum for maize) new leaves are likely to display yellow 
streaks and even reduced biomass. As such, caution should be 
exercised when establishing N-rich strips (i.e., make sure that 
S is not limiting because it is soluble and leachable) because 
high soil N availability relative to S can result in artificially 
low reference vegetation index values and low fertilizer N rec-
ommendations. The approach is termed a “virtual reference” 
because it identifies adequately fertilized plants whose reflec-
tance serves as a reference from which a sufficiency index (SI) is 
calculated. The virtual reference approach to sensor calibration 
is far less likely to generate erroneous N recommendations than 
the N-rich approach because less than half as much N is applied 
pre-plant that could upset the N/S balance.

The virtual reference procedure involves driving through 
a part of the field that includes nearly the full range in plant 
vigor. The software extracts the 95-percentile value from a his-
togram of the sensor’s vegetation index values. All vegetation 
index values are divided by the reference value to generate a SI 
that characterizes the relative degree of N stress. Experience 
indicates that SI values <0.7 are not likely to achieve expected 
yields even if adequate N is applied and so the algorithm allows 
producers to select the rate at which the N rate is reduced (fast, 
medium, slow). Finally, the algorithm compensates for N that 
is already accumulated in the crop at the time of sensing and 
includes an overall coefficient that allows producers to compen-
sate for management zone differences.

Most active sensor-based algorithms use a calibration method 
similar to the one set forth by Peterson et al. (1993) that was 
developed for Minolta SPAD chlorophyll meters. The premise 
behind the SI or RI calibration procedure was that the reference 
crop was similar in all respects except for the N status. Implied 
was the assumption that other nutrients were adequate to achieve 
near maximum yields. In the case of crop canopy sensors, vegeta-
tion index values are used instead of SPAD meter values to calcu-
late SI. Some algorithms prefer to invert SI to generate a response 
index (RI), which is a nonlinear parameter. In either case, the 
concept is simple and straightforward. The SI values characterize 
relative photosynthesis within the field at the time of in-season 
sensing. Integrating photosynthetic activity over the growing 
season culminates with grain production and yield (Holland et 
al., 2012). In-season SI values at V9 and V12 have been shown 
to be highly correlated (r2 = 0.9 or greater) with relative yield 
(Schepers and Holland, 2012). The premise is that if relative crop 
vigor (plant chlorophyll content and biomass, which is a proxy 
for plant N status) can be remotely quantified during the grow-
ing season, an appropriate amount of N fertilizer can be applied 
to recover the potentially lost yield. Nonetheless, severe early-N 
stress has been shown to decrease final grain yields even when 
mid-season N was applied (Scharf et al., 2002).

The Holland–Schepers algorithm was extensively evaluated 
in replicated field studies in 2008 and 2009 before being incor-
porated into the AgLeader OptRx system for making in-season 
N applications. It follows that the algorithm is used in the 
United States and internationally wherever OptRx sensors are 
used on maize, wheat, potato, etc.

university of missouri/usdA-Ars
Early Missouri maize investigations using near-crop pas-

sive light reflectance sensing demonstrated good relationships 
between the reflectance measurements and EONR (Scharf and 
Lory, 2009). Results from this work were the basis of N recom-
mendation algorithms developed for both the GreenSeeker 505 
and Holland Scientific ACS-210 sensors, with specific versions 
published by Scharf et al. (2011). While other canopy-sensing 
algorithm development for maize has been based on NDVI, 
these early Missouri studies indicated excellent sensitivity to 
plant N condition using the inverse of the simple ratio (ISR), 
an index that is the ratio of visible reflectance to near infrared 
(NIR) reflectance. This ratio was also selected because it placed 
emphasis on the visible measurement, since many visible wave-
lengths were sensitive to plant N status, but NIR alone was 
not (Scharf and Lory, 2009). It should be noted that ISR index 
values decrease with increased plant growth, while NDVI 
increases with plant growth. This inverse relationship has been 
illustrated (Kitchen et al., 2010; Sheridan et al., 2012).

