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ABSTRACT 

Drought is a water related natural hazard. It is difficult to characterize drought because of 

its diffused nature and spatiotemporal variability. However, understanding the variability of 

drought characteristics such as severity, frequency, duration, and spatial extent is critical in 

drought mitigation and planning. Impact of drought on agriculture, water supply, and energy 

sectors has been long-recognized. The current understanding of drought and its impact is limited 

due to its complex characteristics and ways in which it impacts various sectors. This study 

focuses on two important aspects of drought: variability of drought characteristics across 

different spatial scales, and impact of droughts on crop yield and groundwater. Drought is 

reported in the United States (U.S.) for different administrative units at different spatial scales. 

The variation of drought characteristics across different spatial scales and scale dependence was 

investigated, demonstrating the importance of considering spatial scales in drought management. 

Artificial Neural Network and regression methods were used to model the impact of drought on 

crop yield and groundwater resources. Relationships of crop yields and groundwater levels with 

drought indices were obtained. Overall, this study contributes towards understanding of the 

spatial variation of drought characteristics across different spatial scales, and the impact of 

drought on crop yields and groundwater levels.  
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CHAPTER 1. INTRODUCTION 

Drought is water related natural hazard and is generally associated with scarcity of 

freshwater. The main reasons for drought are shortage in precipitation compared to demand for 

water and poor water management. Unlike other natural hazards such as flood, earthquake, and 

hurricanes the occurrence and impact of drought are not realized immediately. However, the 

socio economic impact due to drought is huge. Drought essentially impacts all the water 

dependent sectors directly including agriculture, water supply, recreation, energy, and social. 

Even though losses and threat of droughts to society are recognized, the current understanding of 

drought and the way it impacts the different sectors are limited. Several studies have been 

conducted on droughts in the past and commendable progress has been made in some areas. 

Specifically, several drought indices have been developed to define and monitor drought. Those 

indices are also used extensively to study (a) drought characteristics in both time and space 

domain (Karl, 1983; Vicente-Serrano, 2006; Logan et al., 2010; Gocic and Trajkovic, 2014), (b) 

relating the indices with other large scale climate indices (Piechota and Dracup, 1996; Chiew et 

al., 1998; Shabbar and Skinner, 2004) (c) evaluating impact (Elagib, 2014; Li et al., 2009; 

Mendicino et al., 2008; Mishra and Cherkauer, 2010; Peters et al., 2005), and (d) assessing and 

comparing performances of different indices (Dai, 2011; Guttman, 1998; Heim, 2002; Keyantash 

and Dracup, 2002; Mishra and Singh, 2010; Narasimhan and Srinivasan, 2005; Qin et al., 2015). 

Severity, duration, frequency, and spatial coverages are four major characteristics necessary to 

define drought. A clear understanding of drought across different spatial scale is essential since 

drought is monitored and managed at different spatial units. Studies on drought impact on 

various sectors based on past data will be helpful in tackling future impact of drought. Numerous 

studies have been conducted in the past to quantify the impact of drought. Recent modeling tools 

and data, such as, Artificial Neural Network (ANN); intensity-areal coverage data from USDM, 

and groundwater levels data from the U.S. Geological Survey Ground-Water Climate Response 

Network (USGS CRN) wells can be effectively used now to study drought impact. In this study, 

drought impact on crop yields and groundwater resources were analyzed using such tools and 

data. 

1.1. Background 

Drought is a complex natural phenomenon difficult to accurately describe because of its 

spatially and temporally varying nature and context-dependency (Quiring, 2009). Drought stands 

apart from other natural hazards in many ways, particularly in that it is difficult to identify and 

predict its onset and termination (Dracup et al., 1980a; Hisdal and Tallaksen, 2000; McKee et al., 

1993; Tallaksen et al., 1997). It is characterized by diffused spatial and temporal bounds. 

Creeping behavior of droughts makes it difficult to define and understand, and also to quantify 

its impact (Gillette, 1950; Wilhite et al., 2014). 

Drought indices are used to identify and monitor drought conditions, and to decide the 

timing and level of mitigating actions that need to be taken in response to droughts (Steinemann 

et al., 2005). Historically, losses from droughts across the world have significantly increased due 

to an increase in number of droughts; and/or drought severity (Wilhite, 2000). In the past, U.S. 

had experienced many severe droughts including droughts during 1930-1936 and 1970. Cook et 

al., (2015) predicted that there is a high risk for severe extended drought in the Southwest and 

Central Plains of Western North America in coming years due to climate change and warns that 
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it may lead to a “mega drought.” Impact of drought on agriculture, water resources, and social 

sectors has been long-recognized. 

