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The development of locally based precision N recom-
mendation algorithms is complicated by soil, weather, 
management, and genetic interactions (Tremblay et al., 

2012). A recent paper (Morris et al., 2018) provides a history 
of this process. Many N recommendation models have been 
developed to help producers maximize corn yield by predicting 
the economic optimum nitrogen rate (EONR). The earliest N 
recommendation tools were developed based on “yield goal” 
assumption. The yield goal–based N recommendations were the 
predominant approach from the 1970s until the early 2000s, 
when the Maximum Return to N (MRTN) system of N rec-
ommendations was developed for a large area of the US Corn 
Belt (Sawyer et al., 2006). This system uses regionally specific 
N response functions within state boundaries, determined by 
researchers across corn-growing states and growing seasons, to 
calculate a net profit return to N curve. The suggested N rate is 
identified where the net return to N reaches a maximum.

Remote sensing–based approaches have also been used for 
N management. Several different approaches and indices to 
determine spectral signatures of corn canopies have been pro-
posed (Rhezali et al., 2018). Based on the reflectance signatures, 
various algorithms and protocols were developed to determine 
EONR for corn (Barker and Sawyer, 2010; Dellinger et al., 
2008; Holland and Schepers, 2013; Kitchen et al., 2010; Lukina 
et al., 2001; Raun et al., 2001, 2002; Scharf and Lory, 2009; 
Schmidt et al., 2009; Tubaña et al., 2008).
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AbsTRAcT
Determination of in-season N requirement for corn (Zea mays L.) 
is challenging due to interactions of genotype, environment, and 
management. Machine learning (ML), with its predictive power 
to tackle complex systems, may solve this barrier in the develop-
ment of locally based N recommendations. The objective of this 
study was to explore application of ML methodologies to predict 
economic optimum nitrogen rate (EONR) for corn using data 
from 47 experiments across the US Corn Belt. Two features, a 
water table adjusted available water capacity (AWCwt) and a ratio 
of in-season rainfall to AWCwt (RAWCwt), were created to cap-
ture the impact of soil hydrology on N dynamics. Four ML mod-
els—linear regression (LR), ridge regression (RR), least absolute 
shrinkage and selection operator (LASSO) regression, and gradi-
ent boost regression trees (GBRT)—were assessed and validated 
using “leave-one-location-out” (LOLO) and “leave-one-year-out” 
(LOYO) approaches. Generally, RR outperformed other models 
in predicting both at planting and split EONR times. Among the 
47 tested sites, for 33 sites the predicted split EONR using RR fell 
within the 95% confidence interval, suggesting the chance of using 
the RR model to make an acceptable prediction of split EONR 
is ~70%. When RR was used to test split EONR prediction with 
input weather features surrogated with 10 yr of historical weather 
data, the model demonstrated robustness (MAE, 33.6 kg ha–1; 
R2  = 0.46). Incorporating mechanistically derived hydrological 
features significantly enhanced the ability of the ML procedures 
to model EONR. Improvement in estimating in-season soil hydro-
logical status seems essential for success in modeling N demand.
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core Ideas
•	 A Machine Learning approach was innovatively used to predict corn 

EONR.
•	 Two features were created to approximate hydrological conditions 

for modeling EONR.
•	 Soil hydrology conditions were found essential in successful model-

ing in-season EONR.

sOIL feRTILITY AnD cROP nUTRITIOn

Published October 18, 2018



Agronomy Journa l  •  Volume 110, Issue 6 •  2018 2597

Application of computer simulation models is a recent devel-
opment to provide site-specific in-season N recommendations 
(Basso et al., 2012; Dumont et al., 2016; Puntel et al., 2016). 
Such models integrate soil, weather, crop, and management into 
a large interconnected set of mathematical equations that cal-
culate important physical and physiological processes involved 
in crop development and yield formation (Morris et al., 2018). 
Nitrogen demand predicted by computer simulation models 
is based on explicit model-generated estimates of N supply, N 
loss, and crop N uptake at the time of in-season application. 
Adapt-N (Melkonian et al., 2008) and Maize-N (Setiyono et al., 
2011) are two N recommendation systems based on computer 
simulation models.

Other N recommendation approaches include soil N testing 
(Dahnke and Vasey, 1973; Magdoff et al., 1984; Schepers et al., 
1986) and plant tissue testing (Ma et al., 2005; Scharf, 2001). 
These recommendation approaches rely on simple tests and 
often limited information available up to the time fertilization 
is performed (e.g., pre-plant, sidedress), yet they are often judged 
against EONR, which encompasses full-season effects of G × 
E × M factors, where G represents genetic characteristics and 
phenotype expressions, such as degree days required for flowering 
and maturity; E represents environmental variables, including 
weather, soil, and topographic information that is relevant to the 
crop–soil N cycle; and M represents management variables, such 
as planting date, N application dates, etc. Recommendations that 
better embrace the complexity of G × E × M factors are needed.

An alternative modeling approach for determining the corn 
N fertilizer recommendations that we explore here entails the 
use of machine learning (ML) methodologies. Machine learn-
ing belongs to the artificial intelligence domain of the computer 
science field. Machine learning algorithms use modern comput-
ing power to directly “learn” from data without being explicitly 
programmed by any predetermined models (Samuel, 1959). In 
general, there are two categories of ML: supervised learning and 
unsupervised learning. Supervised learning involves learning 
mapping functions from input variables to output (or target) 
variables. Supervised learning algorithms are most commonly 
used by ML practitioners to solve real-world problems. Some 
common supervised learning algorithms include regression, ran-
dom forests for regression and classification, and support vector 
machines for classification. Unsupervised learning involves 
inferring a function that describes the structure of data that are 
unlabeled (i.e., there are no labeled outputs). The most common 
unsupervised learning algorithm is clustering analysis.