The developed Missouri algorithms are dependent on the 
relative reflectance from unfertilized maize (called target) to 
sufficient-N maize (called N-sufficient reference). In principle 
this has proven successful in many spectral measurement investi-
gations. In effect, the greater the difference in sensor reflectance 
measurements between unfertilized maize and N-sufficient ref-
erence maize, the more N fertilizer need. Without this reference 
to determine a relative difference, there is little basis for making 
N rate recommendations. As such, producers using this technol-
ogy with Missouri algorithms are instructed to fertilize an area 
or “strip” within a field before or shortly after planting so that N 
is not limiting up to the time of reflectance sensing. When fields 
have a high degree of within-field soil variability, producers are 
encouraged to consider multiple N-sufficient areas for highly 
contrasting soils. Additionally, these N-sufficient reference areas 
should avoid areas that are unique or historically have had other 
management problems (e.g., heavy weed infestation, head-lands 
with soil compaction, terraces, manure history). While different 
maize hybrids can have an effect on reflectance measurements of 
N-sufficient plants, the impact is minimal and will not greatly 
impact algorithm N rate recommendations (Sheridan et al., 
2012). However, experience working with producers has demon-
strated that other soil and crop management factors may cause 
variations in reflectance, so producers are encouraged to have a 
sufficient-N reference area for each field. Experience on produc-
ers’ fields with poor plant stands, even in a small portion of the 
sufficient-N reference area, will likely result in underestimation 
of N maize requirements. To guard against this happening, 
upper ISR values as a function of growth stage for the sufficient-
N reference is recommended (Sheridan et al., 2012).

The Missouri N rate algorithms for maize were constructed 
using the ratio of the ISR of the target plants to the ISR of 
high-N plants, referred to as the relative ISR (Scharf et al., 
2011). Since ISR values of unfertilized target maize will be 
equal or greater than ISR values of sufficient-N reference maize, 
relative ISR values produce a value ³1.0. This value could be 
considered a RI like that described previously. Additional 
Missouri investigations found relative ISR values were dif-
ferent with the two different canopy sensor types and maize 
growth stage. Therefore, sensors-specific algorithms were 
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produced for maize at three vegetative V6–V7, V8–V10, and 
V11–V16 growth stages (Scharf et al., 2011). The effect of the 
different growth-stage algorithms for a single relative ISR 
value is that the N fertilizer recommended decreases with 
advancing growth stage. A feature of the Missouri algorithms 
is that N fertilizer will be recommended even when the rela-
tive ISR value is equal to 1.0. Foundational studies in Missouri 
demonstrated that maize plants that signaled no N stress dur-
ing mid-vegetative growth stages often respond to in-season 
N fertilization. As such, an N fertilizer recommendation 
“floor” is built into the algorithms. As an example, when the 
GreenSeeker 505 reflectance produces a relative ISR = 1, N 
recommendation for V6 and V11 growth stage maize will be 55 
and 35 kg N ha–1, respectively.

Moderate success has been found when employing canopy 
sensing using the Missouri algorithms. Testing of canopy 
sensor-based N application on producer fields was initiated 
in 2004 with N rate trials to examine sensor/algorithm per-
formance against EONR (Kitchen et al., 2010). With 50% 
of fields tested, within-field spatial variability in EONR was 
highly correlated with canopy sensing. Depending on soil type, 
fertilizer cost, and maize price, canopy sensing could provide 
increased profit US$25 to $50 ha–1. A significant finding 
of this research was that this correlation varied by general 
soil characteristics, such as soil organic matter and texture. 
Performance of the algorithms could possibly be improved 
by including these variables. Other side-by-side strip trials on 
producers’ fields compared sensor/algorithm performance with 
a fixed producer rate and found an average partial profit of 
$42 ha–1, while using 16 kg ha–1 less N (Scharf et al., 2011).

north dakota state university

The North Dakota State University maize algorithms 
(Franzen et al., 2014) were developed using more than 60 field 
N-rate trials across North Dakota, recording active-optical 
sensor readings from the Holland Scientific Crop Circle sen-
sor (red- and red-edge-NDVI) and the GreenSeeker (red- and 
red-edge-NDVI). The foundation for the algorithms embeds 
the In Season Estimated Yield (INSEY) concept developed at 
Oklahoma State University. However, instead of using the RI 
approach (Arnall et al., 2006), algorithms were separated into 
surface soil textures, regions within North Dakota, and tillage 
categories found important in N response curves during the 
study. Regions were separated into fields East of the Missouri 
River and those West of the river. Tillage encumbered catego-
ries that were either long-term no-till (6 yr of more continuous 
no-till/strip-till) and anything else categorized as conventional 
tillage. Textures East of the Missouri River were categorized as 
high clay (soils with clay content >400 mg kg–1) and any other 
textures, classified as medium texture.