1.2. Literature Review  

1.2.1. Drought Definition 

There are more than 150 published definitions of drought (Wilhite and Glantz, 1985). 

Mishra and Singh (2010) lists several organizations/researchers who use different definitions of 

drought, for example, the World Meteorological Organization (WMO), the United Nations (UN) 

Convention to Combat Drought and Desertification, the Food and Agriculture Organization 

(FAO) of the UN, the Encyclopedia of Climate and Weather, Gumbel, 1963, and Palmer, 1965. 

Although many definitions of drought exist, the central theme in documented literature on 

drought lies behind the context of water deficiency (Sonmez et al., 2005). The four types of 

drought commonly recognized are meteorological, agricultural, hydrological, and socioeconomic 

droughts (Wilhite and Glantz, 1985; American Meteorological Society, 2013). Meteorological 

drought is usually defined on the basis of the degree of dryness (in comparison to some “normal” 

or average amount) and the duration of the dry period over a region for a period of time. 

Generally, meteorological drought is analyzed based on precipitation (Pinkayan, 1966; Santos, 

1983). Agricultural drought links various characteristics of meteorological (or hydrological) 

drought to agricultural impacts, focusing on precipitation shortages, differences between actual 

and potential evapotranspiration, soil water deficits, reduced groundwater or reservoir levels, and 

so forth. Hydrological drought is associated with the effects of periods of precipitation (including 

snowfall) shortfalls on surface or subsurface water supply (i.e., stream flow, reservoir and lake 

levels, groundwater). Hydrological drought has been widely analyzed using stream flow data 

(Dracup et al., 1980b; Sen, 1980). Socioeconomic definitions of drought associate the supply and 

demand of some economic good with elements of meteorological, hydrological, and agricultural 

drought (American Meteorological Society, 2013). 

1.2.2. Drought Indices 

Drought index is typically a single number representing the drought condition. The 

drought indices are derived from meteorological variables (e.g. precipitation, temperature) and/or 

hydrological variables (e.g. stream flows, reservoir storage, soil moisture, groundwater levels) 

(Steinemann et al., 2005). The indices are used for drought monitoring and decision making 

purposes. These indices are used also for categorizing drought based on their threshold values. 

Numerous drought indices have been developed. The most commonly used indices include: (i) 

Palmer Drought Severity Index (PDSI) (Palmer, 1965); (ii) Standardized Precipitation Index 

(SPI) (McKee et al., 1993; 1995); (iii) Crop Moisture Index (CMI) (Palmer, 1968); and (iv) 

Surface Water Supply Index (SWSI) (Shafer and Dezman, 1982). Several authors have discussed 

the usability and/or applicability of the indices (Dai, 2011; Guttman, 1998; Heim, 2002; 

Keyantash and Dracup, 2002; Mishra and Singh, 2010; Narasimhan and Srinivasan, 2005; Qin et 

al., 2015). A comparison study of Palmer Drought Index and Standardized Precipitation Index 

based on their spectral characteristics can be found in (Guttman, 1998). Heim (2002) did a 

comprehensive review of past drought indices used in the U.S. Keyantash and Dracup (2002) 

evaluated some selected hydrological, agricultural, and meteorological drought indices for their 

usefulness based on a weighted score of six criteria: robustness, tractability, transparency, 

sophistication, extendibility, and dimensionality. They found overall rainfall deciles are superior 

to SPI, cumulative precipitation anomaly, Rainfall Anomaly Index (RAI), Drought Area Index 
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(DAI), and PDSI for representing the meteorological drought; total water deficit is better than 

cumulative stream flow anomaly, SWSI, and PHDI for representing the hydrological drought; 

and computed soil moisture better represents the agricultural drought compared to soil moisture 

anomaly index, Palmer’s Z-index, and CMI. Narasimhan and Srinivasan (2005) discussed the 

PDSI, CMI, SPI, and SWSI. They also have developed and evaluated Soil Moisture Deficit 

Index (SMDI) and Evapotranspiration Deficit Index (ETDI) using a hydrologic model, Soil and 

Water Assessment Tool (SWAT). Mishra and Singh (2010) listed and discussed several 

commonly used drought indices in their review paper on drought concepts. Dai (2011) compared 

the calculation method, classification scheme, strength, and weakness of commonly used drought 

indices. Qin et al. (2015) evaluated the performance of drought indices derived from 

precipitation and soil moisture. Although there are several drought indices, each index has its 

own advantages and disadvantages from the users’ perspectives. In a 2009 workshop held at 

Lincoln, Nebraska, on “Indices and Early Warning Systems for Drought” the importance of 

having a general agreement on standard index for each type of drought (i.e., meteorological, 

agricultural, and hydrological) was recognized. Although SPI was recommended as a standard 

index to monitor the meteorological drought universally, the group did not recommend any 

particular index for agricultural and hydrological droughts. The workshop participants, on the 

other hand, did not want to diminish the importance of local indices that are currently used 

(Hayes et al., 2011). 