The distinction between statistics and ML is sometimes 
blurry, but there are certain characteristics that differentiate ML 
from statistics. Usually there are more input variables (features) 
involved in ML than traditional statistics. These features may or 
may not physically explain the target variable and significance of 
the individual feature is less important. Machine learning is more 
concerned with boosting the predictive power of the model using 
combinations of features. Especially when many features are used 
to build an ML model, overfitting or an overspecialization to the 
data used to generate the model may be an issue. Machine learn-
ing approaches often guard against this problem by using tech-
niques like regularization and cross-validation. Although it is not 
the case with this study, ML learning may involve a larger amount 
of data than traditional statistics can handle.

Machine learning algorithms of many types exist, but most 
iteratively optimize algorithmic structures and parameters 
to predict the target variable from the input features. One 
advantage of applying ML to model a complex system is that 
ML bypasses all intermediate processes otherwise explicitly 
explained by a mechanistic modeling system, such as Maize-N, 
and makes a prediction directly based on input information. In 
this study, a few ML algorithms were used to learn the behavior 
of an underlying N process from input feature data (i.e., soil, 
weather, and management information) collected in conjunc-
tion with the target variable (in this case measured EONR).

Numerous studies have applied ML to answer agronomic 
questions (Gonzalez-Sanchez et al., 2014; Jeong et al., 2016; 
Karimi et al., 2008; McQueen et al., 1995; Morellos et al., 2016; 
Rumpf et al., 2010; Shekoofa et al., 2014). There has been no 
documented attempt to apply ML to predict season-long corn N 
demand. A likely reason is that ML has larger data requirements 
than typically measured in traditional agronomic experiments. 
In addition, G × E × M interactions drive soil N supply and 
plant N uptake, so the modeling approach needs to be trained 
with a large set of potential environmental conditions to accu-
rately predict N needs. Typically, controlled N experiments 
developed to predict in-season N demand do not cover a suf-
ficiently large number of different environments. An exception 
is the research of Tremblay et al. (2012), which examined the 
results of 51 N trials conducted across a wide geographic region. 
Their meta-analysis (not ML techniques) revealed relationships 
between corn yield response to N with soil texture and rainfall 
patterns. Xie et al. (2013) also conducted a meta-analysis based 
on data collected from multiyear N trials at 60 locations in 
Quebec; finding corn yield response to in-season N applica-
tion was reduced with low accumulated corn heat units, low 
precipitation, and uneven precipitation before sidedressing. Soil 
variables were not examined in this study.

In 2014, a public-private collaborative project entitled 
“Performance and Refinement of N Fertilization Tools” was 
launched by DuPont Pioneer, USDA–ARS Cropping Systems 
and Water Quality Unit, and eight participating public land-
grant midwestern universities, including University of Illinois, 
Iowa State University, University of Minnesota, University 
of Missouri, University of Nebraska, North Dakota State 
University, Purdue University, and University of Wisconsin-
Madison (Kitchen et al., 2017). One objective of this study was to 
evaluate corn response to N fertilizer timing and rate, soil prop-
erties, and weather conditions with standardized protocols and 
methods across a wide range of corn-growing environments in the 
midwestern United States. The project lasted 3 yr (2014–2016) 
and generated multiple datasets that provide valuable information 
for testing ML methods for predicting in-season corn N needs.

The objective of this study was to develop ML models to 
predict EONR at planting and for split application timings and 
to test the in-season application of the model using historical 
weather and model-derived features.

MATeRIALs AnD MeTHODs
experimental Design and site Level  

economic Optimum n Rate Description
Details on the field research across the eight states in the proj-

ect are presented in Kitchen et al. (2017). In general, two sites 
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were selected each year from each state based on contrasting 
soil productivity. Individual principal investigators decided if 
new sites were to remain on the same farm or if different farms 
were to be chosen, but in all cases they were unique fields. In 
total, 49 corn N response trials were selected. Locations encom-
passed a major portion of the Corn Belt, representing a wide 
range of soils and climatic conditions across six North America 
level II ecoregions (temperate prairies, west central semiarid 
prairies, south central semiarid prairies, central US plains, 
southeastern US plains, and mixed wood plains) (Commission 
for Environmental Cooperation, 1997). Across all locations, a 
consistent randomized complete block design with N timing 
and rate treatments replicated four times was used (Table 1). 
Treatments 1 through 8 tested N response to a planting time 
N application; Treatments 1, 2, and 9 through 14 evaluated 
N response for a split application with 45 kg N ha–1 at plant-
ing and the remainder as a sidedress N application around the 
V9 corn development stage. Treatment 1 (0 N treatment) was 
included with both N application timings. Hybrids differed 
among locations based on the typical maturity rating of hybrids 
used for the region. Average research area size per site was 0.4 
ha to minimize soil and landscape variability within the experi-
ments. Grain mass from each plot was measured after plant 
physiological maturity by hand- or combine harvesting. Grain 
yields were then adjusted to a standard moisture of 155 g kg–1.

A quadratic-plateau model using SAS NLIN proc (SAS 
Institute, Cary, NC) was used to describe yield response to N 
rate for data of each treatment block within each field. To derive 
site-level EONR, yield and N data from all blocks for each site 
were used to fit the quadratic-plateau model (Kitchen et al., 
2017) for each N application timing. To reduce data noise due 
to within-field variability, site level EONR was used in this study.

Among the 49 corn N response trials, 47 sites were used for 
further analysis. We removed two locations from the analysis 
(SCAL 2015 and Amenia 2016; see Table 1 of Kitchen et al. 
[2017] for site details) because of concerns about data reliability. 
For SCAL 2015, measured N response was compromised by the 
carryover effect of hail-damaged soybean plants of the previous 
season. For Amenia 2016, a urea and ammonium fertilizer was 
errantly applied in June, resulting in invalid yield response data 
for EONR calculation.

environmental Data,  
feature extraction, and selection

Weather data from each research site were obtained using 
onsite automatic U30 HOBO weather stations (Onsite Corp., 
Bourne, MA). Raw temperature and rainfall observations taken 
by the sensor every 15 min were summarized to maximum 
temperature, minimum temperature, and total precipitation 
on a daily basis. The summarized daily data were then quality 
checked against interpolated temperature data and multiradar 
multisensor rainfall data (The National Severe Storms Lab, 
NOAA). Any outliers and missing values were identified and 
replaced by the interpolated temperature or multiradar mul-
tisensor rainfall. The Bristow–Campbell equation (Bristow 
and Campbell, 1984) was used to calculate daily global solar 
radiation based on daily maximum temperature, minimum 
temperature, and rainfall. The Bristow–Campbell model was 
parameterized based on ground observational data collected 

from 239 weather stations across contiguous US states during 
1961 to 1990 (Renewable Resources Data Center, Golden, CO).