The algorithms were based on establishing in-field 
N-nonlimiting areas at or before planting. The in-field 
N-nonlimiting area was necessary due to the frequency of  S defi-
ciency in the region. If a virtual reference area was utilized and 
S deficiency was present, the virtual reference area (the greenest 
area in the field) could have had the lowest available N, because 
higher N results in greater expression of S deficiency in maize 
and other crops. Deficiencies of other nutrients are best detected 
and corrected using established soil testing programs.

Active NDVI sensor readings are related to maize yield. 
Grain yield predicted using INSEY from the N-non limiting 
area was the highest yield possible within a specific soil/tillage 
category and variety. If INSEY outside the N-non limiting area 
was within 5% of INSEY from the N-non limiting area, then 
in-season N was not necessary. If INSEY was more than 5% 
less than that of the N-nonlimiting area, then the yield differ-
ence using the algorithm was calculated by the controller, and 
N content of the maize yield difference was calculated. This 
result was then divided by an in-season N application efficiency 
factor defaulted at 60% unless adjusted by the applicator, and 
thus resulting in a predicted N rate to be applied. This method 
can be adapted to on-the-go N fertilizer applicator controllers 
with proper programming.

This algorithm is also simple enough that growers could 
utilize their own field N sensor readings and yield results to 
modify the algorithm over time so as to individualize by-field 
algorithms. To do so, growers could withhold N fertilizer from 
being applied in a given field pass, but continue to record sensor 
readings. At harvest, the combine monitor recorded yield data 
for all strips so that vegetation index readings could be related 
to yield within each strip. That relationship was merged with a 
weighted algorithm and over fields it morphed into one more 
characteristic for specific grower N response.

The NDSU algorithm also has a minimum INSEY. If 
INSEY was at or below a specific minimum, it was likely low 
because of a low plant population, or higher salt, or something 
unrelated to N nutrition. The fertilizer applicator would in 
turn not apply N when INSEY was at or below that value.

oklahoma state university

Early work at Oklahoma State University (OSU) recognized 
positive correlation between passive NDVI measurements 
and plant biomass (Stone et al., 1996). This work went further 
to identify that these NDVI values were correlated with N 
uptake, by site, and by year. Their work further embraced the 
need to develop a system that worked over growth stages, sites, 
and crops (Raun et al., 2005). Simultaneous work from this 
group targeted the resolution where differences in soil test and 
yield parameters existed, so as to match sensing and sampling 
scales. Their work showed that significant differences in soil 
test parameters were found when samples were less than 1 
m apart (Raun et al., 1998; Solie et al., 1999). Because of the 
small-scale variability found, sensor based management deci-
sions were then evaluated using a 1-m2 resolution (Thomason 
et al., 2002). This work showed that using an in-season sensor-
based N algorithm, NUEs could be increased dramatically, but 
that required recognition of small-scale variability. Hodgen et 
al. (2005) showed that NDVI sensor values from a pre-plant 
N-rich strip divided by the NDVI reading from the farmer 
practice (termed the RI) were needed to estimate potential N 
responsiveness, by site and within a growing environment. A 
consolidated approach encumbering in-season yield prediction 
(Raun et al., 2001) and the RI, was later reported by Raun et 
al. (2002). This work went further to develop INSEY where 
NDVI was divided by a site-specific climatological input, 
and that allowed combining sites and years. The divisor was 
days from planting to sensing where growing degree days 
(GDD) > 0 [GDD =(Tmin + Tmax)/2– 4.4°C, where Tmin and 



Agronomy Journa l  •  Volume 108, Issue 5 •  2016 5

Tmax represent daily ambient low and high temperatures]. The 
INSEY index provided an estimate of rate of plant N assimi-
lated per day (Raun et al., 2002).

This INSEY-RI algorithm embodied knowledge that yield 
potential (YP0) is independent of RI (Raun et al., 2010; 
Arnall et al., 2013) and that independent estimates of each 
are needed to arrive at reliable in-season sensor-based N rate 
recommendations. Logistics of this algorithm were that the 
predicted achievable yield potential if N was applied (YPN), 
was determined by multiplying YP0 by RI (YP0×RI approach). 
The difference in grain N uptake between YPN and YP0 was 
then divided by an expected efficiency to arrive at the in-season 
fertilizer N rate recommendation. This further employed the 
use of locally known values for grain N (Mosse, 1990) and/or 
documented by commercial laboratories within specific states 
and/or regions. A premise of in-season sensor based N recom-
mendations is that spring and/or foliar applied N applications 
generally have higher NUE’s (Sowers et al., 1994). Using by-site 
knowledge and in-season visual observations, this value can be 
adjusted accordingly by the producer.

