Sulfur response of corn and wheat in ND and NW Minnesota

Dr. Jasper M Teboh NDSU - Carrington Research Extension Center Jasper.Teboh@ndsu.edu

> Soil and Soil Water Workshop January 22, 2019, Fargo, ND

Carrington

PRESENTATION OUTLINE

- Background information on S
- Objectives
- Sites where the studies were conducted
- Materials and Methods
- Results
- Conclusions
- Considerations for farmers
- Outlook for future studies

BACKGROUND

S deficiency concerns began in the 80's in Europe; 80's or early 90's in the US

Reasons:

- Low atmospheric S deposition
- Greater S removal by higher yielding crops
- More acreage of S demanding crops (alfalfa, canola)
- Increased no-till acreage and high amounts of crop residues
- Cold and excessive wetness or dryness reduce microbial breakdown of SOM an availability

Deficiency symptoms

- First appear on young leaves (light green to yellow). Why?
- Light green and stunted plants

Over generalization of immobility of S in plants (Monaghan et al., 1999)

OBJECTIVES

Assess the impact of S on grain yields and protein

- Assess the economic implications of S fertilization?
- Determine if S application affects N need by the wheat and corn

MATERIALS AND METHODS

Map Courtesy: http://geology.com/county-map/minnesota.shtml

MATERIALS AND METHODS

WHEAT TRIALS

- N and S Rates in Western MN (2015 to 2017)
 - 0, 60, 120, 180, 240 lbs N/ac
 - 0, 10, 20 lbs S/ac (source: ammonium sulfate)
- N and S rates in ND (2014 to 2017)
 - 0, 50, 100, 150, 200 lbs N /ac
 - 0, 10, 20, lbs S/ac (source: ammonium sulfate)
- Experimental design: RCBD with a split-plot arrangement
- Four replicates at each site

RESULTS (WHEAT, MN)

Yield and protein response to S and N in Minnesota (ANOVA)

		Ada		Thief Rive	er Falls	East Grand Forks		
		Sandy Loam, So	OM = 2.3%	Sandy Loam, SOM = 2.3%		Silty Clay Loam	n, SOM = 3.7%	
Year	Effect	Yield	Protein	Yield	Protein	Yield	Protein	
	Ν	<0.0001	<0.0001	ns	<.0001	ns	0.0067	
2015	S	0.0031	0.0435	ns	0.0456	ns	ns	
	N x S	ns	ns	ns	ns	ns	ns	
		Ada		Thief River Falls		Red Lake Falls		
		Sandy Loam, So	OM = 2.4%	Sandy Loam, S	OM = 2.6%	Loam, SO	M = 3.6%	
2016	Ν	<.0001	<.0001	0.0029	<.0001	0.028	<.0001	
2010	S	ns	ns	<.0001	ns	ns	ns	
	N x S	ns	ns	ns	ns	ns	ns	
		Ada				Gen	tilly	
		Sandy Loam, So	OM = 2.6%			Loam, SO	M = 3.2%	
2017	Ν	<.0001	<.0001			0.0223	<.0001	
	S	0.0112	ns			ns	ns	
	N x S	0.0239	ns			ns	ns	

Significance of treatment effects on 3-year average yields
(2015 -2016) at AdaN<.0001</td>S0.0766N x S0.8602

Estimates of how much N to maximize wheat yields (averaged across three years) at three S rates at Ada, MN (2015 - 17)

S Rate	Estimated N (lbs/ac) to Maximize yield	Estimated maximum yield (bu/ac)	Estimated N (lbs) to produce a bushel
S0	186	87	2.13
S10	193	92	2.11
S20	197	91	2.17

Net gain in income due to N and S fertilizer applied with versus the control treatment (No added N or S), Ada (2015)

Urea N (\$/lb)	0.4
AS (\$/lb)	0.7
Application (\$/A)	6.2

Net gain in income due to N and S fertilizer applied with versus the control treatment (No added N or S), Ada (2016)

Net \$ gained

Net \$\$ gained from N and S fertilizer applied versus the control treatment (no added N or S), Ada (2017)

Yield response to S at Thief River Falls in 2016

Wheat yield (2-yr average) response to S at different N rates at TRF (MN)

N Rates (lbs/ac)

Significance of treatment effects on 2-year

average yields (2015 and 2016) at TRF

Ν	<.0044
S	0.3087
N x S	0.8404

Net \$ gained from N and S fertilizer applied versus the control treatment (No added N or S), TRF (2016)

N Rates (Lbs/ac)

Coefficients of determination (R²) relating yield and protein to flag leaf S, N, and N:S ratio at Ada and TRF