Soil profile samples were taken from each of the four blocks 
of the project sites in the spring before planting and N applica-
tion. Sampling depths were partitioned by natural soil horizons. 
Soil data used in this analysis included texture (sand, clay, and 
silt percent), percent organic matter, cation exchange capacity, 
and bulk density. These samples were further processed and 
analyzed to generate soil hydraulic and nutrient information 
(Kitchen et al., 2017). Annual minimum water table depth was 
extracted from the Soil Survey Geographic Database SSURGO 
(Natural Resources Service, USDA) for each site.

A common first step in the development of an ML model is to 
engineer or extract n-dimensional input features (Xs) to capture 
useful information that contributes to the predicted value (y). 
Based on the measured data, the geospatial location of the experi-
ments, and experimental metadata (e.g., planting date and com-
parative relative maturity), we developed or transformed base data 
into a range of input features that correlate to physical, chemical, 
and physiological processes in the corn cropping system (Table 2).

Weather features were created for each site-year combination 
by aggregating weather data into five periods that characterize 
corn development based on planting date, intermediate pheno-
logical stages, and measured maturity (Table 3). The first period 
(P1) encompasses January first through planting. Weather 
conditions in this period determine planting time N and soil 
water status. Periods 2 through 5 represent the complete corn 
life cycle, which was divided into early and late vegetative stages 
(Periods 2 and 3) and early and late reproductive stages (Periods 
4 and 5). Daily maximum and minimum temperatures were 
averaged to obtain daily average temperatures. Daily average 
temperatures and daily total solar radiation during each of the 
five periods were averaged to create temperature and radiation 
features. Daily precipitation data were summed to obtain total 
precipitation for each of the five periods. Fifteen weather fea-
tures tied to crop phenology were created in total.

To use the EONR values for an in-season recommendation, 
in-season weather features are needed up to the time of yield 
realization. However, future weather events are unknown at the 

Table 1. Nitrogen treatments to test yield response to at-planting 
N application (1–8) and split applied with sidedress at V9 ± 1 leaf 
stage (1, 2, 9–14) across 49 Corn Belt locations.
Treatment N at planting Sidedress N Total N

———————— kg N ha–1 ————————
1 0 0 0
2 45 0 45
3 90 0 90
4 135 0 135
5 180 0 180
6 225 0 225
7 270 0 270
8 315 0 315
9 45 45 90
10 45 90 135
11 45 135 180
12 45 180 225
13 45 225 270
14 45 270 315
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time of N application. To represent the inherent stochasticity 
of weather outcomes for the unknown portion of the growing 
season, we developed weather feature data for the period after N 
application date of the study year using the last 10 yr of histori-
cal weather data for each site. This resulted in a separate set of 
weather features for each historical year. Physiological maturity 
dates needed to identify the phenologically significant periods 
were simulated based on tested hybrids and planting dates for 
each historical season using DSSAT Ceres Maize 4.0 model. 
Genetic coefficients used were previously parameterized for 
Pioneer hybrids (Wei et al., 2009).

Soil features were created using depth-weighted averages 
of measured soil data up to 1 m, assuming corn root activi-
ties mainly occur within this depth across US Corn Belt. To 
account for diminishing root length with increased soil depth, 
three weights were used to aggregate soil property measure-
ments throughout the profile: 0.5 for depths of 0 to 0.3 m, 0.3 
for depths of 0.3 to 0.6 m, and 0.2 for depths 0.6 to 1 m. This 
approach allows the model to represent the effect of soil attri-
butes in the primary root zone and reduces the need to include 
extra model features for multiple soil profile layers.

In addition to soil features created using measured soil data, 
two more features were created to represent field-level soil 
hydrological conditions in late spring and early summer: water 
table adjusted available water capacity (AWCwt) and a ratio of 
cumulative in-season rainfall to AWCwt (RAWCwt). We cre-
ated these two features based on two considerations: (i) weather 
is typically wet during late spring and early summer across much 
of the US Corn Belt, and (ii) excessive moisture trapped in fine-
textured soils (e.g., silty clay, clay loam, etc.) causes temporarily 
raised water tables and saturated soils, resulting in N loss due to 
denitrification or leaching. It is assumed under wet conditions 
that the amount of N lost is negatively correlated to the ability 
of a soil to hold water above the saturated zone, approximated 
by water table depth in this study.

Water table adjusted available water capacity was formulated as:

wt wtAWC AWC   Depth= ×  [1]

where AWC is the available water capacity calculated from the 
measured soil texture and organic matter data by pedotrans-
fer functions (Saxton and Rawls, 2006), and Depthwt is the 

minimum water table depth in late spring and early summer 
obtained from SSURGO. One meter was set as the maximum 
water table depth to avoid overestimation of water holding 
capacity in the root zone.

The ratio of in-season rainfall to AWCwt (RAWCwt) is another 
feature created to account for the effect of in-season rainfall on N 
loss considering soil water holding capacity. It was formulated as:

inseason
wt

wt

Rain_RAWC  
AWC

=  [2]

where Rain_inseason represents cumulative rainfall from plant-
ing time through maturity.

A large RAWCwt value indicates high in-season rainfall com-
pounded with reduced AWCwt, increasing the probability of 
N loss due to denitrification or leaching. For a wet season with 
high in-season rainfall, denitrification may happen in fine-tex-
tured soils with small AWCwt, whereas leaching is more likely 
to occur in coarse-textured soils also having small AWCwt. Due 
to the small plot size of the trial, topographic effects on AWCwt 
were not discussed in this study.

