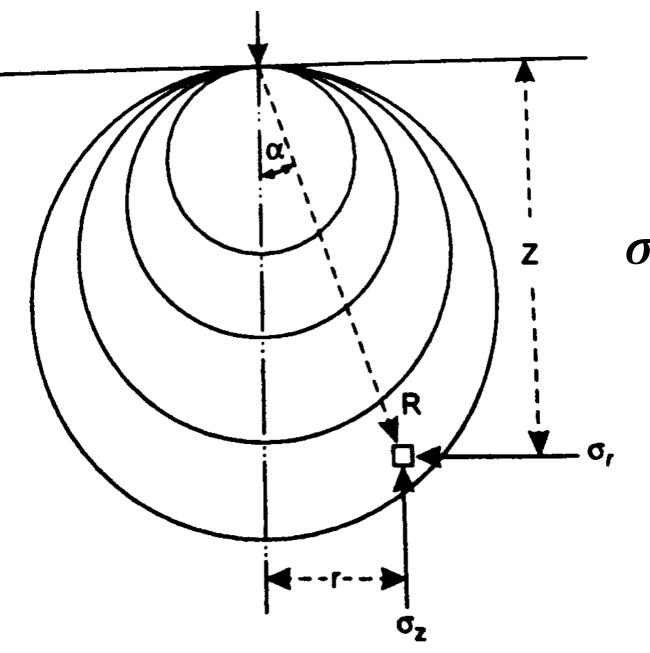
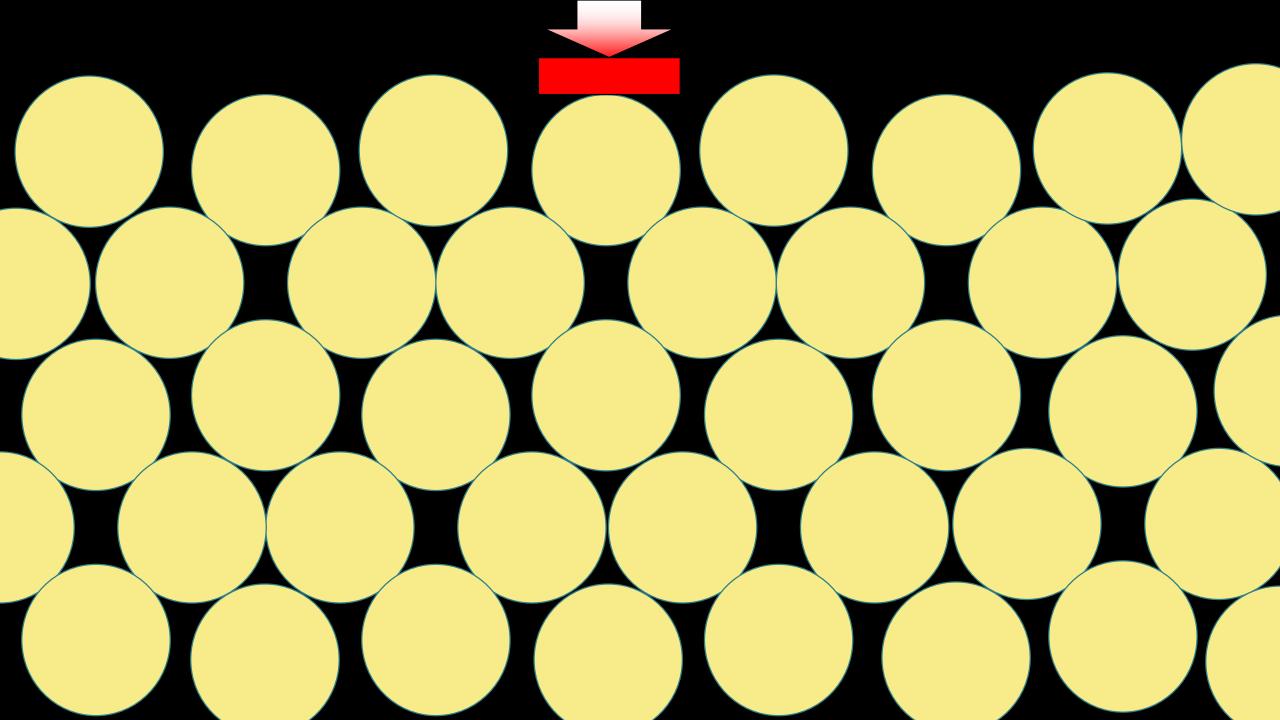
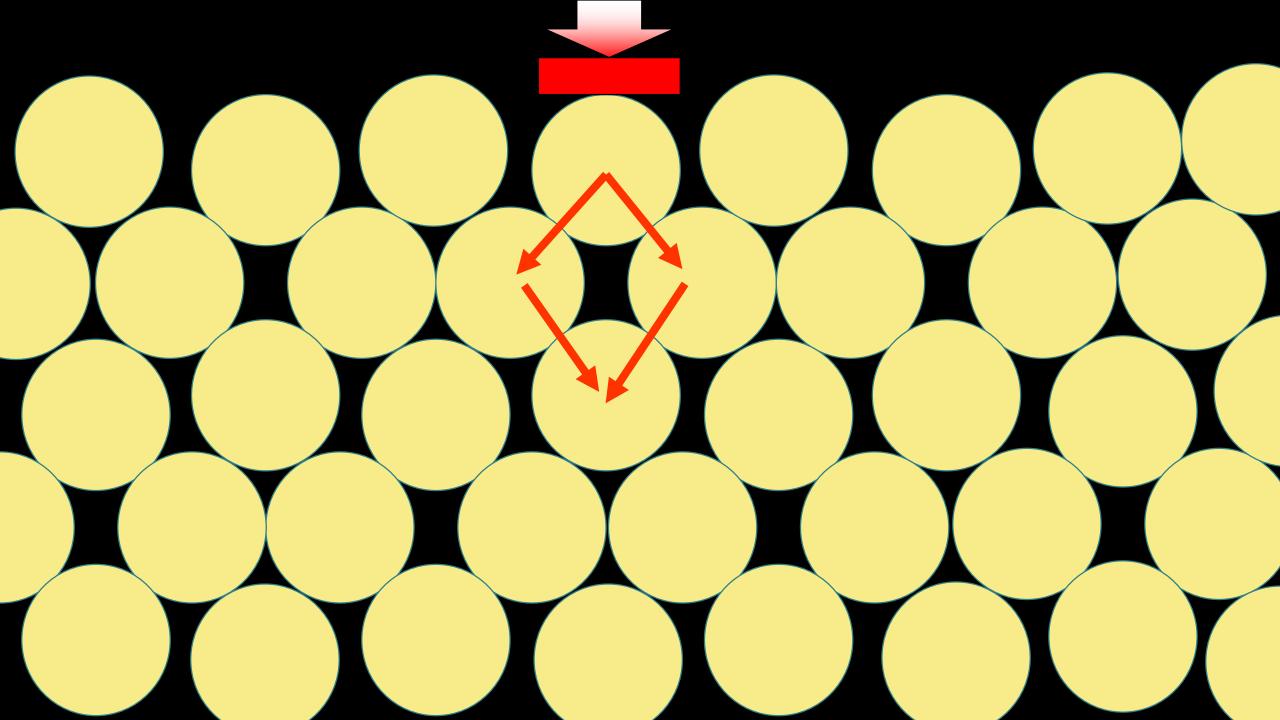
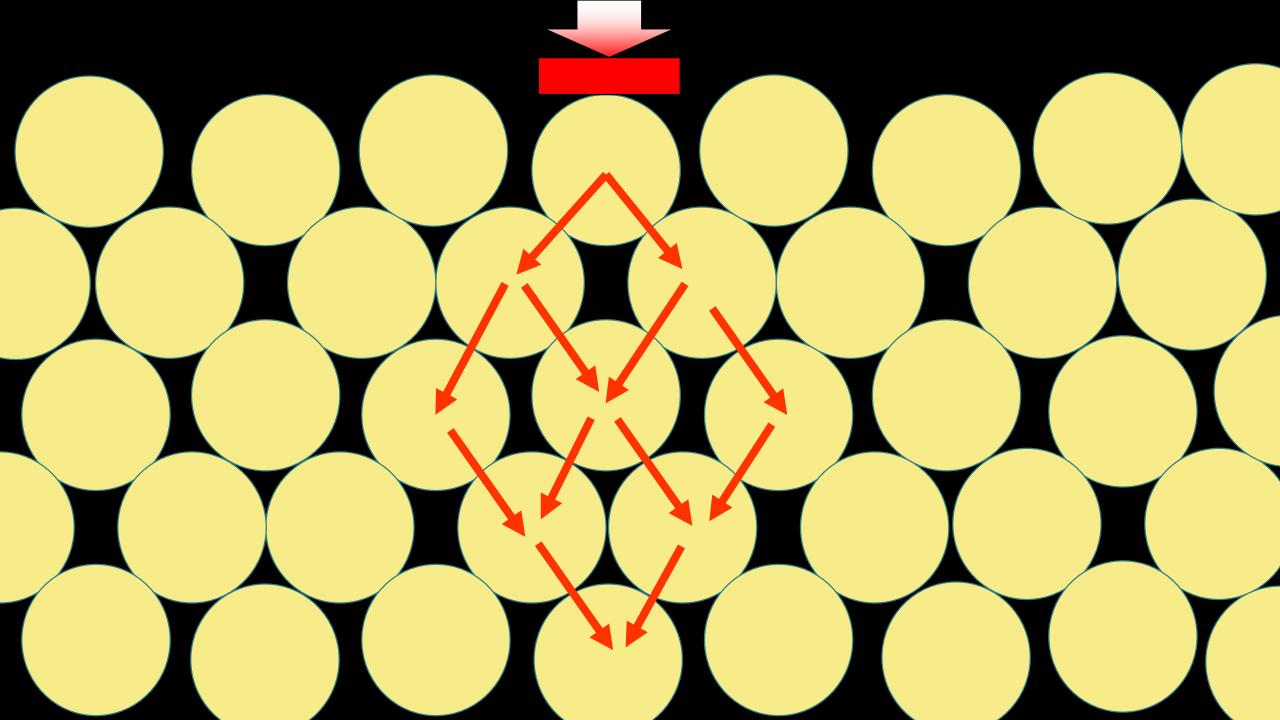