	2015		2()16	2017		
Effects	Yield	Protein	Yield	Protein	Yield	Protein	
			Ac	Ja			
S	0.52	0.10	0.39	0.4 9	0.59	0.30	
Ν	0.68	0.67	0.04	0.59	0.76	0.67	
N:S ratio	0.18	0.20	0.07	0.04	0.13	0.00	
Effects		Т	RF				
S	0.012	0.05	0.27	0.006			
Ν	0.030	0.20	0.32	0.045			
N:S ratio	0.002	0.04	0.08	0.002			

Site description SOM: 4% Texture: Loam N rate: <u>150 lbs</u>

• Site description: SOM was 4%, loam soil, N rate at 150 lbs

Significance of N and S effects on grain yield and protein of wheat loam soils in ND

		Carrington		Minot		Forr	man	Willi	ston
Year	Effects	SOM	= 4.4%	SOM	= 2.8%				
		Yield	Protein	Yield	Protein				
2015	N	0.1102	0.0089	<.0001	0.0853				
2012	S	0.9786	0.1067	0.0003	0.3567				
	N x S	0.0559	0.1380	<.0001	0.2047				
		Yield	Protein	Yield	Protein	Yield	Protein	Yield	Protein
		SOM	= 3.6%	SOM	= 3.3%	SOM =	= 4.5%	SOM	= 2.3
2016	N	0.9281	<.0001	0.1053	<.0001	0.1053	<.0001	0.1507	<.0001
	S	0.5069	0.9611	0.6857	0.1651	0.6857	0.1651	0.0002	0.0049
	NxS	0.4004	0.8743	0.9738	0.1845	0.9738	0.1845	0.9880	0.0001
					5				
		Yield	Protein	Yield	Protein	Yield	Protein		
		SOM	= 2.6%			SOM =	= 3.2%		
2017	N	0.0248	0.0016			<.0001			
	S	0.7516	0.4512			0.6302			
	NxS	0.1468	0.9829			0.9964			

Interaction effects of S and N on wheat yields at Minot (2015) 60 50 Yield (bu/ac) 40 30 ━0 **—**10 20 10 0 50 150 200 0 100 Soil N (lbs/ac)

- S fertilizer resulted in significant yield improvement from the control at 100 and 150 lbs N
- Where N rates were too low (≤ 60 lbs) or too high (200 lbs), yield differences were not significant between S fertilized treatments and the control

Net \$\$ gained from N and S application, versus the control treatment (No added N or S), Minot (2015)

N Rates (lbs/ac)

Fig 1. Effect of S on wheat yields at five N rates (Williston, 2016)

Net gain in income due to N and S fertilizer applied with versus the control treatment at Williston (2016)

CORN TRIALS MATERIALS AND METHODS

NDS

Map Courtesy: http://geology.com/county-map/minnesota.shtm

MATERIALS AND METHODS Corn S x N

Sites and years

Forman, 2016

- N blanket N rate (220 lbs/ac)
- S Rates: 0, 10, 20, 30, 40 lbs S/ac

Forman (2017); Oakes (2018 and 2019)

- N rates: 0, 60, 120, 180, 240 lbs N/ac
- S Rates: 0, 10, 20 lbs S/ac

Carrington

- N: 0, 25%, 50%, 100%, 125% recommended N rate/ac
- S: 0, 10, 20 lbs S/ac
- Experimental design: RCBD with a split-plot arrangement
- Four replicates at each site

RESULTS

Carrington (3 years), loam soil, SOM > 3%)

 S did not impact yields at Carrington in any of the three years (2017 to 2019)

Forman (2 years), loam soil, SOM > 3%
 S significantly improved yields in 2016 and 2017

10

S (lbs/ac)

20

180

0

Treatments	Yield	тwт	Protein	Ear leaf N	Ear leaf S	N/S ratio
N (lb/a)	bu/ac	lb/bu		%		
0	168c	55.0	7.48	2.692c	0.170b	15.9b
60	195b	55.5	7.69	2.983b	0.182ab	16.4ab
120	212a	55.8	7.79	3.058b	0.185ab	16.5ab
180	217a	55.4	8.21	3.100ab	0.188ab	16.5ab
240	222a	55.4	8.39	3.333a	0.193a	17.4a
S (lb/a)						
0	196b	55.1b	8.05	2.950	0.175b	16.9
10	208a	55.5a	7.86	3.095	0.187ab	16.6
20	208a	55.6a	7.84	3.055	0.189a	16.1
Effects				^D r > F		
Ν	<.0001	0.1121	0.0063	<.0001	0.0207	0.0051
S	0.0031	0.0501	0.5484	0.1425	0.0159	0.0542
N x S	0.309	0.9045	0.2836	0.4888	0.3893	0.3391

Effect of N and S rates on corn performance (Forman, 2017)

Soil analysis								
SOM (0-6 in) N (0-24 in) S (0-24 in)								
4.5% 15 lbs/ac 40 lbs/ac								