Management features included planting date, N application 
date (both planting time and sidedress application dates), and 
physiological maturity date. These dates were represented by 
number of days of the year in numeric values. In addition, an 
indicator variable was created to flag N application time, with 1 
indicating planting-time application and 2 indicating sidedress-
time application.

Some candidate features are more relevant than others when 
predicting EONR. Moreover, some features, such as sand percent 
and available water content, are highly correlated, which could 
cause overfitting of the model. To mitigate this and to improve 
prediction efficiency and accuracy, a recursive feature elimination 
procedure (Guyon et al., 2002) was used to recursively remove 
features that are less important and likely redundant. The recur-
sive feature elimination algorithm is first trained on an initial 
set of normalized features to obtain standard model coefficients 
(e.g., the coefficients of a linear model) or feature importance; 
then the feature with the least importance is eliminated from 
current feature set. This feature elimination process is recursively 
performed to obtain a smaller feature set that includes a combina-
tion of features that mostly contribute to the prediction of the 
target variable. In this study, the desired number of features was 
determined by recursively evaluating the model’s predicted R2 
value to ensure elimination of a feature would not compromise 
the model’s predictability. In all, 22 features were selected to build 
a model for in-season N prescription (Table 4).

In some cases, the relationships between the selected input 
features and observed EONR were nonlinear. For this reason, 
second-degree polynomial terms were created to reflect nonlin-
earity of the relationships. The second-degree polynomial terms 

Table 2. Weather, soil, and management data used to extract candidate input features.
Weather data Soil data Management data†
Daily maximum temperature, °C Sand, silt, and clay, % Planting date, DOY
Daily minimum temperature, °C Organic matter N application date, DOY
Daily total precipitation, mm Bulk density Hybrid maturity group, CRM
Daily total global solar radiation, MJ M–2 Cation exchange capacity Physiological maturity date, DOY

Water table depth, mm
† CRM, comparative relative maturity; DOY, day of year.

Table 3. Definition of periods for aggregating weather data to 
create weather features.
Period Definition Approximate crop stage
1 1 Jan. to planting –
2 First quarter of crop cycle Planting to V7
3 Second quarter of crop cycle V7–R1
4 Third quarter of crop cycle R1–R3
5 Fourth quarter of crop cycle R3–R6
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of those selected input variables were included in the input 
feature matrix for evaluation.

Machine Learning  
Algorithms and Model evaluation

Four ML algorithms were tested for modeling EONR. These 
algorithms include linear regression (LR), ridge regression (RR), 
least absolute shrinkage and selection operator (LASSO), and 
gradient boost regression trees (GBRTs).

Linear Regression
Linear regression assumes the input variables have a Gaussian 

distribution. It is also assumed that input variables are relevant 
to the output variable and are not highly correlated with each 
other. The form of LR model is:

0 1 1 2 2 n nY x x x= q +q +q +¼+q  [3]

where Y is the target variable, x1…xn are input variables, and θ1…
θn are coefficients.

To solve for the coefficients, the following cost function is 
minimized:

2

1 1

  
pn

i ij
i

j
j

J y x
= =

æ ö÷ç ÷ç= - q ÷ç ÷÷çè ø
å å  [4]

where J is the cost function, yi is the vector of target variables, xij 
is the input variable matrix, and θj is the vector of coefficients.

With LR, no regularization factor is included to correct model 
overfitting, which is a concern for this dataset because some 
input features may not meet the assumptions that the input vari-
ables are uncorrelated. Also, the ratio of the number of training 
examples to the number of parameters is relatively low, especially 

when second-degree polynomial terms of input features are 
incorporated, causing the parameter matrix to double in size.

Ridge Regression
Ridge regression is a technique used to create parsimonious 

models when a large number of features are present. It functions 
by adding a regularization component to avoid model overfit-
ting. Ridge regression performs L2 regularization, which penal-
izes the coefficients by adding the square of the magnitude of 
the coefficient to the cost function:

2

2
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p pn
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where 2

1

p

j
j=

l qå  is the regularization component, and λ is a regu-

larization factor, which can be optimized by examining valida-
tion error.

LAssO Regression

The least absolute shrinkage and selection operator (LASSO) 
is a modification of LR. Similar to RR, LASSO penalizes the 
magnitude of coefficients to avoid overfitting. The LASSO 
regression performs L1 regularization (i.e., it adds a factor des-
ignated the sum of the absolute value of the coefficients into the 
optimization objective):

2

1 1 1

   
p pn

i ij j j
i j j

J y x
= = =

æ ö÷ç ÷ç= - q + l q÷ç ÷÷çè ø
å å å  [6]

where 
1

p

j
j=

l qå  is the regularization component, which is a
 

summation of the absolute values of the feature coefficients.
Gradient boosted Regression Trees

Table 4. Input features selected by using recursive feature elimination for economic optimum N rate models.
Feature name Description
N_time N application timing (i) at planting or (ii) split application around V9
N_app_DOY N application date, represented by day of year
Temp_1 Average air temperature during first period (1 Jan. to planting)
Temp_2 Average air temperature during second period (planting to V7)
Temp_3 Average air temperature during third period (V7–R1)
Temp_4 Average air temperature during fourth period (R1–R3)
Temp_5 Average air temperature during fifth period (R3–R6)
Precp_1 Total precipitation during first period (1 Jan. to planting)
Precp_2 Total precipitation during second period (planting to V7)
Precp_3 Total precipitation during third period (V7– R1)
Precp_4 Total precipitation during fourth period (R1–R3)
Precp_5 Total precipitation during fifth period (R3–R6)
SolarRad_1 Average solar radiation during first period (1 Jan. to planting)
SolarRad_2 Average solar radiation during second period (planting to V7)
SolarRad_3 Average solar radiation during third period (V7– R1)
SolarRad_4 Average solar radiation during fourth period (R1–R3)
SolarRad_5 Average solar radiation during fifth period (R3–R6)
CEC Cation exchange capacity
OM Organic matter
BD Bulk density
AWCwt Available water capacity adjusted by water table depth
RAWCwt Ratio of in-season rainfall to AWCwt
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Gradient boosted regression trees (GBRT) is an ML regression 
model where decision trees, which individually are weak predictors 
due to their tendency to overfit the data (Rokach and Maimon, 
2008), are combined to form a more robust model in an iterative 
fashion (boosting). For this study, we used XGBoost (eXtreme 
Gradient Boosting), a popular implementation of GBRT avail-
able through the open-source python package XGBoost (Chen 
and Guestrin, 2016). The model offers many opportunities for 
regularization, including regularization on the number of leaves 
and individual leaf weights, shrinkage of newly added trees, and 
column subsampling. The hyperparameters of these regularization 
options were determined through cross-validation.