Physics of Soil Compaction and its Remediation

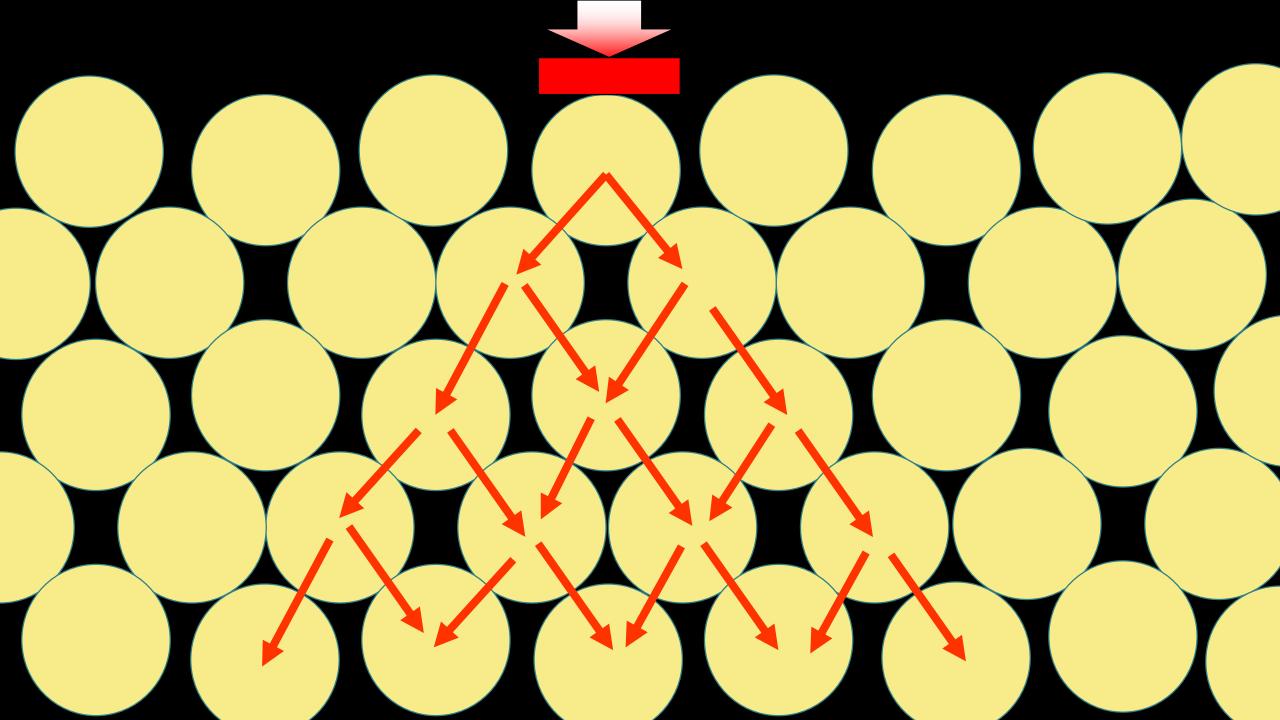


Compaction... How does it work? Stress, Stain, and Strength


Distribution of vertical shear stress under a concentrated vertical load



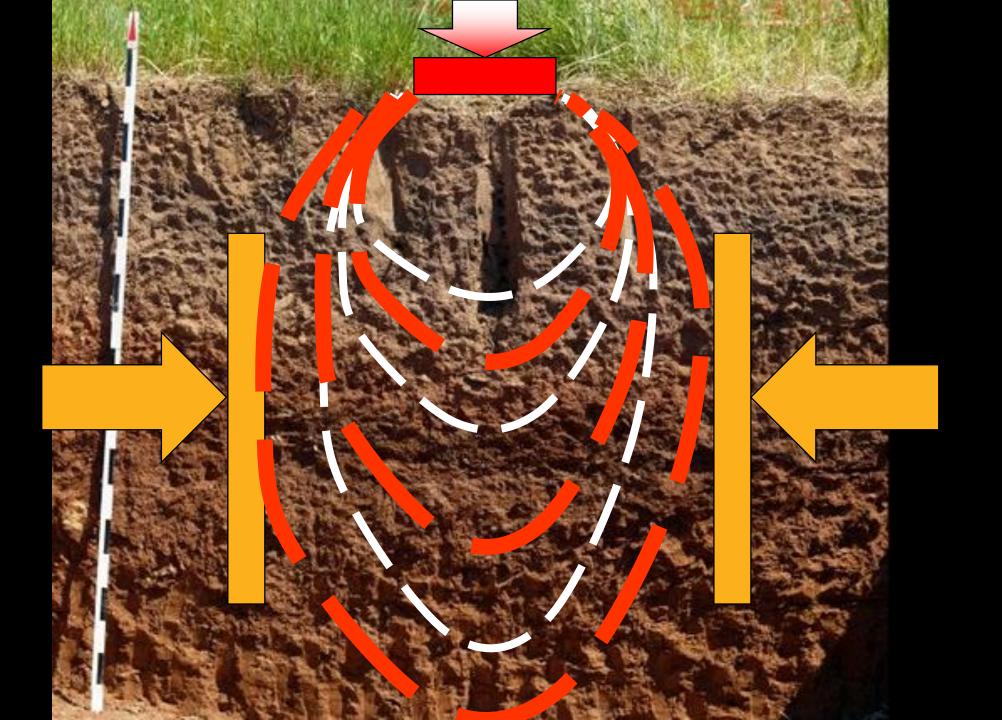

Boussinesq theory

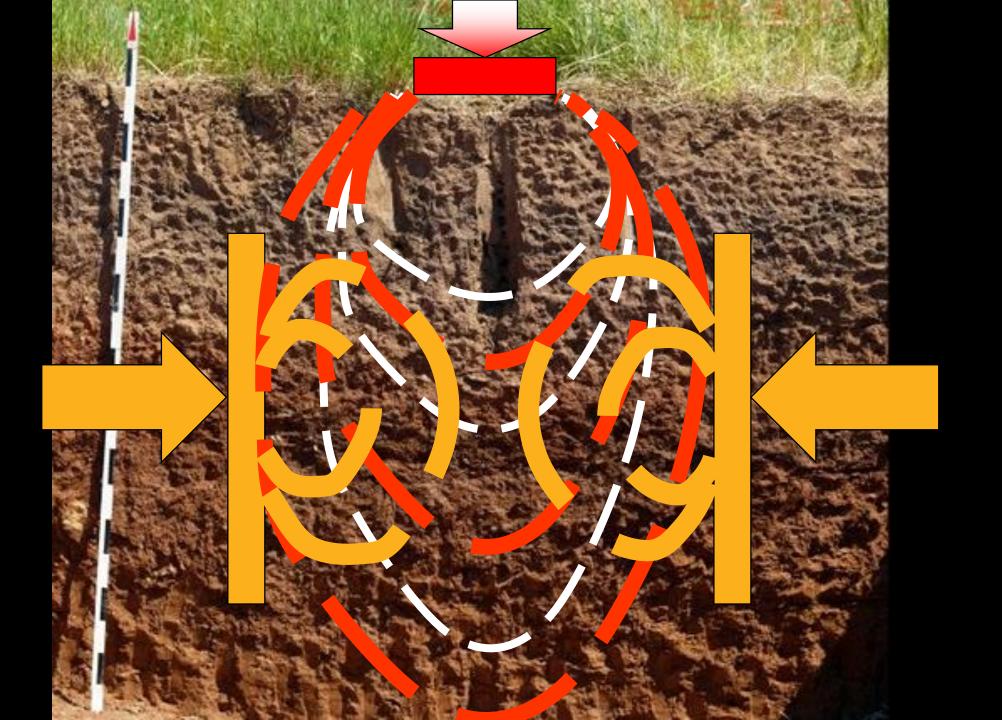

$$\sigma_z = L * \frac{3}{2\pi} * \frac{z^3}{(r^2 - z^2)^{5/2}}$$

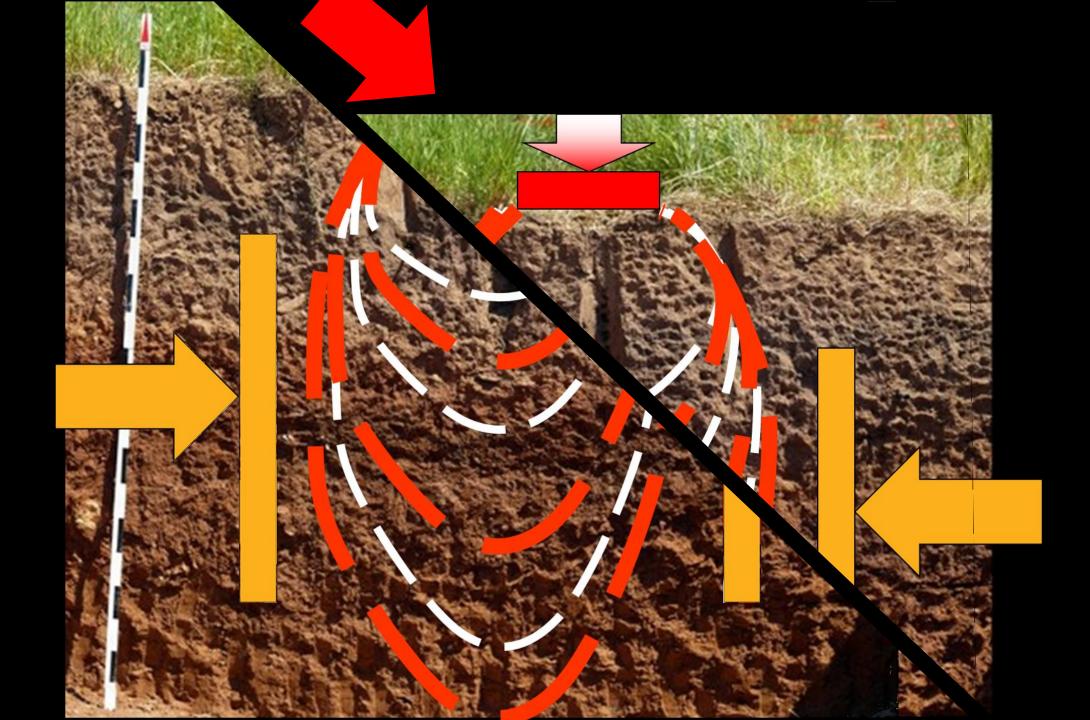
Nesting of Tangent Circles

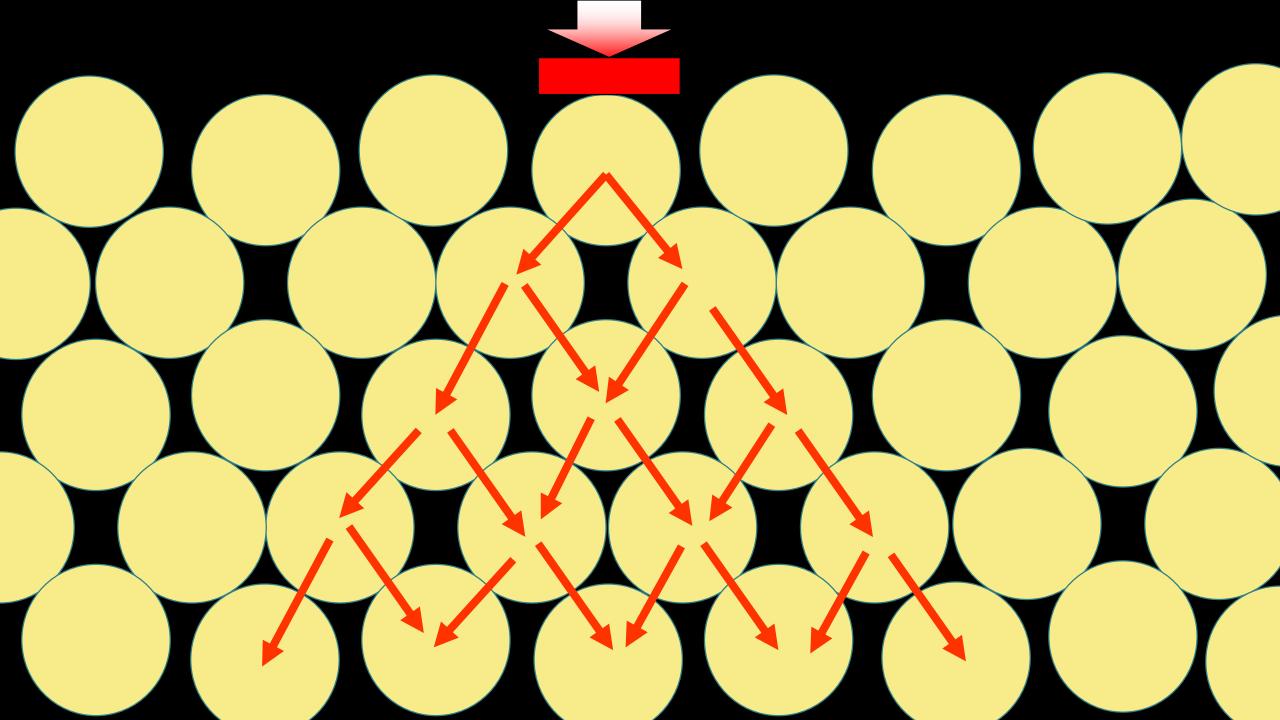


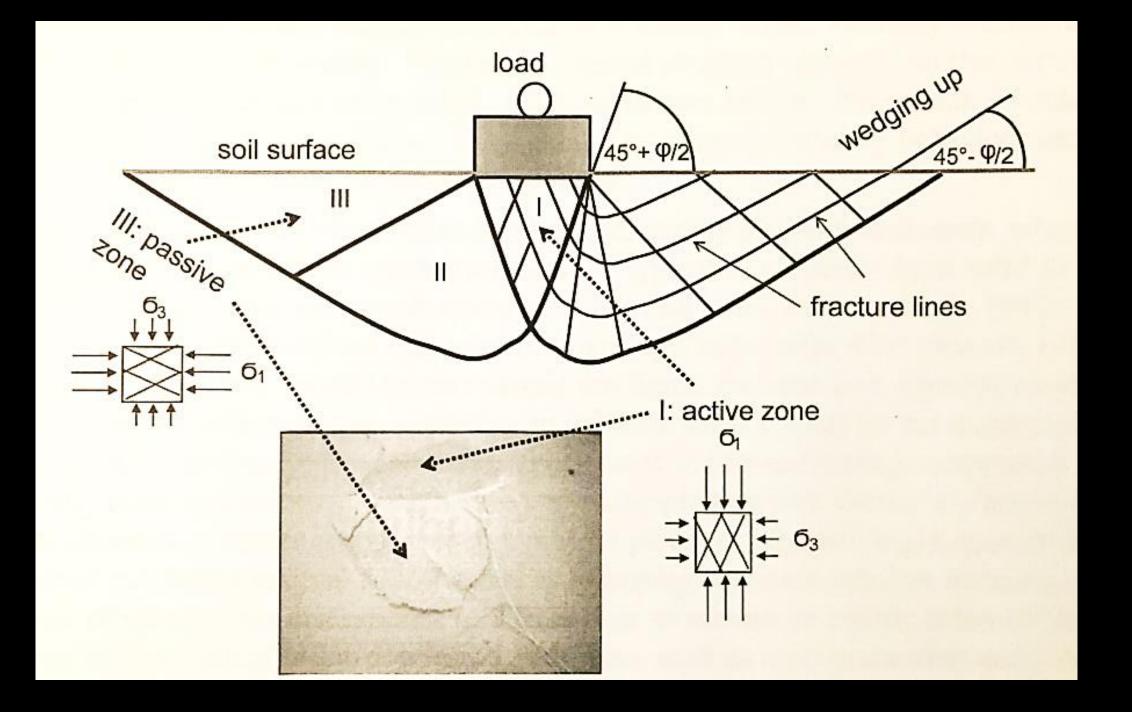


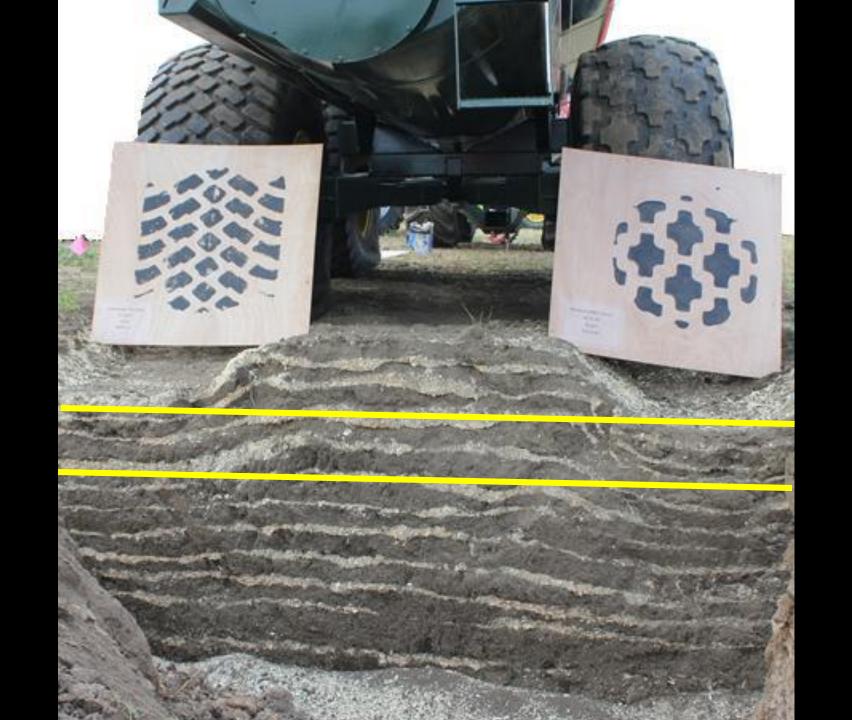


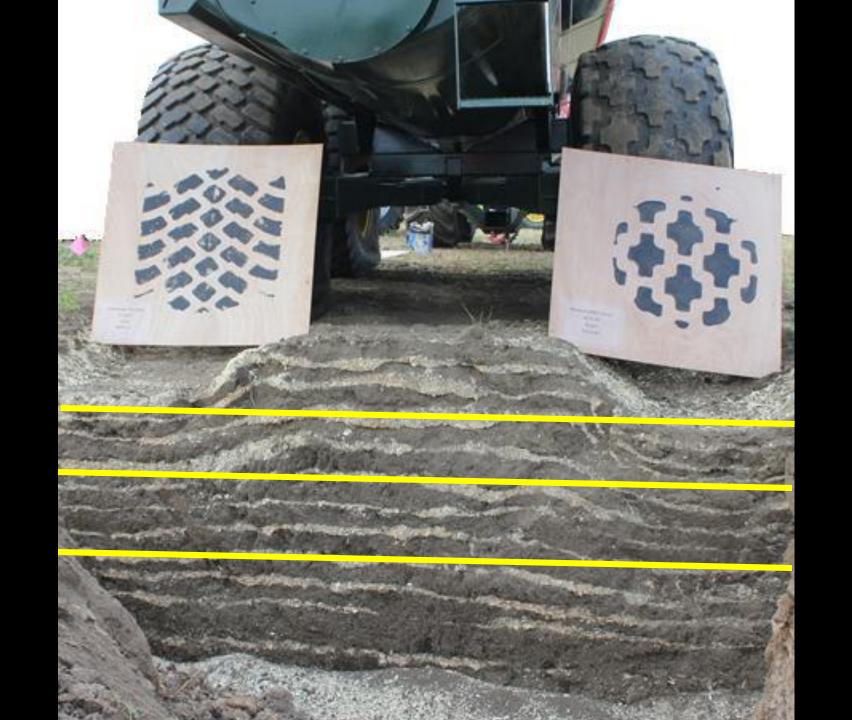


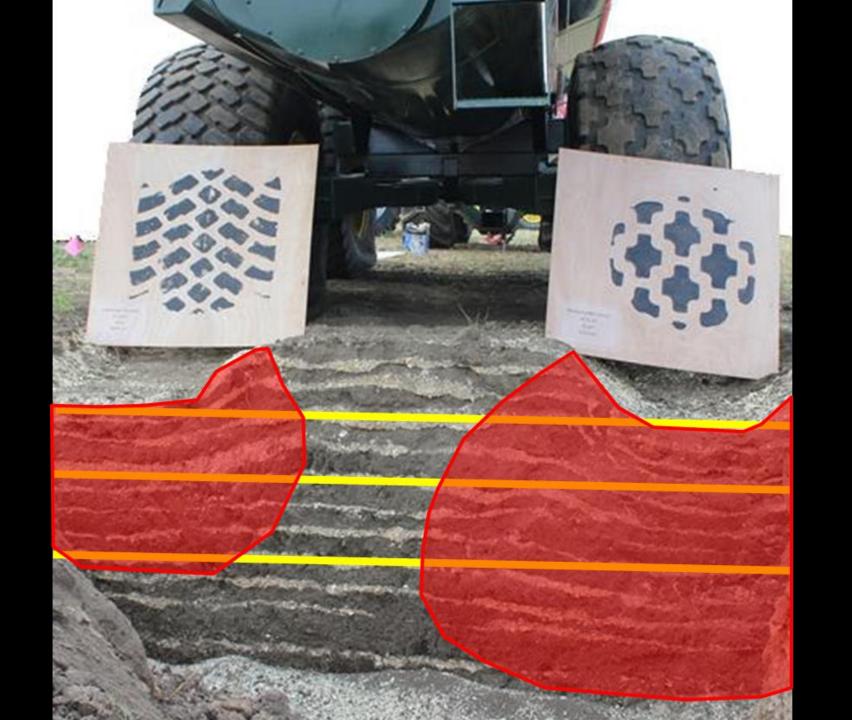

XI 📙	5 · ♂ · 🚔 ÷												6	Tire Compaction Example Working.xlsx - Excel												
FILE	HOME INS	SERT F	AGE LAY	OUT	FORM	ULAS	DATA	REVI	EW	VIEW	ADD-I	NS														
9	6 Cut	Calibri		- 11	- A A	_ =	= =	87 -	E W	Vrap Tex	rt	Ge	neral		-	≠		Norma	əl	Bad		Goo	d	1	Neutral	
Paste	Copy Format Painter	B <i>I</i>	<u>u</u> - 🖽	H - 2	- A	- ≡	==	任担	₽N	/lerge &	Center •	\$	- %	, 6.0	.00	Conditional		Check	Cell	Explo	anatory	Inpu	it		inked C	ell
	pboard 5		Fon	ıt		rg:		Aligr	nment		er.	5	Numb	рег	Γ¥	Formatting	· Table ·				5	Styles				
AT21	- : D	< 1	fx																							
A	B C D		F G	н	F 15 7	к	L 1	н н	0	P 0	8 B	S	T U	II V	w	x y	Z AA	AB A	sc AD	AE ,	F AG	AH AI	AJ	AK	AL AM	AN
1 2	F- 200 0									0		200	20		200	200	0									
4 Ambient	F 0 0	0	0 0	0 -	0 0	0	0 0			0 33 16.7 5	0 100	150	200 200 183 200	0 200 0 200	200	200 167 183 150	100 33.3 100 50	16.7	0 0	0	0 0	0 0	0		0	
7	0 8	_	0 0	0 -	0 0	0	0 0		12.5	25 58 33.3 62 37.5 66	2.5 100		175 192 167 184 163 173	8 192	192 188 179	167 138	100 58.3 100 62.5 100 66.7	33.3 12	2.5 4.17	0 2.08	0 0	0 0		0	0	
9 10	0 0		0 0	0	0 0	0.52	1.04 3.1 1.56 5.1	13 10.4 73 12.5	21.9	42.7 68 45.3 71.	.4 100	131 128	156 175 153 168	5 179 8 175	175 168	156 131 153 128	100 68.8 100 71.4	42.7 2 45.3 2	1.9 10.4 5.6 12.5	3.13 <u>1.</u> 5.73 1.	04 0 56 0.52	0 0		0 -	0	
11 12 13	0 0		00 00	0 0	0.13 0.3		3.13 7.0 3.91 3.0 5.66 10		32.6	50.8 74	.3 99.6	124	148 164 145 158 141 153	8 164	164 158 155	145 124	99.7 72.7 99.6 74.3 99.1 75.2	50.8 3		3.64 3.		0.33 0.1	3 0 -	0	0	
14 15	0 0	0 0	.02 0.05	0.1 0 0.26 0	0.49 1.17 0.63 1.8	7 3.29 9 3.86	6.54 13 8.33 14	.4 22.7 .6 25.3	37.3	54.8 76 56.8 76	.3 98.8 .8 98.1	120	139 143 135 14	9 155 7 149	143	139 120 135 119	98.8 76.3 98.1 76.8	54.8 31 56.8 31	7.3 22.7 8.7 25.3	13.4 6. 14.6 8.	54 3.29 33 3.86	1.17 0.4 1.89 0.6	3 0.26	0.05	0	
16 17 18	0 0	0.01 0	.07 0.18	0.61 1	1.23 3.0	9 5.74	9.23 16 11 17. 11.8 21	.9 28.9	42.2 5	59.2 77 60 78	.8 96.9 3.1 96.5	115	133 142 129 140 127 136	0 142	142 140 136		97.8 77.4 96.9 77.8 96.5 78.1	59.2 4	26.7 2.2 28.9 4.1 30.1	17.9 1	23 <u>5.11</u> 1 5.74 1.8 7.03	3.09 1.2	9 0.61		10.0	
19 20	0.01 0.0	2 0.05 0 3 0.11 0	.19 0.42	1.09 2	2.13 4.4	7.68 9 8.97	13.5 2 14.3 22	1 32	46.6	61.1 78 61.6 78	3.2 95.6 3.3 95.1	112 110	124 134 123 130	4 136 0 134	134	124 112 123 110	95.6 78.2 95.1 78.3	61.6	5.6 33	21 13	.5 7.68 .3 8.97	4.44 2.1 4.9 2.7	3 <u>1.09</u> 7 1.27	0.42 0	0.17	
21 22 23	0.03 0.0 0.08 0.1	6 0.13 0 8 0.22 0 3 0.26 0	44 1.04	1.92 3	3.79 6.3	10.9	16.6 25	3.7 34.7 3.3 35.5 5.1 36.9	48.5	62.8 78	.3 93.6	107	120 121	5 128	128 125 123	120 103 113 107 116 106	94.1 78.4 93.6 78.3 92.7 78.2	62.8 4	8.5 35.5	25.3 16	.6 10.3	5.87 3.0 6.35 3.7 7.32 4.1	8 1.91			