NDS

Interaction effect of N and S on corn Yield at Oakes, 2018

Predicted N requirement to produce maximum yield for each S level in 2018 and 2017

	Max yield	N to max yield	Max yield	N to max yield
S Rates	(bu/ac)	(lb/ac)	(bu/ac)	(lb/ac)
lbs/a	Oake	es 2018	Form	an 2017
0	239	282	217	224
10	249	233	228	198
20	239	251	-	-

Corn trials at the following five sites did not did not produce significant yield response to S in 2019 (By Dr. Chatterjee)

- Ada (MN)
- Downer (MN)
- Chaffee (ND)
- Walcott (ND)
- Amenia (ND)

Effect of S on barley yields at New Rockford and Carrington (2018)

S fertilizer considerations for wheat and corn

Types of S fertilizers

- Ammonium sulfate
- K thiosulfate
- Ammonium thiosulfate
- Gypsum
- Straight S (Crop response unlikely in same year of application)

Where S will be more effective

- On light soils (sandy) response very likely
- Medium texture (sandy loam, loam) soils response probable to likely
- Heavy soils (clay loam, clay) unlikely

How much to apply

10 lbs of S is adequate and a safe economic rate to apply

SUMMARY

- S fertilizer improved wheat yields in 2 of 8 site-years in MN, and 2 of 8 site-years in ND
- Yield gain from S, ranged between 4 and 7 bushels
- An interaction S and N effect on grain yields suggests that, yields are more likely to improve from S application under adequate S supply, but less likely to influence yields when N is too low or too high
- The results also suggest that the range of N fertilizer rates that would result in profit is very narrow; implying that, very careful N management planning is key to ensuring optimum fertilizer use, and minimizing profit loss
- S significantly improved corn yields (up 30 bu/ac) in South East ND, probably because of the higher yield S
 demands, and cooler soils from the use of conservation tillage (strip till)
- Application of S above 10 lbs/ac is the maximum rate we would recommend for spring wheat
- 10 lbs S was enough to maximize wheat and corn yields. However, up to 15 lbs may be applied to fields with high risk of S loss through leaching (sandy soils, slopes), and on prolonged wet soils
- Including S in a fertilizer planning to avoid S deficiency is more efficient and less costly than correcting S
 deficiency

ACKNOWLEDGEMENT

North Dakota Corn CouncilMinnesota Wheat Commission

Dae Torgerson

THANKS!

		10	0	20	0	10	20	20	0	10	0	10	20	0	20	10	
		240	240	240	180	180	180	60	60	60	120	120	120	0	0	0	
		401	402	403	404	405	406	407	408	409	410	411	412	413	A1A	<i>4</i> 15	
		401	402	403	404	405	400		400	405	410	411	412	413	474	415	
		0	10	20	0	10	20	10	0	20	0	10	20	10	0	20	
		60	60	60	120	120	120	0	0	0	240	240	240	180	180	180	
	er	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	Bo
	ord																rde
	â	20	0				20			20		20		20	0	10	er
		180	180	180	0	0	0	240	240	240	60	60	60	120	120	120	
		201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	
		0	10	20	0	10	20	0	10	20		10	20	0	10	20	
		0	0	0	60	60	60	120	120	120	180	180	180	240	240	240	
		•	Ū	•													
		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	
ND	SU	NOF	RTH D														

N Rate	Yield	TWT	Protein	Leaf N	leaf S
lbs/ac	bu/ac	lb/bu		%	
0	162c	54.4c	7.22e	2.29c	0.229a
60	218b	55.7b	7.74d	3.40b	0.204ab
120	232a	56.0b	8.22c	3.64ab	0.188bc
180	235a	56.7a	8.55b	3.65ab	0.179bc
240	233a	57.0a	8.78a	3.71a	0.178c
S Rate					
0	214	55.9	8.10	3.49	0.175b
10	219	56.0	8.11	3.42	0.180b
20	215	56.0	8.10	3.50	0.223a
			$Pr > F \cdots$		
		<0.000	<0.000		
N	<.0001	1	1	<.0001	<.0001

Table 1. Corn yield, grain quality, and ear leaf N and S response to N and S fertilization at Carrington and Oakes, ND (2018)

[†]Soil N was very high (183 lbs) at CREC. Means followed by same letter within a column of each group are not statistically different (p<0.1)

0.475

0.7438

<.0001

0.0004

0.1277 0.832 0.9934

0.0281 0.6856 0.3133

S

N x S

NDSU

Significance of treatment effects on yield and protein at all MN sites

Effects	Yield	Protein
Ν	<.0001	<.0001
S	0.1200	0.6848
N x S	0.9386	0.4626
Year	<.0001	<.0001