For Ridge and LASSO regression models, an array of regular-
ization factors (λ) were tested to select the optimal value to achieve 
the highest R2 and lowest mean absolute error (MAE) and RMSE 
from cross-validation. Model hyperparameters for XGBoost were 
tuned using Bayesian optimization (Snoek et al., 2012).

Model Performance evaluation
Three statistics were used to evaluate the performance of the 

four types of models: R2, MAE, and RMS.
The R2 evaluates the proportion of variance in the target vari-

able explained by the model.

�( )2
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21  
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i ii
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y y

−
= −

−
∑
∑

 [7]

Where yi is the observed target variable value, � iy  is the pre-
dicted target variable value, and y  is the mean of observed 
target variable value.

Mean absolute error measures the average magnitude of the 
errors between predicted and observed target variable values. It 
is the average of the absolute differences between prediction and 
actual observations. Because all individual errors have equal weight 
in the calculation, MAE is less sensitive to large prediction errors.
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Root mean square error is another common statistic that 
measures the average magnitude of prediction errors. It is the 
square root of the average of squared differences between pre-
dicted and observed target variables values.
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Because the errors are squared before they are averaged, 
RMSE places high weight to large errors. Thus, it is more sensi-
tive than MAE to large prediction errors. Root mean square 
error is particularly useful to evaluate model performance when 
large errors are unwanted.

The performance of each model was evaluated by using 
leave-one-location-out (LOLO) cross-validation and leave-one-
year-out (LOYO) cross-validation (Hastie et al., 2001). Leave-
one-out works by iteratively leaving out one site or year from the 
original dataset as the validation data and using the remaining 
data to train the model. The model trained on the remaining 
data is then used to predict EONR for the left-out site or year 

from the previous step. This process is repeated so that the 
model validation is iteratively performed for each site or year has 
been left out of the training process. In the last step, the aver-
aged error is computed and used to evaluate the overall model 
performance. Leave-one-out cross-validation is especially useful 
when the size of training data is small.

The model performances are also put into numerical context 
by comparing them with a “null model” result. The null model, 
in this case, is the average of the EONR values in the training 
set. This allows the regression models to be compared with a 
simple constant model that assumes the target EONR values 
have no meaningful relationship to the predictor variables.

Site-level EONR values were derived from yield and N data 
collected from four blocks (replications) within each site. In 
addition to site-level EONR, block-level EONRs were derived 
based on yield and N data collected from each block within a 
site. Variability existed among the block-level EONR within a 
site due to soil and crop variability. To account for the variation 
of EONR values within a site, a 95% confidence interval for each 
site was calculated based on resampled block-level EONR values 
using a bootstrapping procedure (Beran, 1992). Bootstrapping 
is a statistical method of resampling (with replacement) that 
infers population from sample data. It is especially useful when 
the sample size is insufficient for statistical inference, and the 
distribution of a statistic is complicated or unknown. Model pre-
dicted EONR values were then compared with 95% confidence 
interval. If the prediction fell into the confidence interval, the 
prediction was regarded as acceptable; otherwise, it was regarded 
as failing to predict EONR for that site.

ResULTs AnD DIscUssIOn
Relationship between Awcwt and eOnR

The validity of AWCwt as an N loss indicator was evidenced 
by its negative relationship with EONR (Fig. 1). Generally, high 
EONRs are more likely to occur in sandy or sandy loam soils, and 
low EONRs tend to arise in fine-textured soils with higher clay 
content because sandy soils are more likely subject to N loss due 
to leaching. However, there are also some data points with high 
EONRs and low sand content. These may indicate increased N 

Fig. 1. Split application economic optimum N rate (EONR) for 
the 47 N response trials declines with increased water table 
adjusted available water capacity (AWCwt). The size of each point 
represents the percentage of sand at each site.
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loss due to the greater denitrification that occurs in waterlogged 
soils. Table 5 lists those high EONR sites (split EONR >200 kg 
ha –1) where waterlogging happened in near-surface or subsurface 
soils. Except for the 2015 site at Troth where waterlogging was 
mainly caused by a high water table due to proximity to the leveed 
Missouri River, waterlogging was caused by the combined effect of 
the low sand content of soils and a high water table, which trans-
lates to small values of the computed AWCwt feature.

Model evaluation

In this study, model evaluation was conducted for both at-
planting and split N applications with the polynomial order of 
input features set to 1 and 2. Model performance statistics (R2, 
MAE, and RMSE) were reported for all the evaluation scenarios 
(at planting/split application, polynomial order 1/polynomial 
order 2). For clarity of interpretation and to see the accuracy of 
the model at planting and split N application timings, validation 
results are presented for all of these evaluation scenarios (Table 6).