Their work went further to encumber within plot spatial 
variability, estimated using the coefficient of variation (CV) 
from within-plot sensor readings (Raun et al. (2002) and 
Arnall et al., 2006). This is possible with the GreenSeeker 
NDVI sensor where more than 70 readings/m2 are collected 
walking 5 km per hour.

Ortiz-Monasterio and Raun (2007) showed increased 
farmer profits in the Yaqui Valley, Mexico where the YP0×RI 
approach applied 69 kg N/ha less than the farmer practice, 
while producing the same level of grain yield. Similarly, the use 
of combined midseason sensor-based predictions of YP0 and 
RI provided accurate N rate recommendations when compared 
with flat rates in a rice production system (Tubaña et al., 2008).

dIscussIon/summArY
The earliest formal reporting for using a passive sensor to 

estimate the NDVI was in 1974 (Rouse et al., 1974). This work 
recognized that healthy vegetation absorbs most of the light 
in certain visible wavebands and reflects a large portion of the 
near-infrared light. The use of NDVI has also had roots with 
assessing environmental quality (Fung and Siu, 2000), forage 
biomass prediction (Freeman et al., 2007), and sensor based 
algorithms for N recommendations (Lukina et al., 2001).

Prevalent in this review was the use of active sensors, particu-
larly NDVI, and chlorophyll meters for detecting differences 
in the vigor for plants receiving various fertilizer N application 
rates within a specific cropping season (Holland and Schepers, 
2010; Raun et al., 2001; Scharf et al., 2011; Tubaña et al., 
2012; Varvel et al., 1997). In-season prediction of yield poten-
tial over different sites and years has also been shown using 
NDVI, planting date, sensing date, and cumulative growing-
degree days (GDD)(Raun et al., 2001; Girma et al., 2006). 
Furthermore, other in-season environment-specific inputs have 
been used including precipitation (Solari et al., 2008; Bushong 
et al., 2015). Early work using passive sensors led to the devel-
opment of active sensors that advanced the potential for on-
the-go, by-plant N fertilization using NDVI and small-scale 
statistical properties generated from NDVI sensor readings 
(Arnall et al., 2006). This review recognizes that the ongoing 

success of in-season based N recommendations will hinge on 
whether or not farmers can obtain a return on their invest-
ment, the amount of government support/incentives and the 
complexity of the system as a whole. It is important to note that 
several of the current commercial N management programs fail 
to address sensor-based and/or remote-sensing based in-season 
N management, likely needed to address worldwide cereal N 
use efficiencies that hover near 33% (Raun and Johnson, 1999).

Future active sensing platforms will likely offer enhanced 
usability with respect to calibration and decision support and 
subsequent transparency to the operator. As such, the user’s cul-
tural farming practice will be minimally impacted further easing 
adoption barriers. New N algorithms will likely incorporate 
specific seed genetic information and field-scale climate informa-
tion. Also, real-time telematics will allow easy and seamless inte-
gration of new model information (soil, regulatory, economic, 
genetic, etc.) into a producer’s variable rate technology (VRT) 
system while use of multispectral sensing systems or multi-sensor 
systems will help tune N application by simultaneously sensing 
water and nutrient status of the crop as well as landscape position 
and soil composition. Key differences in the in-season algorithms 
that should be considered by policymakers, farm managers, 
consultants, and producers are the way individual sensors are 
calibrated (i.e., establishment of crop reference values) and the 
sensitivity of specific wavebands relative to growth stage. The 
later point is critical because a lack of sensitivity to crop vigor can 
result in a false sense of security and lost profit. As such, produc-
ers are encouraged to select an approach that fits the spatial and 
temporal aspects of their fields and production systems.

A cautionary note must be added that re-emphasizes the con-
tinued need for comprehensive soil testing. The understanding 
of macro- and micronutrient deficiencies and their potential 
interactions is compulsory to making any decision for N alone. 
Nonetheless, this review reports on viable options for in-season 
sensor-based N methods, all of which have been documented 
to work with maize and wheat producers and that can decrease 
N loading rates in cereal crop production. Wide-scale adoption 
is at some point expected as sensor groups come together with 
more unified algorithms that state and government programs 
can endorse.