24 25	0.17 0.2	7 0.38 0 3 0.45 0	72 1.52 .95 1.69	2.66 4 3.19 5	1.87 7.8 5.24 8.7	11 12.7 8 13.3	18.8 27 20.1 28	7.5 37.6 3.2 38.8	50.2	64.1 77	8 92.2	104	115 120 112 115	0 123	120	115 104 112 103	92.2 78 91.2 77.9	64.1 50	0.2 37.6 0.7 38.8	27.5 18	1.8 12.7 0.1 13.3	7.81 4.8 8.78 5.2	6 2.64 2 3.15	1.45	0.57	
26 27 28	0.31 0.3		34 2.27	4.03 6	5.36 10.	2 15	20.7 29	0.1 40.5	51.9	64.5 77		101	111 116 109 115 108 113	5 116	116 115 113	109 101	90.7 77.6 89.7 77.5 89.2 77.1	64.5 51	1.9 40.5	30.1 2	1.9 15	10.2 6.3	4 3.95	2.11 (1.97	
29 30		7 0.99 1		4.3	7.5 11.0	6 16.6	23.6 31	.8 41.9	52.8	64.8 7		38.6		9 112	112	106 98.6 105 97.2	88.3 77 87.8 76.5	64.8 52 64.9 53	2.8 41.9 3.3 42.3	31.8 23	3.6 16.6 1.2 17.6	11.6 7.4 12 8.1			1.23	
31 32		1 1.34 2 4 1.59 2 8 1.75 2		6.1 9		4 19.1		1.1 43.4	54	65 75	.9 86.4	95.1	103 108	8 109 6 108	108	102 95.1	86.9 76.3 86.4 75.9 85.5 75.7	65 5		34.1 2	5.7 19	13.3 3.2	4 5.86	3.54 1		
22 24 25	1.4 1.4	2.01 3	.01 4.76	7.01 1	10.5 14.	6 20.4 4 20.8	27 35 27.9 35	5.7 44.4 5.7 44.9	54.7	64.9 75 64.9 7	5 84.2	93.1	33.3 103 38.3 103	4 105 3 104	105 104 103	99.9 93.1 98.3 92.5	85 75.2 84.2 75	64.9 54	1.5 44.4	35.3 2 35.7 2	7 20.4 .8 20.8	14.5 <u>10.</u> 15.3 <u>10.</u>	3 6.66 6 7.17	4.08 1	.86	
36 37	1.8 1.70 2.2	6 2.7 4	.61 5.51 .01 5.76 .23 6.27	8.52 1	11.5 15.6 11.9 16.0 12.5 17	6 22	29 36	.7 45.6	55 (64.7 74	3 82.9	30.6	96.1 100	0 101	100	36.1 30.6	82.9 74.3	64.7 5	5 45.6	36.7 2	9 22	16.4 11.0	2 7.43 5 7.92 2 8.17	4.61 4 4.78 5.11 2	2.3	
38 39 40	2.25 2.1		65 6.52	3.41 1	12.3 17.	7 23.2	30.4 38	.6 46.2 3.2 46.4	55.2 6	64.5 73 64.4 73	82.5 8.5 81.6 8.1 81.2	88.9	94 97. 93.3 96.	.7 98.5 .3 97.7	36.3	94 88.9 93.3 87.8	81.6 73.5 81.2 73.1	64.5 5	5.2 46.2	37.6 3	0.3 23.7	17.4 12. 17.8 13	8.64	5.28 2	.56	
41 42	3.2	7 3.82 5 8 4.11 5	56 7.81	10.6 1	14.5 19	7 24.2	31 38 31.3 38	3.4 46.8 3.9 46.9	55.4	64.2 72 64.1 72	80.4	87.3 86.2	92 95.	.5 96.3 .1 95.5	95.5 94.1	92 87.3 91.4 86.2	80.4 72.8 80 72.3	64.2 55	5.4 46.7 5.5 46.9	38.4 30	0.9 24	18.4 13. 18.7 13.	3 9.31 8 9.53	6.06 2	88.	
43 44 45	3.28 3.0 3.8 3.85 3.4	5 4.7 6		11.4 1	15 4 20	25.8	32 1 33	5 473	55.5	63 8 71	6 78 9	84 7	89 6 92	2 93 5	32 2	90.2 85.7 83.6 84.7 88.5 84.2	78 9 71 6	63 8 5	S 473	334 3	2 25 5	19.5 14		6.43	3.1	
46	4.45 3.9	5 5.32 6 8 5.7 7	.94 9.35 38 9.61	12.3 1 12.8 1	16.6 21.	5 26.9	33.4 40	0.3 47.8	55.5	63.2 70	1.6 77.1	82.8	86.8 89.	7 30.3	89.7	88.5 84.2 87.9 83.3 86.8 82.8	77.1 70.6	63.2 5	5.5 47.7	40.1 3	3.1 26.5	20.8 15.	3 10.7 5 11.1	6.89 3 7.02 3	3.31	
48 49 50	5.07 4.4	7 5.36 7 3 6.36 8 2 6.61 8	.09 10.4	13.6 1	17.4 22.	.3 27.7	33.6 40 34 40 34.2 4	0.7 48.1	55.5 6	62.8 69	0.1 76.7 0.9 76 0.4 75.7	81.5	85.3 88	88.6	88	86.3 81.9 85.3 81.5 84.7 80.6	76 69.9	62.8 5	5.4 47.9	40.6 3	3.7 27.2	21.4 16.	1 11.6	7.39 3	3.51 1.63	
51 52	5.72 5.0 6.3	2 7.04 8 8 7.27 9	.81 11.1 .09 11.6	14.4 1	18.2 <u>23</u> 18.7 <u>23</u> .	3 28.4	34.6 41 34.8 41	.2 48.2 .4 48.3	55.4 6 55.3 6	62.4 63 62.3 68	0.2 75	80.2 79.4	83.8 86. 83.3 85.	4 86.3 3 86.4	86.4 85.3	83.8 80.2 83.3 79.4	75 69.2 74.7 68.7	62.4 55 62.3 55	5.3 <u>48.1</u> 5.2 <u>48.1</u>	41.1 34	1.2 27.8 1.3 28.1	22 16. 22.2 17.	1 12.1	7.73 : 7.94 :	18.8	
53 54 55	6.38 5.5		.81 12.4	15.4 1		29.4	35.3 41		55.2		3.1 73.8	78.2		9 84.8	83.9	82.4 79 81.9 78.2 81 77.8		61.8 5	5.1 48.2	41.4 34	1.6 28.3 1 1.8 28.6 1 5 28.8	22.8 17.	5 12.6	8.04 3	.02	