Among the tested models, LR performed the worst across all 
evaluation scenarios. When polynomial order p = 1, LR reported 
R2 of 0.19 and MAE of 50.6 kg ha–1 for at-planting EONR 
and R2 of 0.10 and MAE of 44.8 kg ha–1 for split EONR. The 
low performance of LR was due to overfitting in the training 
folds of the cross-validation. This was especially pronounced 
when the polynomial order was increased to 2 for LR, with no 
meaningful evaluation statistics generated. Ridge regression and 
LASSO algorithms both demonstrated better performance than 
LR. When polynomial order p = 1, RR performed better than 
LASSO in predicting at-planting EONR, with reported R2 of 
0.41 and MAE of 43.4 kg ha–1. When applied to predict split 
EONR, performances of both models were much improved. Both 
RR and LASSO performed similarly with reported R2 values 
of 0.41 to 0.43 and MAE of ~34 kg ha–1. As polynomial degree 
was increased to 2 to account for nonlinear relationships between 
input and target features, RR performed better than LASSO. 
For at-planting EONR prediction, RR reported R2 of 0.41 and 
MAE of 42.9 kg ha–1, and LASSO reported R2 of 0.34 and MAE 
of 46.7 kg ha–1. Ridge regression outperformed LASSO for split 
EONR prediction as well, with reported R2 of 0.43 and MAE 

of 33.2 kg ha–1. Across all evaluation scenarios, the GBRT algo-
rithm generally performed better than LR but worse than RR 
and LASSO algorithms, except for the case of at-planting EONR 
prediction with p = 2 (Table 6).

It is understandable that EONR models performed better 
in predicting N application for split versus at-planting applica-
tions. As the season progresses from planting to sidedress time 
(around V9 leaf stage), part of the uncertainty for in-season N 
management evolves to reality, which makes side-dress EONR 
more predictable. The fact that the models perform better for 
split application than they do for planting-time application can 
also be understood by examining the null model results (Table 6). 
Because the null model is a pure data–driven approximation of 
EONR estimation, the lower error of the null model in predict-
ing split EONR logically indicates using an approach such as 
machine learning would yield similar results (lower MAE/RMSE 
in predicting split EONR than at planting EONR).

Table 5. Waterlogging conditions reported for sites with >200 kg ha–1 split economic optimum N rate from Watermark (placed at 0.30, 
0.60, 0.9, and 1.2 m) and Sentek (measured every 0.05 m from the surface) soil moisture sensors. Waterlogging was defined as a soil con-
dition with measured volumetric water content continuously above soil saturation limit for ≥5 days. Soil volumetric water content was 
obtained by Watermark sensors (2014 and 2016) and Sentek sensors (2015) deployed on the research plots (Kitchen et al., 2017).
Site Year Sand content, % Waterlogging summary
Brownstown 2014 12.7 Waterlogging conditions favorable for denitrification were observed with high precipitation and 

saturated conditions between the 0 and 0.3 m depth from middle of June through early July measured 
by watermark sensor (Watermark 200SS; The Irrometer Company, Inc., Riverside, CA).

Urbana 2014 10.1 Waterlogging conditions at 0.3 m depth from tested blocks from early June through middle July. 
Measured sand content is 4–7% at 0.3 to 0.6 m depth.

Lone Tree 2015 3.9 Waterlogging conditions continuously observed for most of the time during the season from 0.25 
to 0.35 m depth using a Senteck sensor (TriSCAN Sensor; Sentek Sensor Technologies, Stepney, SA, 
Australia). Typical clay-pan soil, confirmed by measured low sand content.

Troth† 2015 39.3 Extended waterlogging above 0.25 m depth during middle June to middle July. High water table caused 
by the site’s proximity to the Missouri River and nearby flooded fields.

Loess 2016 4.4 Waterlogging from 0.3 to 0.6 m depth from May until middle June. Typical clay-pan soil with sand 
ranging from 3 to 7% across the entire profile for all blocks.

Troth 2016 9.9 Waterlogging observed from 0.3 to 0.6 m depth. Soil samples showed very low sand content (1– 5%) 
between the 0.2 and 0.5 m depth.

† Waterlogging due to high water table caused by this site’s proximity to the Missouri River.

Table 6. Comparison of machine learning (ML) algorithms to predict 
economic optimum N rate (EONR) of corn across 47 sites in the 
Corn Belt. Model performance using “leave-one-location-out” vali-
dation was assessed by R2, mean absolute error (MAE), and RMSE 
for scenarios based on at-planting and split N application timings.

Polynomial 
order

ML 
algorithm†

At-planting EONR Split EONR
R2 MAE RMSE R2 MAE RMSE

— kg ha–1— — kg ha–1—
Null model 57.4 68.3 43.3 58.2

1 LR 0.19 50.6 65.2 0.10 44.8‡ 63.1‡
RR 0.40 43.4 56.1 0.41 34.1 47.4
LASSO 0.41 45.3 55.7 0.43 34.0 46.3
GBRT 0.37 45.5 56.9 0.39 36.8 47.8

2 LR§ – – – – – –
RR 0.41 42.9 55.5 0.43 33.2 46.9
LASSO 0.34 46.7 58.5 0.41 34.9 47.2
GBRT 0.39 42.5 56.6 0.40 35.1 47.5

† GBRT, gradient boosted regression trees; LASSO, least absolute 
shrinkage and selection operator regression; RR, ridge regression.
‡ Model failed to generate a prediction better than a null model (aver-
age of target variable in training set).
§ Linear model failed to generate meaningful statistics when the 
second–degree polynomials were included in the model.
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Incorporation of polynomial terms of input features helped 
improve the performance of the tested RR and GBRT algo-
rithms (Table 6). This suggests the existence of nonlinear 
relationships between input features and the target variable 
(EONR) was captured by RR and GBRT models. The LASSO 
algorithm, however, did not benefit from the incorporation of 
polynomial terms of input features.

Considering the existence of soil and crop condition variabil-
ity within a site, site-specific EONR predictions need to be eval-
uated in the context of variability among the block-level EONR 
within a site. Figure 2 shows the predicted split EONR based 
on RR and polynomial order of 2 and the 95% confidence inter-
vals of site EONRs. Among the 47 testing sites, the predicted 
EONR for 33 sites fell into the 95% confidence interval of the 
site EONR, suggesting the model made acceptable predictions 
for 70% of testing sites. Among the 14 sites that had predicted 
EONR values that fell outside of the confidence interval, there 
were three with no or little N observed in the EONR response 
(Belmont 2015, Durbin 2016, SCAL 2016). Clearly, the model 
failed to make good predictions of EONR for these sites. We 
checked the data collected from these locations, but no unique 
conditions could explain the extremely low EONR values. With 
these three sites removed from the dataset, LOLO validation 
improved with a predicted split EONR with an R2 of 0.44 and 
MAE of 28.3 kg ha–1. This suggests that some unique soil/crop 
conditions might have been missed from these sites that would 
help to explain the crop’s lack of response to added N.