Acknowledgments

Thirteenth Annual Nitrogen Use Efficiency Conference, Auburn, 
AL 2015.

references

Arnall, D.B., A.P. Mallarino, M.D. Ruark, G.E. Varvel, J.B. Solie, M.L. 
Stone et al. 2013. Relationship between grain crop yield potential 
and nitrogen response. Agron. J. 105:1335–1344. doi:10.2134/
agronj2013.0034

Arnall, D.B., W.R. Raun, J.B. Solie, M.L. Stone, G.V. Johnson, K. 
Desta et al. 2006. Relationship between coefficient of varia-
tion measured by spectral reflectance and plant density at early 
growth stages in winter wheat. J. Plant Nutr. 29:1983–1997. 
doi:10.1080/01904160600927997

Arnall, D.B., B.S. Tubaña, S.L. Holtz, K. Girma, and W.R. Raun. 
2009. Relationship between nitrogen use efficiency and 
response index in winter wheat. J. Plant Nutr. 32:502–515. 
doi:10.1080/01904160802679974

http://dx.doi.org/10.2134/agronj2013.0034
http://dx.doi.org/10.2134/agronj2013.0034
http://dx.doi.org/10.1080/01904160600927997
http://dx.doi.org/10.1080/01904160802679974


6 Agronomy Journa l  •  Volume 108, Issue 5 •  2016

Biello, D. 2008. Fertilizer runoff overwhelms streams and rivers—
Creating vast “dead zones.” Scientific American 3/14/2008.

Briggs, L.J., and H.L. Shantz. 1917. A comparison of the hourly tran-
spiration rate of atmometers and free water surfaces with the 
transpiration rate of Medicago sativa. J. Agr. Res. IX(9):279–292, 
plates 4–6.

Bundy, L.G., and T.W. Andraski. 2004. Diagnostic for site-specific 
nitrogen recommendations for winter wheat. Agron. J. 96:608–
614. doi:10.2134/agronj2004.0608

Bushong, J.T., J.L. Mullock, E.C. Miller, W.R. Raun, A.R. Klatt, and 
D. B. Arnall. 2015. Development of an in-season estimate of yield 
potential utilizing optical crop sensors and soil moisture data for 
winter wheat. Prec. Agric. doi:10.1007/s11119-016-9430-4

Charles, D. 2015. Iowa’s largest city sues over farm fertilizer runoff in 
rivers. NPR News, Washington, DC.

Ciampitti, I.A., and T.J. Vyn. 2014. Understanding global and histori-
cal nutrient use efficiencies for closing maize yield gaps. Agron. J. 
106:2107–2117. doi:10.2134/agronj14.0025

Fowler, D.B. 2003. Crop nitrogen demand and grain protein con-
centration of spring and winter wheat. Agron. J. 95:260–265. 
doi:10.2134/agronj2003.0260

Franzen, D., L.K. Sharma, and H. Bu. 2014. Active optical sensor algo-
rithms for corn yield prediction and a corn side-dress nitrogen 
rate aid. NDSU Circ. SF1176-5, North Dakota State Univ. Ext. 
Serv., Fargo.

Freeman, K.W., K. Girma, R.W. Mullen, R.K. Teal, and W.R. Raun. 
2007. By-plant prediction of corn forage biomass and nitrogen 
uptake at various growth stages using remote sensing and plant 
height. Agron. J. 99:530–536. doi:10.2134/agronj2006.0135

Fuglie, K.O., and C.A. Kascak. 2015. Adoption and diffusion of nat-
ural-resource-conserving agricultural technology. Rev. Agric. 
Econ. 23:386–403. doi:10.1111/1467-9353.00068

Fung, T., and W. Siu. 2000. Environmental quality and its changes, 
an analysis using NDVI. Int. J. Remote Sens. 21:1011–1024. 
doi:10.1080/014311600210407

Girma, K., K.L. Martin, R.H. Anderson, D.B. Arnall, K.D. Brixey, 
M.A. Casillas et al. 2006. Mid-Season Prediction of Wheat Grain 
Yield Potential Using Plant, Soil, and Sensor Measurements. J. 
Plant Nutr. 29:873–897. doi:10.1080/01904160600649187

Hodgen, P.J., W.R. Raun, G.V. Johnson, R.K. Teal, K.W. Freeman, 
K.B. Brixey et al. 2005. Relationship between response indices 
measured in-season and at harvest in winter wheat. J. Plant Nutr. 
28:221–235. doi:10.1081/PLN-200047605

Holland, K.H., D.W. Lamb, and J.S. Schepers. 2012. Radiometry of 
proximal active Optical sensors (AOS) for agricultural sensing. 
IEEE 5:1793–1802.