56 57	7.75 6.6	5 8.61 1 5 9.14 1	0.5 <u>13.1</u> 0.9 13.3	16.2 2 16.6 2	20.2 24. 20.4 25.	.7 30 .1 30.2	35.7 4: 36 42	2 48.5 2.1 48.5	55.1	61.5 67 61.2 67	.4 72.8 .2 72.2	77.1	80.6 82. 79.8 82	4 83.4 82.4	82.4	80.6 77.1 79.8 76.7	72.8 67.3 72.2 67.1	61.4 54	1.8 48.3 1.8 48.3	41.6 3 41.7 3	3.1 <u>29</u> 3.3 <u>29.2</u>	23.2 18 23.5 18.	1 13.2	8.59	1.16	
58 59 60	8.44 7.2	9.84 1	1.2 13.8 1.6 14.1 12 14.5	17.4 2		.7 30.7	36.2 42 36.4 42 36.6 42	2.4 48.6	54.8	60.8 66	5.5 71.4	75.6	79.4 81. 78.6 80.	7 81.1	81.1	79.3 76 78.5 75.6 78.1 74.9		60.7 54		41.8 35	.4 29.4 .6 29.5 5.7 29.8	23.9 18.	5 13.6		.37	
60 61 62		6 10.5 1 4 10.6 1	2.4 14.8	18 1	21.8 26.	3 31.2	36.8 42 36.9 42	.6 48.6 .7 48.6	54.6	60.4 65	.9 70.5	74.6	77.4 79.	4 79.8 6 79.4	79.4 78.6	77.4 74.6 77 73.9	70.5 65.8	60.2 54	.4 48.2	42 3	.8 29.9 .9 30	24.2 18.	8 13.8	3.04 3.16	.48	
63	9.84 8.3 10.	1 11.3	13 15.5 3.4 15.9	18.7 2	22.4 26. 22.8 27	.9 31.7	37.1 42 37.2 42	2.8 48.6 2.9 48.6	54.4	60 65 59.8 64	69.7	73.6	76.3 78. 75.9 77.	2 78.6 4 78.2	78.2 77.4	75.9 73.6 75.9 72.9	69.6 65.1 69.4 64.7	59.8 50 59.6 50	48.1 3.9 48.1	42 3	6 30.1	24.5 19. 24.6 19.	1 14.1	9.23 4	1.58	
65 66 67	10.5 8.8 11.3 3.4	3 12	14 16.6	13.6 2	23.4 27.	6 32.4	37.5 4	3 48.6	54.1 5	59.4 64	1.2 68.7	72.1	74.9 76.	3 77.1	76.3	75.2 72.6 74.8 72 74.2 71.7	68.6 64.1	59.2 5	3.7 48	42.1 30	.2 30.5	24.9 19.	6 14.4	3.5	4.7	
68	11.9 9.9	7 13.3 1	5.1 17.5	20.2 2	23.9 28 24.1 28.	32.8	37.8 43 38 43	3.1 48.5 3.2 48.5	53.8	59 <u>63</u> 58.8 <u>63</u>	67.9 67.4	71.2	73.9 <u>75.</u> 73.2 <u>74.</u>	3 76 9 75.3	75.2	73.8 71.1 73.2 70.8	67.8 63.5 67.3 63.3	58.7 53 58.4 53	3.4 47.8 - 3.3 47.7	42.1 30	30.7 30.7	25.1 <u>19.</u> 25.2 <u>19.</u>	8 14.6 9 14.7	9.64	1.82	
70	12.6 10.	6 13.3 1																								
72 73 74	13.3 11. 14	1 14.7 1	5.4 18.7 5.7 19.1	21.7 2	25.2 29. 25.5 29.	2 33.6 4 33.8	38.4 43	.3 48.3 .4 48.3	53.3	58 62 57.8 6	2 65.8	69.2	71.4 72. 71.1 72.	3 73.2	72.9	72.8 70.2 72.2 69.9 71.3 69.4 71.3 69.1 71 68.6 70.4 68.3 70.1 67.8 69.6 67.5	65.8 62.1 65.6 61.7	57.5 50 57.4 50	2.7 47.4	42 30 41.9 30	30.3 3.4 30.3 3.5 31	25.5 20. 25.6 20.	2 15	3.31 4 3.37 4	1.94	
75 76	14 11.	5 15.4 7 15.2 1	17 19.3 1.3 19.7	22.3	25.7 <u>29.</u> 26 <u>29.</u>	7 33.9 8 34.1	38.6 43 38.7 43	.4 48.3 .4 48.2	53.1 52.9	57.6 61 57.4 61	.8 65.3 .5 65.1	68.4 67.9	70.5 72 70.2 71.	72.3 4 72	72 71.4	70.4 68.3 70.1 67.8	65.1 61.5 64.3 61.1	57.1 52 56.9 52	2.3 47.2	41.9 30 41.8 30	31 3.4 31	25.6 20. 25.7 20.	3 15.1 4 15.1	10 4	5	
77 78 79	14.7 12. 15.3 12	1 16 1 3 15.8 6 16.7	18 20.3 18 20.5	23 2	6.5 30.	2 34.4	38.8 43 38.8 43	.4 48.2 .5 48.1	52.8 52.7 52.6	57.1 60 56.8 60	.3 64.7 1.8 64.5	67.2	69.4 70. 68.8 70	71.4 5 71.1 2 70.5	70.5	69.6 67.5 69.3 67 68.7 66.7 68.5 66.2	64.4 60.9 64.2 60.5 63.7 60.3	56.4 51 56.1 5	1.8 46.9	41.7 30 41.7 30	31 31.1 4 31.1	25.7 20. 25.7 20. 25.8 20	4 15.2 5 15.2 5 15.3	10.1 5	.04	
80 81	16 13.	16.4 1 1 17.3 1	8.6 <u>20.8</u> 8.8 <u>21.1</u>	23.6 2	6.9 30. 27.1 30.	6 34.7 8 34.8	39 43 39.1 43	.5 48 .5 48	52.4 52.4	56.7 60 56.4 60	63.8	66.4	68.6 69. 68.1 69	7 70.2	69.6	68.5 66.2 67.9 66	63.5 59.9 63.1 59.8	56 51 55.7 51	1.4 46.7	41.6 30	5.4 31.1 5.3 31.1	25.8 20. 25.8 20.	5 15.3 5 15.3	10.2	70.i	
82				24.1 2	27.5 31.	35	39.2 43 39.2 43	.5 47.9 .5 47.9	52.2	6.3 59 56.1 59	.9 63.2 .8 62.8	65.7	67.8 68. 67.3 68.	8 69.4 6 68.8	68.8	67.9 66 67.7 65.5 67.1 65.3	62.9 59.4 62.4 59.2	55.5 5 55.2	1.1 46.4 51 46.3	41.4 30	31.1	25.8 <u>20.</u> 25.8 <u>20.</u>		10.2	5.11	
()																							4			

