Cover Crop Management for Sugarbeet

Amitava Chatterjee¹, Sergio Cabello-Levia², Sailesh Sigdel¹, N. Cattanach¹, Marisol Berti²

1. Dept. Soil Science, 2. Dept. Plant Science, NDSU

Motivation to use cover crops

Soil erosion can reduce your productivity

<5% crop land

Mainly Federal area

First, what are the costs and returns?

Input/operation	Cost per acre
Seed	\$20-30
Planting the seed	\$10-12
Terminating the cover crop	\$0-10
Total	\$30-50
Returns	Return per acre
Yield increase	\$25 - 32
Nitrogen fertilizer savings	\$0-41 (corn) \$0-5 (soybean)
Weed and pest management	\$0-23
Grazing opportunities	\$19-38*

Plant certain types of cover crops based on your goals

Grasses

Annual ryegrass: nitrogen scavenger, erosion prevention, weed suppression

Legumes

Crimson clover: nitrogen source, erosion prevention

Brassicas

Forage radish: erosion prevention, weed suppression, soil compaction reduction

Photos: Edwin Remsberg

Timing of cover crop planting: (i) planting the cover crop prior to planting the cash crop in the spring, (ii) planting cover crops in-season during the summer, or (iii) planting cover crop in the fall following harvest.

31%
I typically plant cover crops prior to harvest

Fall-Seeded Cover crops on sugarbeet

NDSU

Fall-Seeded Cover crops on sugarbeet

Locations Prosper and Hickson, ND

Analysis

Fall-Seeded Cover crops on sugarbeet

Locations Prosper and Hickson, ND

Sugarbeet planting (May, 2018 – June, 2019)

Sugarbeet Harvesting (October, 2018 – September, 2019)

Statistical Analysis

RCBD with split-plot arrangement ANOVA was conducted, CC as a main plot and N rates as a subplot (0 and 112 kg ha⁻¹). LSD treatments was considered *P*≤0.05

Results and Discussion Biomass yield

• Biomass yield was significantly higher in radish, oat, and winter rye.

Nitrogen accumulation

Soil NO₃-N

- Soil NO₃-N was significantly higher in the check plot.
- Oat, radish, and winter rye had the NO3-N lowest

Soil green cover

Soil green cover was higher in oat, radish, and winter rye.

Sugarbeet, something unexpected!

11th July, Hickson, ND

Gravimetric water content

Sugarbeet plant population

Sugarbeet yield, Hickson 2018

Sugarbeet yield across 3 locations 2018-2019

Conclusions

Cover Crops

 Radish, winter rye, and oat provided soil cover, protecting the soil from erosion, and decreased soil residual NO₃-N prone to leaching.

Winter Hardy CC

 Winter hardy cover crops take soil moisture in early spring, affection sugarbeet germination, in some contidions.

Sugarbeet

- Sugarbeet yield and plant population was affected by winter hardy cover crops in a high clay soil in 2018 (Hickson)
- Opens the possibility of earlier Sugarbeet planting in heavy clay soils
- CC across locations did not affect Sugarbeet yield.

II. Cover Crop Interseeding under Sugarbeet Production

Fall seeded sorghum planted on Aug 20

Research Questions

- 1. Is there any chance of yield reduction due to interseeding?
- 2. Can we increase recoverable sugar with interseeding?
- 3. How interseeding will affect the profit?
- 4. Can we reduce the residual soil N after harvest?

Experiment plan

9 Treatments \times 4 Replicates

Cover Crop Species:

- 1) Control (no cover crop),
- 2) Winter rye (20 lb/ac)
- 3) Winter camelina (6 lb/ac)
- 4) Winter Austrian pea (20 lb/ac)
- 5) Mustard (10 lb/ac)

2018

1st Planting: Ada- June 21

2nd Planting: Ada – July 11

2019

1st Planting: Ada- June 13

2nd Planting: Ada – June 24

Picture taken on June 25,2019

Experiment plan

Experimental Design: RCBD (check, four cover crops at two planting date) **Plot size:** $30 \text{ ft} \times 11 \text{ ft}$

	Soil N* (lb/ac)	Olsen P (ppm)	K (ppm)
2018	38	5	67
2019	41	8	93

*for 2 ft soil depth

1st Is there any chance of yield reduction due to interseeding?

Differences in sugarbeet root yield (ton/ac) due to cover crop inter-seeding during 2018 and 2019 at Ada

	2018	2019
Check	37.6	30.9
1st Planting	June 21	June 13
Rye	-1.52 ^{C*}	-9.22 ^D
Mustard	1.40^{A}	-8.46 ^D
Pea	-1.34 ^C	-5.42 ^{CD}
Camelina	-0.61 ^{BC}	-3.88 ^{BC}
2 nd Planting	July 11	June 24
Rye	0.49^{AB}	-0.10 ^{AB}
Mustard	-0.56^{BC}	1.21 ^A
Pea	0.78^{AB}	2.68 ^A
Camelina	0.61 ^{AB}	3.30 ^A

^{*}Different letters indicate significant difference between means at 95% significance level

2nd Can we increase recoverable sugar with interseeding?

Differences in recoverable sugar yield (lb/ac) due to cover crop inter-seeding during 2018 and 2019 at Ada

	2018	2019
Check	11,562	9,219
1st Planting	June 21	June 13
Rye	-176 ^C	-2503 ^D
Mustard	792 ^A	-2605 ^D
Pea	95 ^{BC}	-1639 ^{CD}
Camelina	195 ^{ABC}	-904 ^{BC}
2 nd Planting	July 11	June 24
Rye	500 ^{AB}	-33 ^{AB}
Mustard	298 ^{ABC}	481 ^A
Pea	434 ^{AB}	495 ^A
Camelina	395 ^{ABC}	777 ^A

^{*}Different letters indicate significant difference between means at 95% significance level

3rd How inter-seeding will affect the profit?

Differences in economic return (\$/ac) due to cover crop inter-seeding during 2018 and 2019 at Ada

	2018	2019
Check	1407	946
1st Planting	June 21	June 13
Rye	-88	-209
Mustard	35	-282
Pea	-4	-172
Camelina	-49	-44
2nd planting	July 11	June 24
Rye	46	-4
Mustard	20	<mark>72</mark>
Pea	48	-8
Camelina	31	<mark>40</mark>

4th Can we reduce the residual soil N after harvest?

Cover crops fill up the gaps

Cover cropping can be an effective management tool for erosion control

Cover crop inter-seeding under sugarbeet

- Cover crop inter-seeding under sugarbeet has potential to increase yield, recoverable sugar, and profit.
- Planting time play a crucial role- too early can reduce yield probably due to competition for nitrogen
- Favorable time window- between 3rd wk, June and 2nd wk, July
- Selection of cover crop species decides the magnitude
- Brassica family (Camelina and mustard) did better than cereal and legume.
- Winter rye can grow back in spring and can increase the benefit of soil and nutrient retention