Holland, K.H., and J.S. Schepers. 2010. Derivation of a variable rate 
nitrogen application model for in-season fertilization of corn. 
Agron. J. 102:1415–1424. doi:10.2134/agronj2010.0015

Holland, K.H., and J.S. Schepers. 2011. Active-crop sensor calibration 
using the virtual reference concept. In: J.V. Stafford, editor, Pre-
cision Agriculture 2011. Czech Centre for Science and Society, 
Prague, Czech Republic. p. 469–479.

Holland, K.H., and J.S. Schepers. 2012. Use of a virtual-reference 
concept to interpret active crop canopy sensor data. Precis. Agric. 
14:71–85. doi:10.1007/s11119-012-9301-6

Kelly, J.P., J.L. Crain, and W.R. Raun. 2015. By-plant prediction of 
corn (Zea mays L.) grain yield using height and stalk diameter. 
Commun. Soil Sci. Plant Anal. 46:564–575. doi:10.1080/0010
3624.2014.998340

Kitchen, N.R., K.A. Sudduth, S.T. Drummond, P.C. Scharf, H.L. 
Palm, D.F. Roberts, and E.D. Vories. 2010. Ground-based canopy 
reflectance sensing for variable-rate nitrogen corn fertilization. 
Agron. J. 102:71–84. doi:10.2134/agronj2009.0114

Large, E.C. 1954. Growth stages in cereals. Plant Pathol. 3:128–129. 
doi:10.1111/j.1365-3059.1954.tb00716.x

Lory, J.A., and P.C. Scharf. 2003. Yield goal versus delta yield for pre-
dicting fertilizer nitrogen need in corn. Agron. J. 95:994–999. 
doi:10.2134/agronj2003.0994

Lukina, E.V., K.W. Freeman, K.J. Wynn, W.E. Thomason, R.W. 
Mullen, A.R. Klatt et al. 2001. Nitrogen fertilization opti-
mization algorithm based on in-season estimates of yield and 
plant nitrogen uptake. J. Plant Nutr. 24:885–898. doi:10.1081/
PLN-100103780

Mosse, J. 1990. Nitrogen-to-protein conversion factor for ten cere-
als and six legumes or oilseeds. A reappraisal of its definition 
and determination. Variation according to species and to seed 
protein content. J. Agric. Food Chem. 38:18–24. doi:10.1021/
jf00091a004

Mullen, R.W., K.W. Freeman, W.R. Raun, G.V. Johnson, M.L. Stone, 
and J.B. Solie. 2003. Identifying an in-season response index and 
the potential to increase wheat yield with nitrogen. Agron. J. 
95:347–351. doi:10.2134/agronj2003.0347

Ortiz-Monasterio, J.I., and W.R. Raun. 2007. Reduced nitrogen and 
improved farm income for irrigated spring wheat in the Yaqui 
Valley, Mexico, using sensor based nitrogen management. J. 
Agric. Sci. 145:1–8.

Peterson, T.A., T.M. Blackmer, D.D. Francis, and J.S. Schepers. 1993. 
Using a chlorophyll meter to improve N management. NebGuide 
G93-1171A. Coop. Ext. Serv., Univ. of Nebraska-Lincoln.

Raun, W.R., and G.V. Johnson. 1999. Improving nitrogen use effi-
ciency for cereal production. Agron. J. 91:357–363. doi:10.2134/
agronj1999.00021962009100030001x

Raun, W.R., G.V. Johnson, M.L. Stone, J.B. Solie, E.V. Lukina, W.E. 
Thomason, and J.S. Schepers. 2001. In-season prediction of 
potential grain yield in winter wheat using canopy reflectance. 
Agron. J. 93:131–138. doi:10.2134/agronj2001.931131x

Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, R.W. Mullen, K.W. 
Freeman et al. 2002. Improving nitrogen use efficiency in cereal 
grain production with optical sensing and variable rate applica-
tion. Agron. J. 94:815–820. doi:10.2134/agronj2002.8150

Raun, W.R., J.B. Solie, G.V. Johnson, M.L. Stone, R.W. Whitney, H.L. 
Lees, H. Sembiring, and S.B. Phillips. 1998. Micro-variability in 
soil test, plant nutrient, and yield parameters in bermudagrass. 
Soil Sci. Soc. Am. J. 62:683–690.