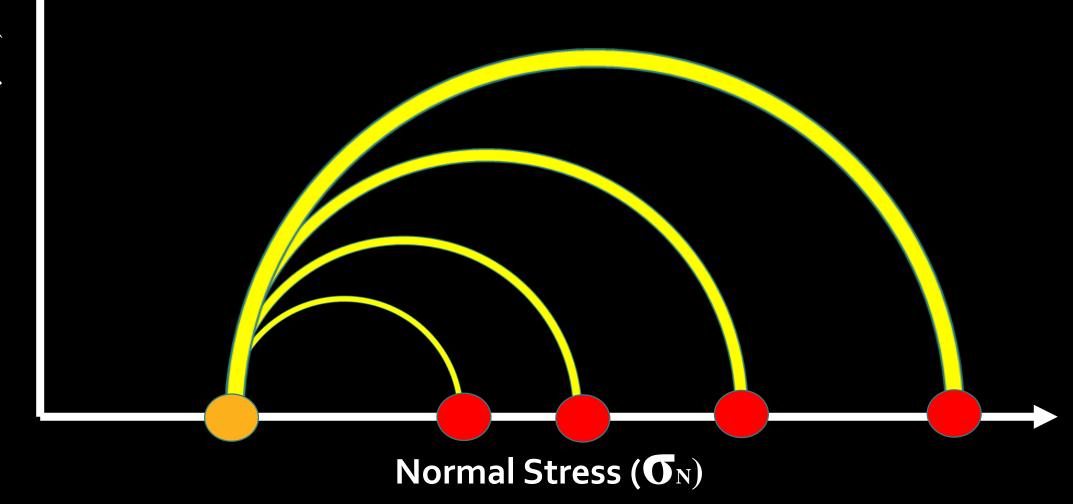


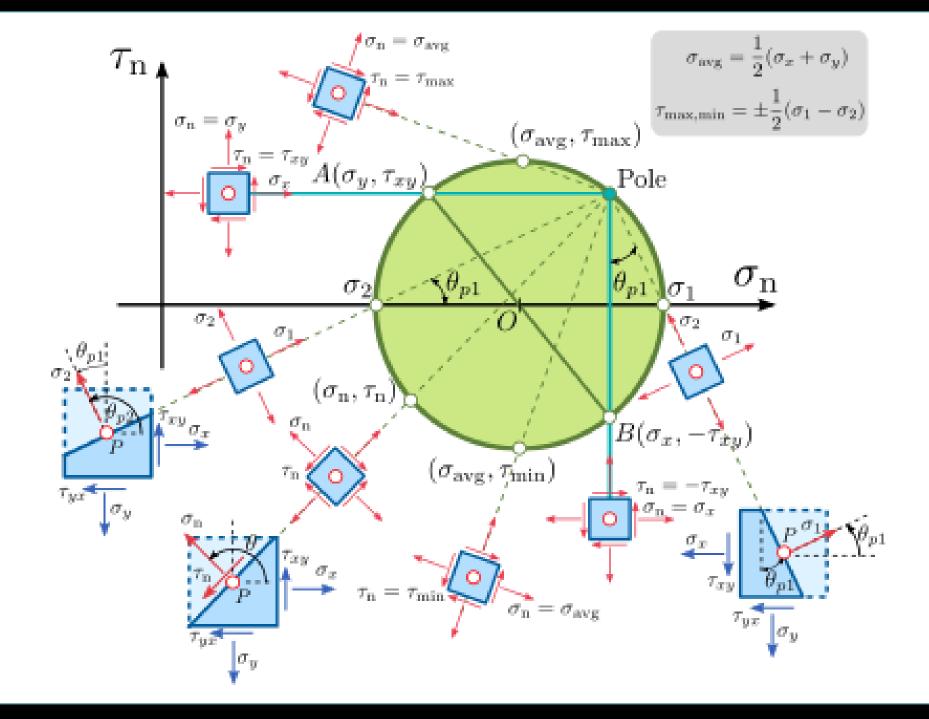


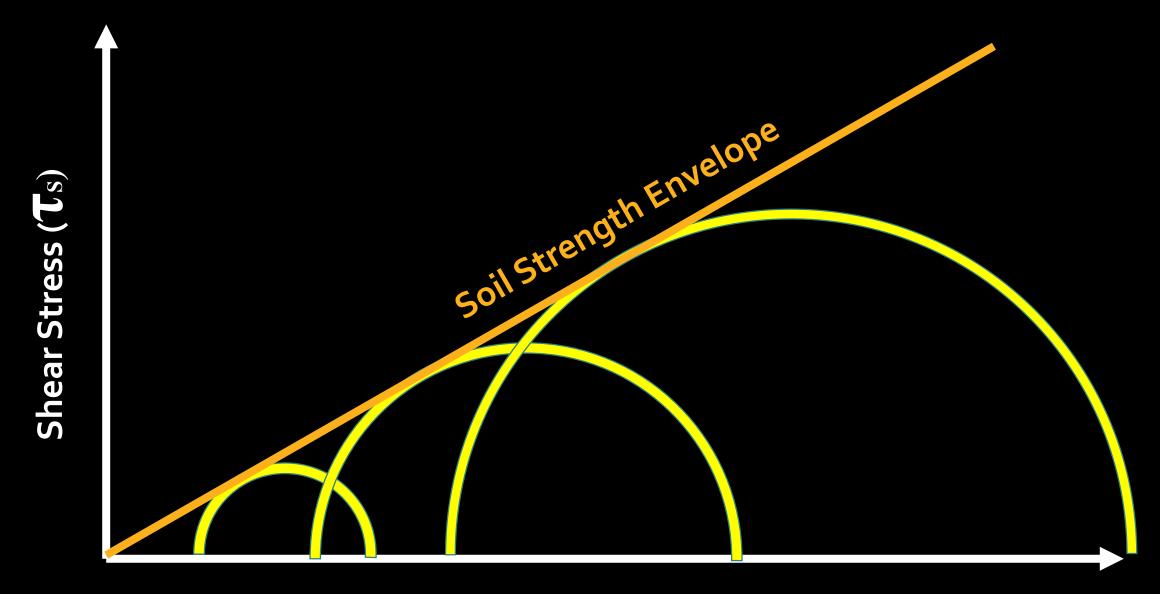






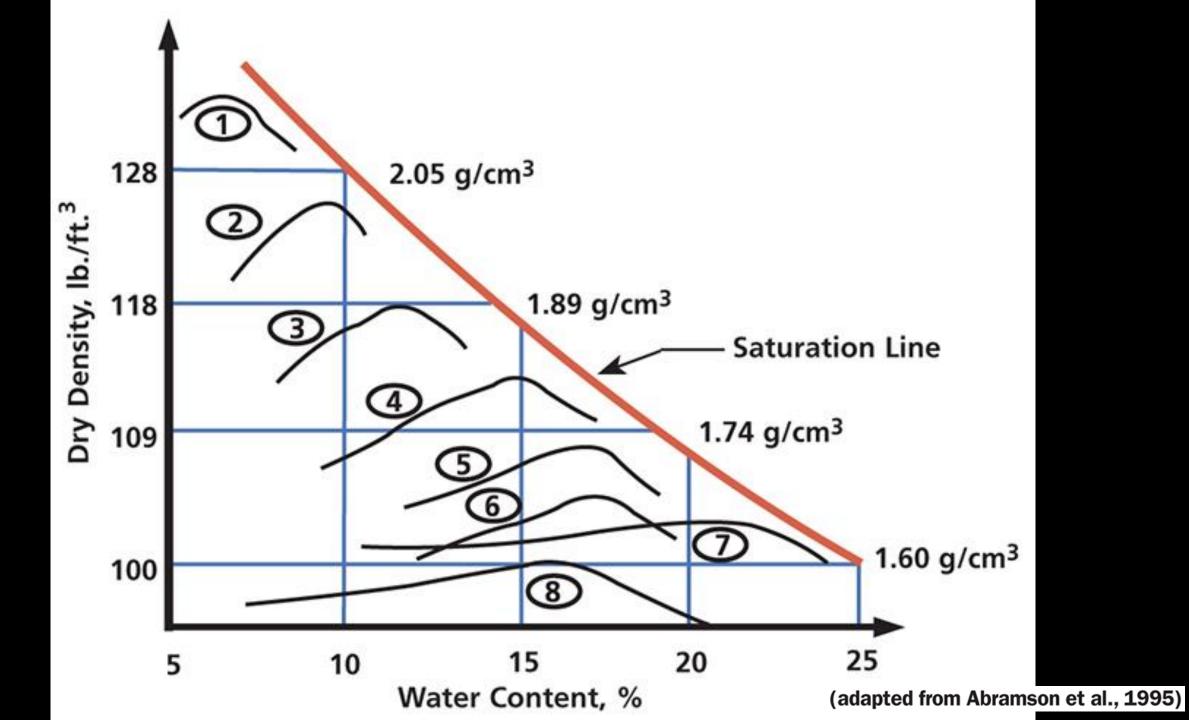


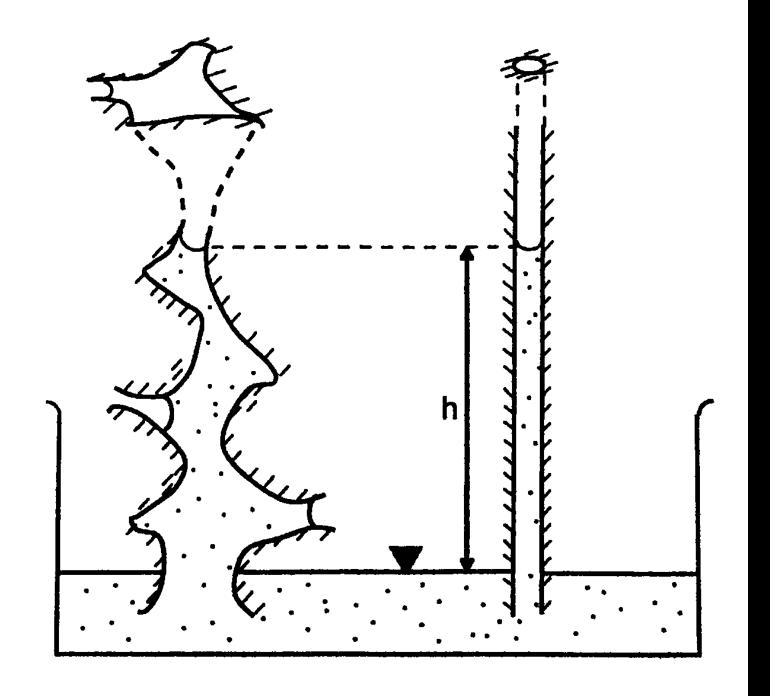



σ2

51

Shear Stresses Increase as Differences between $\sigma 1$ and $\sigma 2$ Normal Stresses Increase