On the other hand, field notes and data of in-season soil mois-
ture measurements helped explain why the model failed to predict 
high EONRs observed at some sites. One example was the Troth 

site, which experienced waterlogging during early and middle 
summer of 2015 due to its proximity to the Missouri River. At 
this site, high water levels may have contributed to denitrifica-
tion and slowed plant growth. This condition undoubtedly helps 
explain why the model underpredicted EONR. A similar situ-
ation happened at Brownstown 2014, Urbana 2014, and a few 
other sites (Table 5) where clayey soils and heavy rain raised the 
water table. Extended waterlogging on these sites potentially 
caused low soil N concentration from denitrification and/or 
anaerobic conditions that inhibit crop uptake of N. An important 
input feature to predict EONR, AWCwt, was computed based on 
water table depth reported from the SSURGO database, which 
may not capture seasonal variability of the water table depth at a 
specific location. In addition to the issue with water table depth 
estimate, other documented or undocumented biotic and abiotic 
stresses, such as disease or wind/hail damage, occurred at a few 
other sites and may also have contributed to the model prediction 
error. Given the plot size of the N trials had been large enough, 
those biotic and abiotic stresses could have been captured by near 
real-time remotely sensed imagery data. To enhance the model 
predictability, we recommend incorporating monitored in-season 
soil water (especially water table depth) and crop conditions in 
future research in modeling EONR.

Table 7 presents cross-validation results using a LOYO 
approach. This approach was used to evaluate the stability of 
tested models in capturing the yearly variation of environments. 
The model performance varied among the 3 yr: GBRT outper-
formed RR and LASSO in predicting both at planting and split 
EONR for 2014 and 2015, LASSO made a better prediction for 
at planting EONR for 2016, and RR outperformed other two 

Fig. 2. Comparison of predicted economic optimum N rate (EONR) for sidedress application timing and 95% confidence interval of site 
EONR across 47 sites in the US Corn Belt. The predicted split EONR for sidedress timing (solid black line) was based on ridge regression 
(RR) and a polynomial order of 2. The 95% confidence interval for site EONR (red error bar with median value represented by solid red 
circle) was estimated based on block-level EONR using a bootstrapping procedure. Model performance was evaluated using leave-one-
location-out validation. Mean absolute error was 33.2 kg N ha–1 and R2 = 0.43.
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models to predict split EONR for 2015. All three algorithms 
consistently underperformed in predicting at planting and split 
EONRs for 2015, with reported MAE ranging from 41 to 47 kg 
ha–1 for split EONR prediction and from 62 to 66 kg ha–1 for 
at-planting EONR prediction. This underperformance is likely 
due to unique field situations that happened on a few sites in 
2015 not well represented by the models, as discussed above. The 
outperformance of the three models for predicting EONR for 
2014 (MAE of 29–35 kg ha–1 for at planting prediction, MAE 
of 22–27 kg ha–1 for split prediction) is probably due to the 
absence of those extremely low N response sites.

Even if RR did not perform the best in LOYO validation, 
considering the training data for LOYO validation was only two-
thirds of that used for LOLO validation, RR is still regarded as a 
preferred model for EONR prediction with this dataset.

Modeling consideration Discussion

Economic optimum N rate is a function of G × E × M, which 
can be presented as:

( )EONR  G, E, Mf=  [10]

All terms in Eq. [10] are known to have strong interactions lead-
ing to complicated nonlinear relationships.

There are multiple ways to construct a solution for a sys-
tem such as Eq. [10]: these include mechanistic and empirical 
approaches. A mechanistic approach assumes that a system can 
be understood by defining the form and functions of individual 
parts of the system and the mechanism of how they are coupled. 
Therefore, a mechanistic model solves the target variable or 
output by explicitly determining all initial and intermediate 
parameters. The empirical approach, on the other hand, uses a 
statistical approach to approximate the target variables based 
on empirical observations rather than on mathematically 
describable relationships. Mechanistic modeling is preferred if 
all important processes and variables required to describe the 
system can be explicitly determined or mathematically defined. 
If a system is difficult to mathematically describe due to the 
uncertainty involved in determining input variables and/or 
relationships, an empirical model may be preferred.

In a complex agronomic system, uncertainty exists in some 
input variables and relationships among the variables. However, 
certain components of the system can be explicitly described 
using domain knowledge. In this situation, mechanistic modeling 
complements empirical modeling to solve a complex problem. For 
modeling EONR, in-season soil N dynamics are determined by 
multiple interacting processes divided into soil N losses (leaching, 
denitrification, crop uptake, etc.) and N gains (soil mineraliza-
tion, N fertilizer application, etc.), which cannot be easily mea-
sured or simulated using a simplistic and reliable model. On the 
other hand, mechanistic features based on agronomic domain 
knowledge does contain information that correlates to in-season 
N loss and gain. In this study, AWCwt and RAWCwt are essen-
tially correlative mechanistic features. They represent interactions 
between the amount of water that can be held by soil and other 
key limits to that capacity. This analysis demonstrated that it was 
advantageous to include soil-process components in empirical 
modeling of EONR because these derived features combine soil 
properties and weather information to better explain N loss and 

gain, which is well illustrated in Fig. 3, where EONR is shown as a 
function of the mechanistically derived AWCwt and RAWCwt.