Raun, W.R., J.B. Solie, and M.L. Stone. 2010. Independence of yield 
potential and crop nitrogen response. Precis. Agric. 12:508–518. 
doi:10.1007/s11119-010-9196-z

Raun, W.R., J.B. Solie, M.L. Stone, K.L. Martin, K.W. Freeman, R.W. 
Mullen et al. 2005. Optical sensor based algorithm for crop nitro-
gen fertilization. Commun. Soil Sci. Plant Anal. 36:2759–2781. 
doi:10.1080/00103620500303988

Ribaudo, M., J. Delgado, L. Hansen, M. Livingston, R. Mosheim, and 
J. Williamson. 2011. Nitrogen in agricultural systems: Implica-
tions for conservation policy. Economic Res. Rep. ERR-187. 
USDA, Washington, DC.

Roberts, D.F., R.B. Ferguson, N.R. Kitchen, V.I. Adamchuk, and J.F. 
Shanahan. 2012. Relationships between soil-based management 
zones and canopy sensing for corn nitrogen management. Agron. 
J. 104:119–129. doi:10.2134/agronj2011.0044

Rouse, J.W., R.H. Haas, J.A. Scheel, and D.W. Deering. 1974. Moni-
toring vegetation systems in the Great Plains with ERTS. Pro-
ceedings, 3rd Earth Resource Technology Satellite (ERTS) 
Symposium, Washington, DC. Vol. 1. 10–14 Dec. 1973. God-
dard Space Flight Ctr., Greenbelt, MD. p. 48–62.

Scharf, P.C., and J.A. Lory. 2009. Calibrating reflectance measure-
ments to predict optimal sidedress nitrogen rates for corn. Agron. 
J. 101(3):615–625. doi:10.2134/agronj2008.0111

http://dx.doi.org/10.2134/agronj2004.0608
http://dx.doi.org/10.2134/agronj14.0025
http://dx.doi.org/10.2134/agronj2003.0260
http://dx.doi.org/10.2134/agronj2006.0135
http://dx.doi.org/10.1111/1467-9353.00068
http://dx.doi.org/10.1080/014311600210407
http://dx.doi.org/10.1080/01904160600649187
http://dx.doi.org/10.1081/PLN-200047605
http://dx.doi.org/10.2134/agronj2010.0015
http://dx.doi.org/10.1007/s11119-012-9301-6
http://dx.doi.org/10.1080/00103624.2014.998340
http://dx.doi.org/10.1080/00103624.2014.998340
http://dx.doi.org/10.2134/agronj2009.0114
http://dx.doi.org/10.1111/j.1365-3059.1954.tb00716.x
http://dx.doi.org/10.2134/agronj2003.0994
http://dx.doi.org/10.1081/PLN-100103780
http://dx.doi.org/10.1081/PLN-100103780
http://dx.doi.org/10.1021/jf00091a004
http://dx.doi.org/10.1021/jf00091a004
http://dx.doi.org/10.2134/agronj2003.0347
http://dx.doi.org/10.2134/agronj1999.00021962009100030001x
http://dx.doi.org/10.2134/agronj1999.00021962009100030001x
http://dx.doi.org/10.2134/agronj2001.931131x
http://dx.doi.org/10.2134/agronj2002.8150
http://dx.doi.org/10.1007/s11119-010-9196-z
http://dx.doi.org/10.1080/00103620500303988
http://dx.doi.org/10.2134/agronj2011.0044
http://dx.doi.org/10.2134/agronj2008.0111


Agronomy Journa l  •  Volume 108, Issue 5 •  2016 7

Scharf, P.C., D.K. Shannon, H.L. Palm, K.A. Sudduth, S.T. Drum-
mond, N.R. Kitchen et al. 2011. Sensor-based nitrogen appli-
cations out-performed producer-chosen rates for corn in 
on-farm demonstrations. Agron. J. 103:1683–1691. doi:10.2134/
agronj2011.0164

Scharf, P.C., W.J. Wiebold, and J.A. Lory. 2002. Corn yield response 
to nitrogen fertilizer timing and deficiency level. Agron. J. 
94:435–441. doi:10.2134/agronj2002.4350

Schepers, J.S., and K.H. Holland. 2012. Evidence of dependence 
between crop vigor and yield. Precis. Agric. 13:276–284. 
doi:10.1007/s11119-012-9258-5

Shanahan, J.F., N.R. Kitchen, W.R. Raun, and J.S. Schepers. 2008. 
Responsive in-season nitrogen management for cereals. Comput. 
Electron. Agric. 61:51–62. doi:10.1016/j.compag.2007.06.006

Sheridan, A.H., N.R. Kitchen, K.A. Sudduth, and S.T. Drummond. 
2012. Corn hybrid growth stage influence on crop reflectance 
sensing. Agron. J. 104:158–164. doi:10.2134/agronj2011.0213

Solari, F., J. Shanahan, R. Ferguson, J. Schepers, and A. Gitelson. 
2008. Active sensor reflectance measurements of corn nitrogen 
status and yield potential. Agron. J. 100:571–579. doi:10.2134/
agronj2007.0244

Solie, J.B., A.D. Monroe, W.R. Raun, and M.L. Stone. 2012. Gener-
alized algorithm for variable nitrogen rate application in cereal 
grains. Agron. J. 104:378–387.