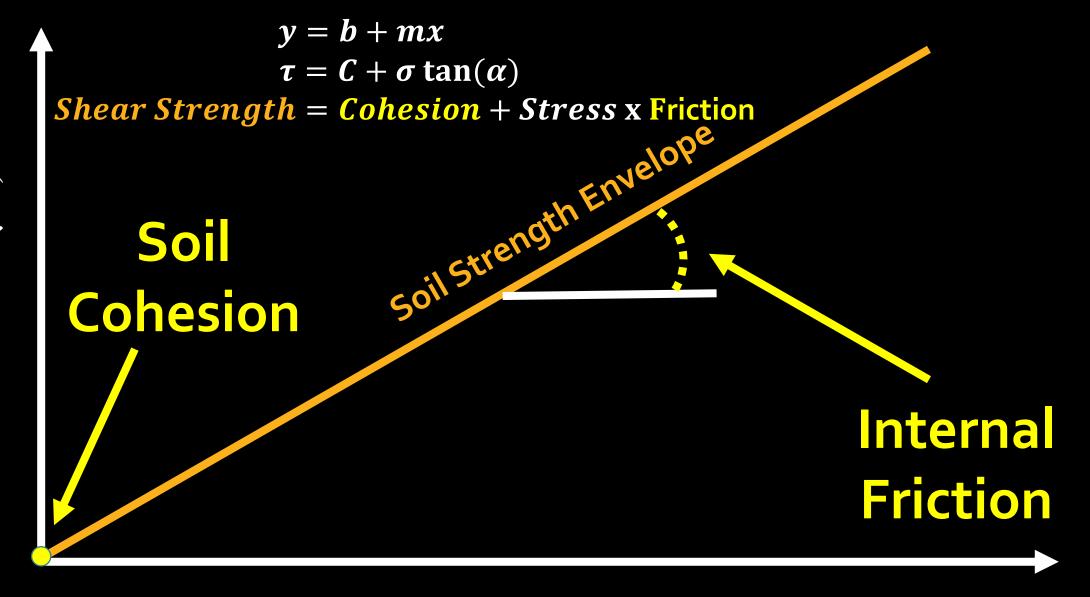




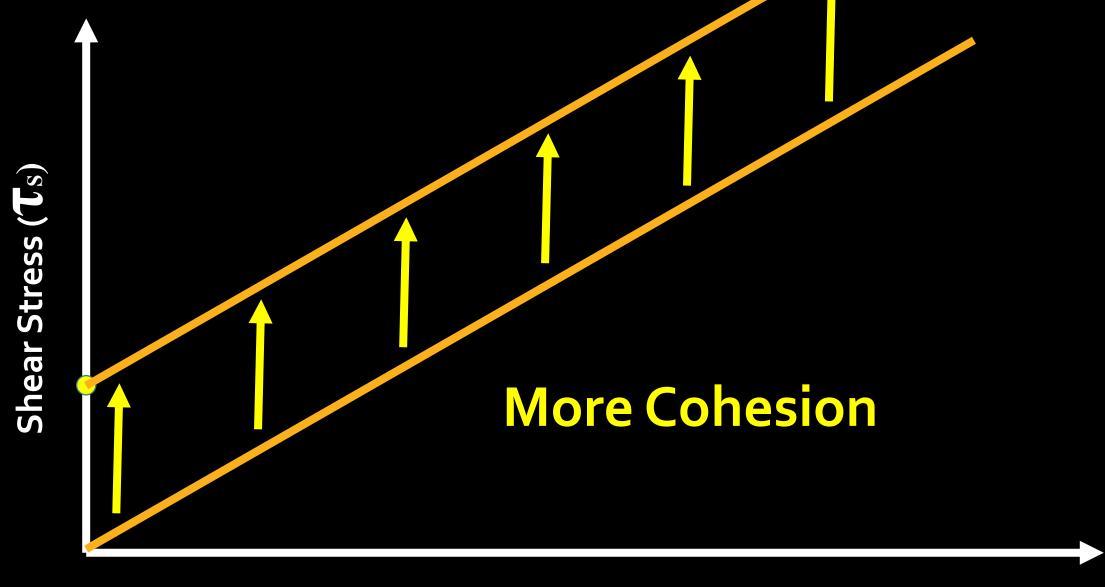
Normal Stress (σ_N)

3-D images of the macropore system in soil cores taken from a clay soil in Finland.

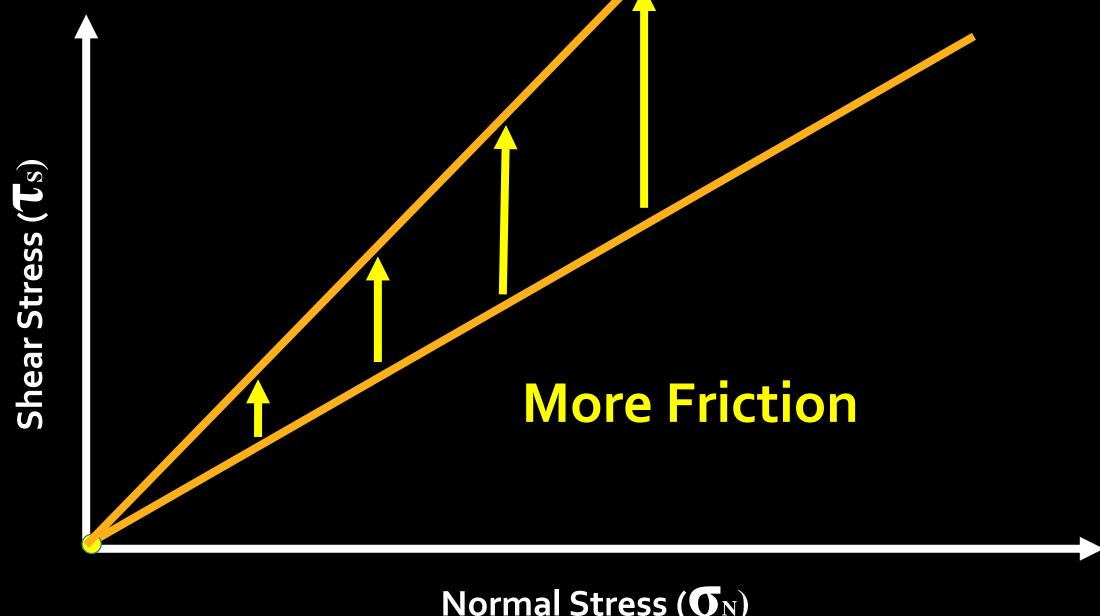
Left: Control (non-compacted) soil.

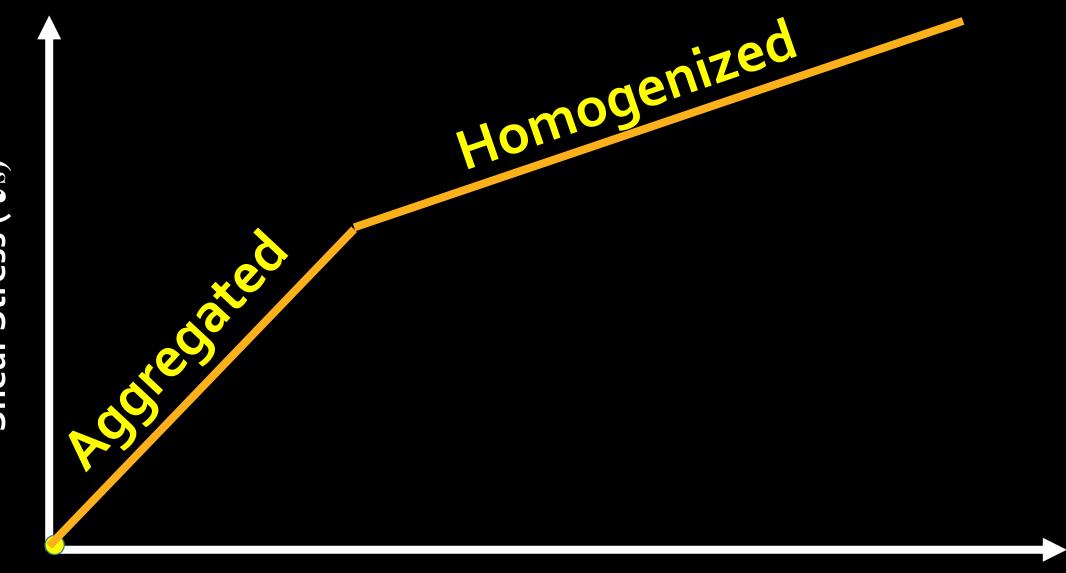


Right: Soil from plots where heavy machinery drove over the ground in an experimental treatment 29 years earlier.

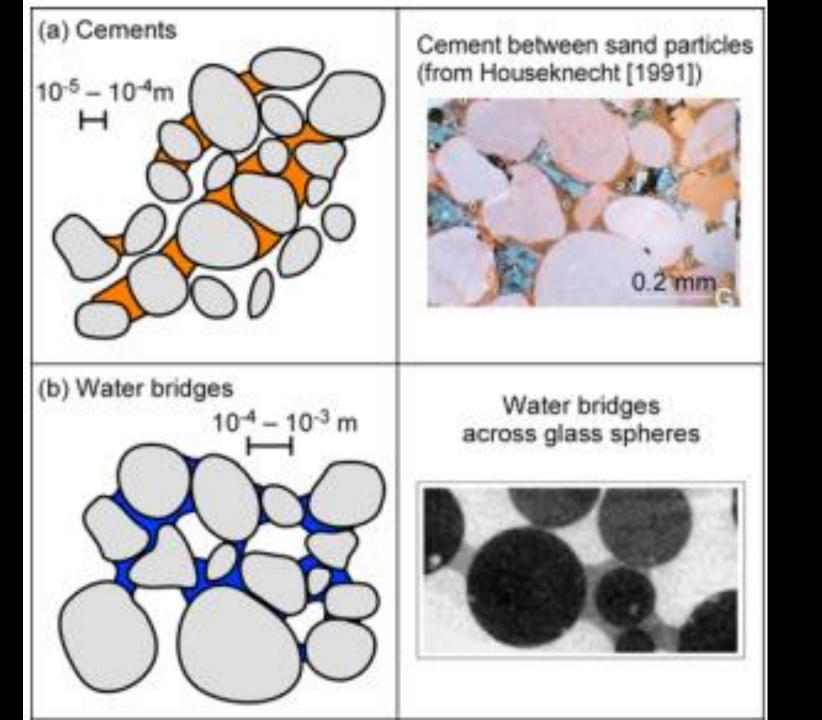

X-ray, computed tomography (CT) scans by Mathieu Lamandé.

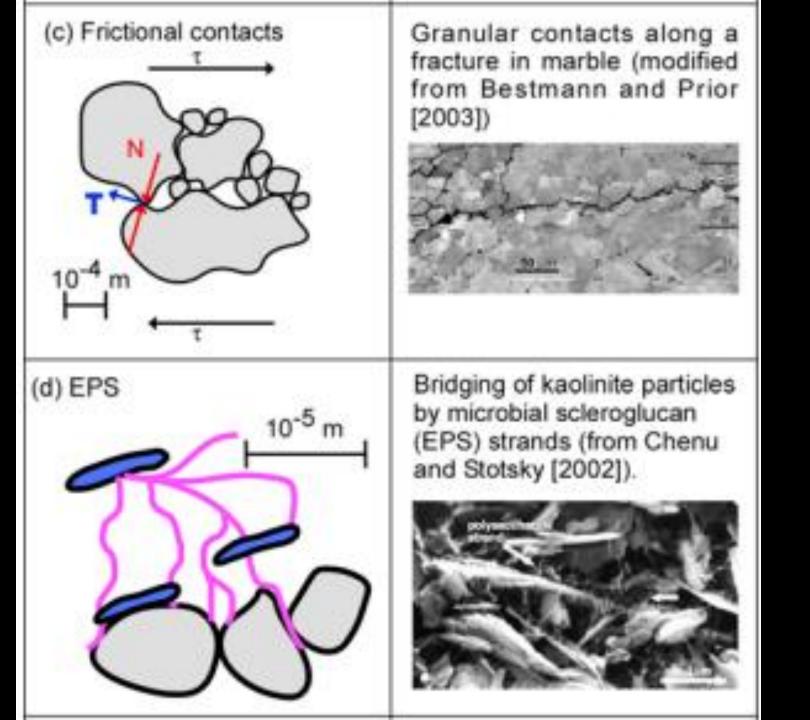
https://www.soils.org/discover-soils/story/medical-imaging-helps-reveal-lasting-impacts-soil-compaction

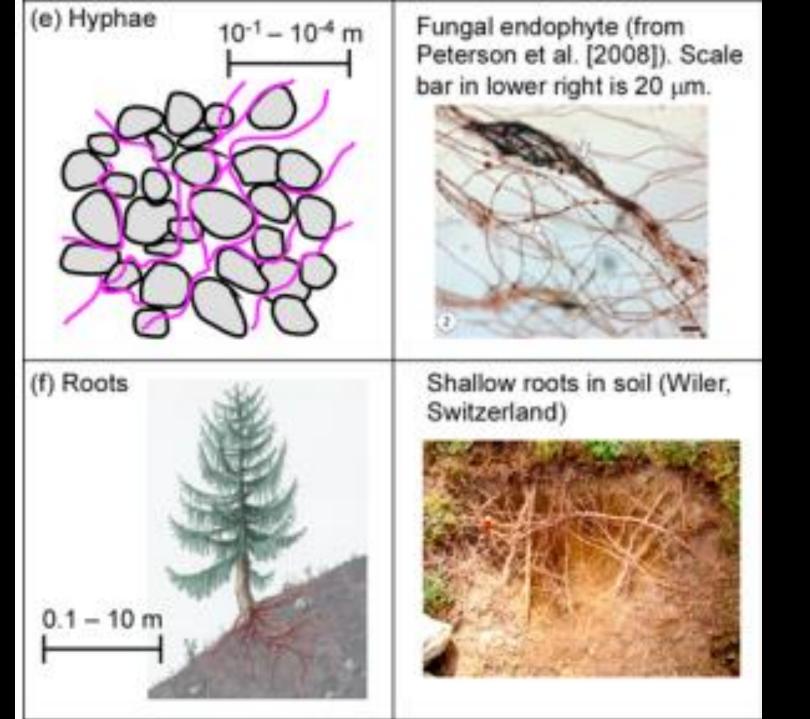

Normal Stress (**G**_N)


Normal Stress (**G**_N)

Normal Stress (**G**_N)


Normal Stress (**G**_N)


Normal Stress (**G**_N)

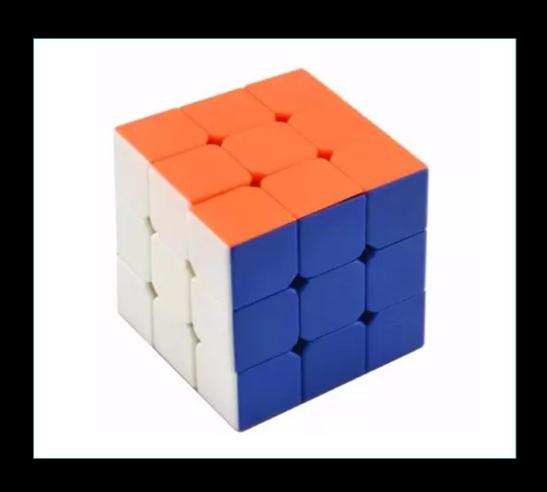

What Influences Cohesion and Friction?