In-season Model Testing Using Historic weather

Machine learning–based EONR models presented in this 
study were trained and validated using the weather data of the 
entire season (from planting to maturity). However, for real-world 
application of this model, weather data for the rest of season are 
unavailable at time of N application. Creation of the weather fea-
ture matrices for in-season model testing was previously detailed. 
In total, 10 input weather feature matrices were created based on 
historical weather data from the previous 10 yr across all study 
sites. The engineered historical weather feature matrices were 
further integrated with soil and management features to form 
complete input feature matrices. To objectively evaluate the model 
performance for a real-world application, LOLO calibration was 
adopted to iteratively predict EONR for each of the site–histori-
cal year combinations using the model optimized through LOLO 
cross validation, which was based on data from remaining sites.

Box-whisker plots show predicted EONR values by site based 
on the RR algorithm and a polynomial level of 2 using real 
weather data up to the time of sidedress and historical weather 
data after sidedress (Fig. 4). The mean value of the 10 predicted 
EONR values for each site was compared with the observed 
EONR for calculation of comparison statistics. Performance 
of the model based on the actual weather for the entire season 
or using historical data post sidedress, resulted in similar R2 
(0.43 vs. 0.46) and MAE (33.2 kg ha–1 vs. 33.6 kg ha–1). This 
suggests stable N recommendation when the model is applied at 
sidedress time (V9 ± 1 leaf stage).

cOncLUsIOn
This study applied ML methodologies to predict planting 

time and split EONR. To support model development, an input 

Table 7. Comparison of machine learning (ML) algorithms to pre-
dict economic optimum N rate (EONR) of corn across 47 sites in 
the Corn Belt. Model performance using leave-one-year-out vali-
dation (LOYO) was assessed by R2, mean absolute error (MAE), 
and RMSE for scenarios based on N applied at-planting and side-
dress application timing. Second-order polynomial (p = 2) terms 
of input features were used for LOYO cross-validation due to 
improved model performance. Evaluation of linear regression is 
not presented in this table because it failed to generate meaning-
ful statistics when p = 2.

 
Year

ML 
algorithm†

At-planting EONR Split EONR
R2 MAE RMSE R2 MAE RMSE

— kg ha–1— — kg ha–1—
2014 RR 0.37 34.9 46.2 0.35 27.2 35.5

LASSO 0.38 35.0 45.7 0.48 25.8 31.5
GBRT 0.58 29.4 37.7 0.60 22.0 27.8

2015 RR 0.21 62.5 72.3 0.39 41.4 56.8
LASSO 0.15 66.5 74.9 0.31 46.7 60.4
GBRT 0.23 60.5 71.3 0.35 41.9 58.4

RR 0.43 46.1 55.1 0.32 40.8 52.4
2016 LASSO 0.48 44.8 52.1 0.43 37.1 47.7

GBRT 0.31 47.9 60.4 0.43 37.0 47.8
† GBRT, gradient boosted regression trees; LASSO, least absolute 
shrinkage and selection operator regression; RR, ridge regression.
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feature matrix was derived based on raw field measurements and 
domain knowledge. Four ML algorithms, LR, RR, LASSO, and 
GBRT were evaluated against EONR derived from yield and N 
measurements from 2014 to 2016 through LOLO and LOYO 
cross-validation. Ridge regression marginally performed bet-
ter in predicting planting time and split EONR than LASSO 
and GBRT algorithms in LOLO cross-validation. In LOYO 
validation, model performances varied depending on evaluation 
scenarios. Among all tested algorithms, LR performed the worst 
due to lack of regularization to correct model overfitting.

We evaluated EONR prediction using the RR model using 
the 95% confidence interval of site EONR, computed based 

on block-level EONR values using a bootstrapping resampling 
procedure. Among the 47 tested sites, for 33 sites the predicted 
split EONR using RR fell within the 95% confidence inter-
val, suggesting the chances of using the RR model to make an 
acceptable prediction of split EONR is around 70%. The RR 
model failed in predicting extremely low EONR values for 
three sites where no special situations were identified in the 
environmental and crop data. Prediction errors for other sites 
were mainly due to inaccurate estimates of in-season water table 
depth by using SSROGO database or in-season biotic and abi-
otic anomalies that were not captured with the data collection. 
Incorporation of in-season monitored information of soil water 

Fig. 3. Illustration of economic optimum N rate (EONR) modeling concept. The x and y axis in this chart are water table adjusted available 
water capacity (AWCwt) and ratio of in-season rainfall to AWCwt (RAWCwt), respectively. The z axis is EONR in kg N ha–1. The curved 
surface represents quadratic model of EONR fitted by the observational data. Data points represent observed split EONRs from the 47 
sites for 2014, 2015, and 2016. (a) and (b) display the same 3-D chart from two different perspectives.
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and crop condition could potentially improve EONR model 
predictability.

To assess model performance at the time of sidedress under 
real-world situations, when future weather data are unavailable, 
it was an effective strategy to combine historical weather data 
with the current season’s weather. This also enabled evaluating 
the uncertainty of the prediction based on the range of weather 
outcomes represented by the historical data. The RR algorithm 
selected in this study displays robustness in predicting split appli-
cation EONR, with R2 values of 0.46 and MAE of 33.6 kg ha–1.

Incorporating mechanistically derived soil hydrological fea-
tures significantly enhanced the ability of the ML procedures 
to model EONR. Two input features, AWCwt and RAWCwt, 
could capture the effect of soil hydrologic conditions on N 
dynamics. Improvement in estimating in-season soil hydrologi-
cal status seems essential for success in modeling N demand.

The models developed in this study were based on data col-
lected from a limited number of research sites when it comes to 
ML standards, which may insufficiently represent the corn-grow-
ing environments in the Midwest and the complexity of G × E × 
M outcomes. Some features that may be relevant to EONR, such 
as crop rotation, genetic variability in N response, and tillage, 
were not used by the model due to a relatively small number of 
trials. Improvement of ML-derived models for predicting EONR 
will require more data from many more diverse environments 
and management scenarios than reported in this paper. Because 
the data for this analysis were collected from small research plots 
(~0.4 ha per site) to minimize variability in the EONR measure-
ment, validation at production-scale fields is needed.
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