Solie, J.B., W.R. Raun, and M.L. Stone. 1999. Submeter spatial vari-
ability of selected soil and bermudagrass production variables. Soil 
Sci. Soc. Am. J. 63:1724–1733. doi:10.2136/sssaj1999.6361724x

Sowers, K.E., W.L. Pan, B.C. Miller, and J.L. Smith. 1994. Nitrogen 
use efficiency of split nitrogen applications in soft white winter 
wheat. Agron. J. 86:942–948. doi:10.2134/agronj1994.0002196
2008600060004x

Spiertz, J.H., and N.M. DeVos. 1983. Agronomical and physiological 
aspects of the roles of nitrogen in yield formation of cereals. Plant 
Soil 75:379–391. doi:10.1007/BF02369972

Stone, M.L., J.B. Solie, R.W. Whitney, W.R. Raun, and H.L. Lees. 
1996. Sensors for detection of nitrogen in winter wheat. SAE 
Technical paper series. SAE Paper no. 961757. Soc. for Agric. 
Eng., Warrendale, PA. doi:10.4271/961757

Thomason, W.E., W.R. Raun, G.V. Johnson, K.W. Freeman, K.J. 
Wynn, and R.W. Mullen. 2002. Production system techniques 
to increase nitrogen use efficiency in winter wheat. J. Plant Nutr. 
25:2261–2283. doi:10.1081/PLN-120014074

Tubaña, B.S., D.B. Arnall, O. Walsh, B. Chung, J.B. Solie, K. 
Girma, and W.R. Raun. 2008. Adjusting midseason nitro-
gen rate using a sensor-based optimization algorithm to 
increase use efficiency in corn. J. Plant Nutr. 31:1393–1419. 
doi:10.1080/01904160802208261

Tubaña, B.S., D.L. Harrell, T. Walker, J. Teboh, J. Lofton, and Y. 
Kanke. 2012. In-season canopy reflectance-based estimation 
of rice yield response to nitrogen. Agron. J. 104:1604–1611. 
doi:10.2134/agronj2012.0214

van Es, H.M., B.D. Kay, J.J. Melkonian, and J.M. Sogbedji. 2007. 
Nitrogen management under maize in humid regions: Case for 
a dynamic approach. In: T. Bruulsema, editor, Managing crop 
nutrition for weather. Int. Plant Nutrition Inst. Publ. Cornell 
Univ., Ithaca, NY. p. 6–13.

Varvel, G.E., J.S. Schepers, and D.D. Francis. 1997. Ability for in-
season correction of nitrogen deficiency in corn using chloro-
phyll meters. Soil Sci. Soc. Am. J. 61:1233–1239. doi:10.2136/
sssaj1997.03615995006100040032x

http://dx.doi.org/10.2134/agronj2011.0164
http://dx.doi.org/10.2134/agronj2011.0164
http://dx.doi.org/10.2134/agronj2002.4350
http://dx.doi.org/10.1007/s11119-012-9258-5
http://dx.doi.org/10.1016/j.compag.2007.06.006
http://dx.doi.org/10.2134/agronj2011.0213
http://dx.doi.org/10.2134/agronj2007.0244
http://dx.doi.org/10.2134/agronj2007.0244
http://dx.doi.org/10.2136/sssaj1999.6361724x
http://dx.doi.org/10.2134/agronj1994.00021962008600060004x
http://dx.doi.org/10.2134/agronj1994.00021962008600060004x
http://dx.doi.org/10.1007/BF02369972
http://dx.doi.org/10.4271/961757
http://dx.doi.org/10.1081/PLN-120014074
http://dx.doi.org/10.1080/01904160802208261
http://dx.doi.org/10.2134/agronj2012.0214
http://dx.doi.org/10.2136/sssaj1997.03615995006100040032x
http://dx.doi.org/10.2136/sssaj1997.03615995006100040032x