- •WATER... tension, W-D & F-T cycles
- •Precompression... contact points, aggregation
- •Roots & other biomass... elongation, entanglement, adhesion
- Chemical precipitants... cementation



Cohen et al. 2009

XI 📙	5 · ♂ · 🚔 ÷												6	Tire Compaction Example Working.xlsx - Excel												
FILE	HOME INS	SERT F	AGE LAY	OUT	FORM	ULAS	DATA	REVI	EW	VIEW	ADD-I	NS														
9	6 Cut	Calibri		- 11	- A A	_ =	= =	87 -	E W	Vrap Tex	rt	Ge	neral		-	≠		Norma	əl	Bad		Goo	d	1	Neutral	
Paste	Copy Format Painter	B <i>I</i>	<u>u</u> - 🖽	H - 2	- A	- ≡	==	任担	₽N	/lerge &	Center •	\$	- %	, 6.0	.00	Conditional		Check	Cell	Explo	anatory	Inpu	it		inked C	ell
	pboard 5		Fon	ıt		rg:		Aligr	nment		er.	5	Numb	рег	Γ¥	Formatting	· Table ·				5	Styles				
AT21	- : D	< 1	fx																							
A	B C D		F G	н	F 15 7	к	L 1	н н	0	P 0	8 B	S	T U	II V	w	x y	Z AA	AB A	sc AD	AE ,	F AG	AH AI	AJ	AK	AL AM	AN
1 2	F- 200 0									0		200	20		200	200	0									
4 Ambient	F 0 0	0	0 0	0 -	0 0	0	0 0			0 33 16.7 5	0 100	150	200 200 183 200	0 200 0 200	200	200 167 183 150	100 33.3 100 50	16.7	0 0	0	0 0	0 0	0		0	
7	0 8	_	0 0	0 -	0 0	0	0 0		12.5	25 58 33.3 62 37.5 66	2.5 100		175 192 167 184 163 173	8 192	192 188 179	167 138	100 58.3 100 62.5 100 66.7	33.3 12	2.5 4.17	0 2.08	0 0	0 0		0	0	
9 10	0 0		0 0	0	0 0	0.52	1.04 3.1 1.56 5.1	13 10.4 73 12.5	21.9	42.7 68 45.3 71.	.4 100	131 128	156 175 153 168	5 179 8 175	175 168	156 131 153 128	100 68.8 100 71.4	42.7 2 45.3 2	1.9 10.4 5.6 12.5	3.13 <u>1.</u> 5.73 1.	04 0 56 0.52	0 0		0 -	0	
11 12 13	0 0		00 00	0 0	0.13 0.3		3.13 7.0 3.91 3.0 5.66 10		32.6	50.8 74	.3 99.6	124	148 164 145 158 141 153	8 164	164 158 155	145 124	99.7 72.7 99.6 74.3 99.1 75.2	50.8 3		3.64 3.		0.33 0.1	3 0 -	0	0	
14 15	0 0	0 0	.02 0.05	0.1 0 0.26 0	0.49 1.17 0.63 1.8	7 3.29 9 3.86	6.54 13 8.33 14	.4 22.7 .6 25.3	37.3	54.8 76 56.8 76	.3 98.8 .8 98.1	120	139 143 135 14	9 155 7 149	143	139 120 135 119	98.8 76.3 98.1 76.8	54.8 31 56.8 31	7.3 22.7 8.7 25.3	13.4 6. 14.6 8.	54 3.29 33 3.86	1.17 0.4 1.89 0.6	3 0.26	0.05	0	
16 17 18	0 0	0.01 0	.07 0.18	0.61 1	1.23 3.0	9 5.74	9.23 16 11 17. 11.8 21	.9 28.9	42.2 5	59.2 77 60 78	.8 96.9 3.1 96.5	115	133 142 129 140 127 136	0 142	142 140 136		97.8 77.4 96.9 77.8 96.5 78.1	59.2 4	26.7 2.2 28.9 4.1 30.1	17.9 1	23 <u>5.11</u> 1 5.74 1.8 7.03	3.09 1.2	9 0.61		10.0	
19 20	0.01 0.0	2 0.05 0 3 0.11 0	.19 0.42	1.09 2	2.13 4.4	7.68 9 8.97	13.5 2 14.3 22	1 32	46.6	61.1 78 61.6 78	3.2 95.6 3.3 95.1	112 110	124 134 123 130	4 136 0 134	134	124 112 123 110	95.6 78.2 95.1 78.3	61.6	5.6 33	21 13	.5 7.68 .3 8.97	4.44 2.1 4.9 2.7	3 <u>1.09</u> 7 1.27	0.42 0	0.17	
21 22 23	0.03 0.0 0.08 0.1	6 0.13 0 8 0.22 0 3 0.26 0	44 1.04	1.92 3	3.79 6.3	10.9	16.6 25	3.7 34.7 3.3 35.5 5.1 36.9	48.5	62.8 78	.3 93.6	107	120 121	5 128	128 125 123	120 103 113 107 116 106	94.1 78.4 93.6 78.3 92.7 78.2	62.8 4	8.5 35.5	25.3 16	.6 10.3	5.87 3.0 6.35 3.7 7.32 4.1	8 1.91			
24 25	0.17 0.2	7 0.38 0 3 0.45 0	72 1.52 .95 1.69	2.66 4 3.19 5	1.87 7.8 5.24 8.7	11 12.7 8 13.3	18.8 27 20.1 28	7.5 37.6 3.2 38.8	50.2	64.1 77	8 92.2	104	115 120 112 115	0 123	120	115 104 112 103	92.2 78 91.2 77.9	64.1 50	0.2 37.6 0.7 38.8	27.5 18	1.8 12.7 0.1 13.3	7.81 4.8 8.78 5.2	6 2.64 2 3.15	1.45	0.57	
26 27 28	0.31 0.3		34 2.27	4.03 6	5.36 10.	2 15	20.7 29	0.1 40.5	51.9	64.5 77		101	111 116 109 115 108 113	5 116	116 115 113	109 101	90.7 77.6 89.7 77.5 89.2 77.1	64.5 51	1.9 40.5	30.1 2	1.9 15	10.2 6.3	4 3.95	2.11 (1.97	
29 30		7 0.99 1		4.3	7.5 11.0	6 16.6	23.6 31	.8 41.9	52.8	64.8 7		38.6		9 112	112	106 98.6 105 97.2	88.3 77 87.8 76.5	64.8 52 64.9 53	2.8 41.9 3.3 42.3	31.8 23	3.6 16.6 1.2 17.6	11.6 7.4 12 8.1			1.23	
31 32		1 1.34 2 4 1.59 2 8 1.75 2		6.1 9		4 19.1		1.1 43.4	54	65 75	.9 86.4	95.1	103 108	8 109 6 108	108	102 95.1	86.9 76.3 86.4 75.9 85.5 75.7	65 5		34.1 2	5.7 19	13.3 3.2	4 5.86	3.54 1		
22 24 25	1.4 1.4	2.01 3	.01 4.76	7.01 1	10.5 14.	6 20.4 4 20.8	27 35 27.9 35	5.7 44.4 5.7 44.9	54.7	64.9 75 64.9 7	5 84.2	93.1	33.3 103 38.3 103	4 105 3 104	105 104 103	99.9 93.1 98.3 92.5	85 75.2 84.2 75	64.9 54	1.5 44.4	35.3 2 35.7 2	7 20.4 .8 20.8	14.5 <u>10.</u> 15.3 <u>10.</u>	3 6.66 6 7.17	4.08 1	.86	
36 37	1.8 1.70 2.2	6 2.7 4	.61 5.51 .01 5.76 .23 6.27	8.52 1	11.5 15.6 11.9 16.0 12.5 17	6 22	29 36	.7 45.6	55 (64.7 74	3 82.9	30.6	96.1 100	0 101	100	36.1 30.6	82.9 74.3	64.7 5	5 45.6	36.7 2	9 22	16.4 11.0	2 7.43 5 7.92 2 8.17	4.61 4 4.78 5.11 2	2.3	
38 39 40	2.25 2.1		65 6.52	3.41 1	12.3 17.	7 23.2	30.4 38	.6 46.2 3.2 46.4	55.2 6	64.5 73 64.4 73	82.5 8.5 81.6 8.1 81.2	88.9	94 97. 93.3 96.	.7 98.5 .3 97.7	36.3	94 88.9 93.3 87.8	81.6 73.5 81.2 73.1	64.5 5	5.2 46.2	37.6 3	0.3 23.7	17.4 12. 17.8 13	8.64	5.28 2	.56	
41 42	3.2	7 3.82 5 8 4.11 5	56 7.81	10.6 1	14.5 19	7 24.2	31 38 31.3 38	3.4 46.8 3.9 46.9	55.4	64.2 72 64.1 72	80.4	87.3 86.2	92 95.	.5 96.3 .1 95.5	95.5 94.1	92 87.3 91.4 86.2	80.4 72.8 80 72.3	64.2 55	5.4 46.7 5.5 46.9	38.4 30	0.9 24	18.4 13. 18.7 13.	3 9.31 8 9.53	6.06 2	88.	
43 44 45	3.28 3.0 3.8 3.85 3.4	5 4.7 6		11.4 1	15 4 20	25.8	32 1 33	5 473	55.5	63 8 71	6 78 9	84 7	89 6 92	2 93 5	32 2	90.2 85.7 83.6 84.7 88.5 84.2	78 9 71 6	63 8 5	S 473	334 3	2 25 5	19.5 14		6.43	3.1	
46	4.45 3.9	5 5.32 6 8 5.7 7	.94 9.35 38 9.61	12.3 1 12.8 1	16.6 21.	5 26.9	33.4 40	0.3 47.8	55.5	63.2 70	1.6 77.1	82.8	86.8 89.	7 30.3	89.7	88.5 84.2 87.9 83.3 86.8 82.8	77.1 70.6	63.2 5	5.5 47.7	40.1 3	3.1 26.5	20.8 15.	3 10.7 5 11.1	6.89 3 7.02 3	3.31	
48 49 50	5.07 4.4	7 5.36 7 3 6.36 8 2 6.61 8	.09 10.4	13.6 1	17.4 22.	.3 27.7	33.6 40 34 40 34.2 4	0.7 48.1	55.5 6	62.8 69	0.1 76.7 0.9 76 0.4 75.7	81.5	85.3 88	88.6	88	86.3 81.9 85.3 81.5 84.7 80.6	76 69.9	62.8 5	5.4 47.9	40.6 3	3.7 27.2	21.4 16.	1 11.6	7.39 3	3.51 1.63	
51 52	5.72 5.0 6.3	2 7.04 8 8 7.27 9	.81 11.1 .09 11.6	14.4 1	18.2 <u>23</u> 18.7 <u>23</u> .	3 28.4	34.6 41 34.8 41	.2 48.2 .4 48.3	55.4 6 55.3 6	62.4 63 62.3 68	0.2 75	80.2 79.4	83.8 86. 83.3 85.	4 86.3 3 86.4	86.4 85.3	83.8 80.2 83.3 79.4	75 69.2 74.7 68.7	62.4 55 62.3 55	5.3 <u>48.1</u> 5.2 <u>48.1</u>	41.1 34	1.2 27.8 1.3 28.1	22 16. 22.2 17.	1 12.1	7.73 : 7.94 :	18.8	
53 54 55	6.38 5.5		.81 12.4	15.4 1		29.4	35.3 41		55.2		3.1 73.8	78.2		9 84.8	83.9	82.4 79 81.9 78.2 81 77.8		61.8 5	5.1 48.2	41.4 34	1.6 28.3 1 1.8 28.6 1 5 28.8	22.8 17.	5 12.6	8.04 3	.02	
56 57	7.75 6.6	5 8.61 1 5 9.14 1	0.5 <u>13.1</u> 0.9 13.3	16.2 2 16.6 2	20.2 24. 20.4 25.	.7 30 .1 30.2	35.7 4: 36 42	2 48.5 2.1 48.5	55.1	61.5 67 61.2 67	.4 72.8 .2 72.2	77.1	80.6 82. 79.8 82	4 83.4 82.4	82.4	80.6 77.1 79.8 76.7	72.8 67.3 72.2 67.1	61.4 54	1.8 48.3 1.8 48.3	41.6 3 41.7 3	3.1 <u>29</u> 3.3 <u>29.2</u>	23.2 18 23.5 18.	1 13.2	8.59	1.16	
58 59 60	8.44 7.2	9.84 1	1.2 13.8 1.6 14.1 12 14.5	17.4 2		.7 30.7	36.2 42 36.4 42 36.6 42	2.4 48.6	54.8	60.8 66	5.5 71.4	75.6	79.4 81. 78.6 80.	7 81.1	81.1	79.3 76 78.5 75.6 78.1 74.9		60.7 54		41.8 35	.4 29.4 .6 29.5 5.7 29.8	23.9 18.	5 13.6		.37	
60 61 62		6 10.5 1 4 10.6 1	2.4 14.8	18 1	21.8 26.	3 31.2	36.8 42 36.9 42	.6 48.6 .7 48.6	54.6	60.4 65	.9 70.5	74.6	77.4 79.	4 79.8 6 79.4	79.4 78.6	77.4 74.6 77 73.9	70.5 65.8	60.2 54	.4 48.2	42 3	.8 29.9 .9 30	24.2 18.	8 13.8	3.04 3.16	.48	
63	9.84 8.3 10.	1 11.3	13 15.5 3.4 15.9	18.7 2	22.4 26. 22.8 27	.9 31.7	37.1 42 37.2 42	2.8 48.6 2.9 48.6	54.4	60 65 59.8 64	69.7	73.6	76.3 78. 75.9 77.	2 78.6 4 78.2	78.2 77.4	75.9 73.6 75.9 72.9	69.6 65.1 69.4 64.7	59.8 50 59.6 50	48.1 3.9 48.1	42 3	6 30.1	24.5 19. 24.6 19.	1 14.1	9.23 4	1.58	
65 66 67	10.5 8.8 11.3 3.4	3 12	14 16.6	13.6 2	23.4 27.	6 32.4	37.5 4	3 48.6	54.1 5	59.4 64	1.2 68.7	72.1	74.9 76.	3 77.1	76.3	75.2 72.6 74.8 72 74.2 71.7	68.6 64.1	59.2 5	3.7 48	42.1 30	.2 30.5	24.9 19.	6 14.4	3.5	4.7	
68	11.9 9.9	7 13.3 1	5.1 17.5	20.2 2	23.9 28 24.1 28.	32.8	37.8 43 38 43	3.1 48.5 3.2 48.5	53.8	59 <u>63</u> 58.8 <u>63</u>	67.9 67.4	71.2	73.9 <u>75.</u> 73.2 <u>74.</u>	3 76 9 75.3	75.2	73.8 71.1 73.2 70.8	67.8 63.5 67.3 63.3	58.7 53 58.4 53	3.4 47.8 - 3.3 47.7	42.1 30	30.7 30.7	25.1 <u>19.</u> 25.2 <u>19.</u>	8 14.6 9 14.7	9.64	1.82	
70	12.6 10.	6 13.3 1																								
72 73 74	13.3 11. 14	1 14.7 1	5.4 18.7 5.7 19.1	21.7 2	25.2 29. 25.5 29.	2 33.6 4 33.8	38.4 43	.3 48.3 .4 48.3	53.3	58 62 57.8 6	2 65.8	69.2	71.4 72. 71.1 72.	3 73.2	72.9	72.8 70.2 72.2 69.9 71.3 69.4 71.3 69.1 71 68.6 70.4 68.3 70.1 67.8 69.6 67.5	65.8 62.1 65.6 61.7	57.5 50 57.4 50	2.7 47.4	42 30 41.9 30	30.3 3.4 30.3 3.5 31	25.5 20. 25.6 20.	2 15	3.31 4 3.37 4	1.94	
75 76	14 11.	5 15.4 7 15.2 1	17 19.3 1.3 19.7	22.3	25.7 <u>29.</u> 26 <u>29.</u>	7 33.9 8 34.1	38.6 43 38.7 43	.4 48.3 .4 48.2	53.1 52.9	57.6 61 57.4 61	.8 65.3 .5 65.1	68.4 67.9	70.5 72 70.2 71.	72.3 4 72	72 71.4	70.4 68.3 70.1 67.8	65.1 61.5 64.3 61.1	57.1 52 56.9 52	2.3 47.2	41.9 30 41.8 30	31 3.4 31	25.6 20. 25.7 20.	3 15.1 4 15.1	10 4	5	
77 78 79	14.7 12. 15.3 12	1 16 1 3 15.8 6 16.7	18 20.3 18 20.5	23 2	6.5 30.	2 34.4	38.8 43 38.8 43	.4 48.2 .5 48.1	52.8 52.7 52.6	57.1 60 56.8 60	.3 64.7 1.8 64.5	67.2	69.4 70. 68.8 70	71.4 5 71.1 2 70.5	70.5	69.6 67.5 69.3 67 68.7 66.7 68.5 66.2	64.4 60.9 64.2 60.5 63.7 60.3	56.4 51 56.1 5	1.8 46.9	41.7 30 41.7 30	31 31.1 4 31.1	25.7 20. 25.7 20. 25.8 20	4 15.2 5 15.2 5 15.3	10.1 5	.04	
80 81	16 13.	16.4 1 1 17.3 1	8.6 <u>20.8</u> 8.8 <u>21.1</u>	23.6 2	6.9 30. 27.1 30.	6 34.7 8 34.8	39 43 39.1 43	.5 48 .5 48	52.4 52.4	56.7 60 56.4 60	63.8	66.4	68.6 69. 68.1 69	7 70.2	69.6	68.5 66.2 67.9 66	63.5 59.9 63.1 59.8	56 51 55.7 51	1.4 46.7	41.6 30	5.4 31.1 5.3 31.1	25.8 20. 25.8 20.	5 15.3 5 15.3	10.2	70.i	
82				24.1 2	27.5 31.	35	39.2 43 39.2 43	.5 47.9 .5 47.9	52.2	6.3 59 56.1 59	.9 63.2 .8 62.8	65.7	67.8 68. 67.3 68.	8 69.4 6 68.8	68.8	67.9 66 67.7 65.5 67.1 65.3	62.9 59.4 62.4 59.2	55.5 5 55.2	1.1 46.4 51 46.3	41.4 30	31.1	25.8 <u>20.</u> 25.8 <u>20.</u>		10.2	5.11	
()																							4			


What Strategies Can We Use From This Knowledge of Stress, Strain, & Strength?

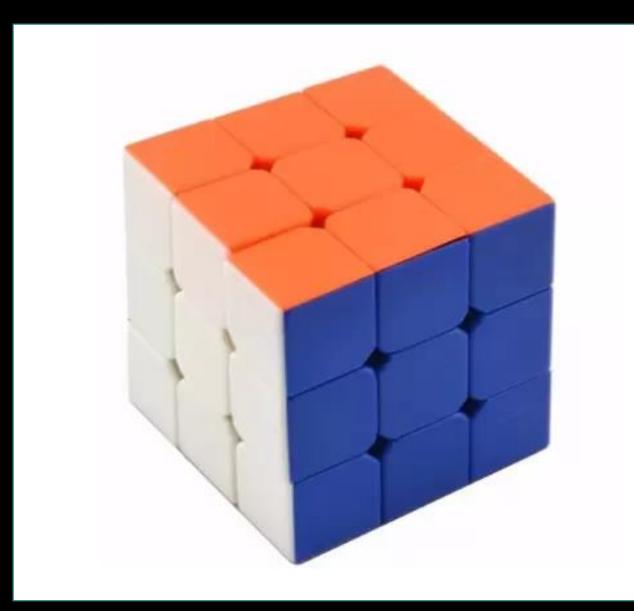
- Minimize Loads and Occurrences
 - Properly adjust tire pressures
 - Minimize number of field passes
 - Controlled traffic
 - Avoid wet soil conditions

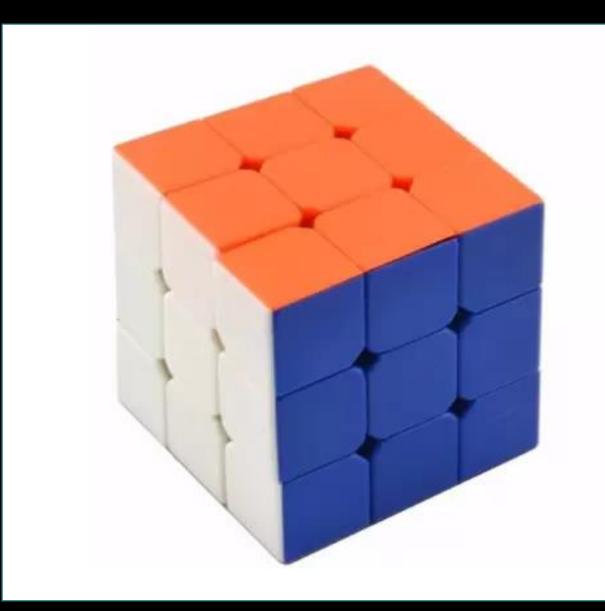
What Strategies Can We Use From This Knowledge?

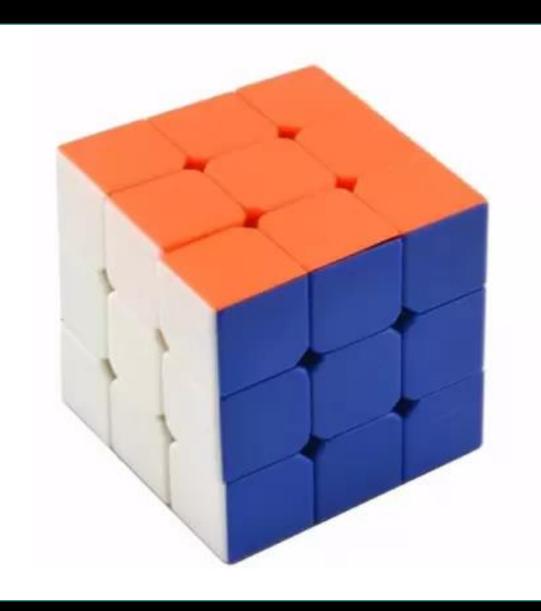
- Mechanical Works Homogenize
 - Either weakens soil or compacts soil
 - Reduces drainage... wetter conditions for longer
 - High input on your behalf
- Natural Works Aggregate
 - High cohesion and friction within aggregates
 - High friction between aggregates
 - Progressively better drainage in most soils

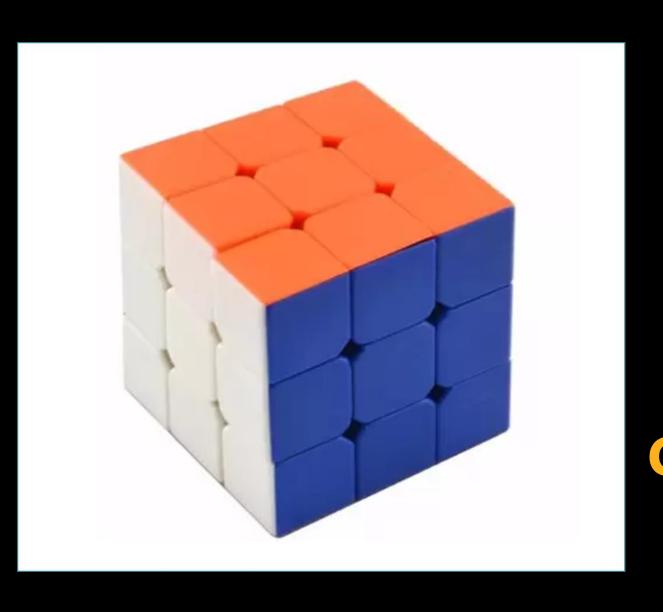
Everything nicely in order

Then everything falls into disarray




How do you get it back in order?




There is nothing special or magical about getting a cube back in order

It takes some knowledge... That's what you already have and why your at this workshop

It takes some trust in the process... Trust leads to Confidence

It takes patience Solving a cube takes a minute Solving compaction often takes years

How do you get it back in order

- 1. Some Knowledge
- 2. Strategy
- 3. Trust & Confidence
- 4. Patience

Physics of Soil Compaction and its Remediation