Kallis (2008) discussed the drought in detail from an interdisciplinary perspective, and 

emphasized the usage of multiple indices and qualitative judgments in drought monitoring. 

Drought monitoring products using multiple indices include USDM data (Svoboda et al., 2002), 

Joint Deficit Index (JDI) (Kao et al., 2009), and Multivariate Standardized Drought Index 

(MSDI) (Hao and AghaKouchak, 2013). JDI and MSDI were developed using multiple drought 

indices based on probabilistic concepts. USDM drought indicator is a combination of 

agricultural, meteorological, and hydrological severity indicators plus a subjective assessment of 

the impact of drought conditions by the community of drought observers (Svoboda et al., 2002).  

There are several other notable sources also available for drought indices data. For 

example, (i) NOAA’s National Centers for Environmental Information (NCEI) has in its 

database monthly climate indices including the suite of PDSI and SPI on a climate division scale. 

(ii) the University of Washington Surface Water Monitor (SWM) publishes hydrologic and 

drought condition data (soil moisture (SM), snow water equivalent (SWE), runoff, SPI, 

Standardized Runoff Index (SRI)) for contiguous U.S. and Mexico at half degree resolution on a 

daily basis (Wood, 2008). (iii) US-Mexico Drought Prediction Tool uses probabilistic prediction 

of SPI and publishes the data (Lyon et al., 2012; Quan et al., 2012). (iv) Global Integrated 

Drought Monitoring and Prediction System (GIDMaPS) is another data source for drought 

indices at different spatial and temporal scales (Hao et al., 2014). (v) Western Regional Climate 

Center’s WestWide Drought Tracker (WWDT) provides monthly drought conditions at county 

scale (Abatzoglou, 2013).  

1.2.3. Impact of Drought 

Drought has been one of the costliest natural disasters to strike the U.S. (Cook et al., 

2007; Lott and Ross, 2006; Smith and Katz, 2013). Mishra and Singh (2010) discussed the recent 

droughts around the world and their impact. It is estimated that drought costs the U.S. $6–8 

billion annually (FEMA, 1995). Drought creates stress on water resources (i.e., surface water, 

groundwater), and on soil moisture which in turn impact water-dependent industries including 

agriculture, water supply, energy, and recreation (Kumar and Panu, 1997). There have been 
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numerous studies on impact of droughts (Elagib, 2014; Leelaruban et al., 2012; Li et al., 2009; 

Lott and Ross, 2006; Mendicino et al., 2008; Mishra and Cherkauer, 2010; Peters et al., 2005). 

Drought impact quantification is not an easy task because of the difficulty of precisely defining 

droughts and the complex dynamics of impact sectors.  

1.3. Objectives  

This study will contribute to understanding the characteristics of droughts better 

especially the spatial aspects of droughts across spatial scales, and the impact of drought on 

agriculture and groundwater. Main objectives of this study were to: 

1. Discern drought occurrences and their characteristics across of county, climate division, 

state, region and contiguous U.S. scales. 

2. Evaluate groundwater level responses to drought, and; 

3. Study the impact of drought on crop yield. 

 

Though the major portion of this study mainly focuses on the state of North Dakota (ND), 

U.S., the methodologies used in this study are not specific to ND and can be adapted to other 

study sites. 
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CHAPTER 2. DROUGHT OCCURRENCES AND THEIR CHARACTERISTICS 

ACROSS SELECTED SPATIAL SCALES IN THE CONTIGUOUS UNITED STATES
1
 

2.1. Introduction 

A study of variation in severity, duration, frequency, areal coverage, and impact of 

drought events at different spatial scales will be helpful in understanding the mechanism of 

drought propagation and to plan for future drought events. There are many studies in the 

literature that address drought characteristics from different study areas. For example, 

spatiotemporal characteristics of drought for the U.S. using PDSI (Karl, 1983); spatiotemporal 

properties of droughts and their impacts in North Dakota, U.S. using a refined county-level 

drought index from USDM data (Leelaruban et al., 2012); spatial pattern of drought in Iberian 

Peninsula based on SPI using Principal Component Analysis (Vicente-Serrano, 2006); 

spatiotemporal variability of drought using SPI for central plains region of the U.S. (Logan et al., 

2010); and drought characteristics in Serbia (Gocic and Trajkovic, 2014). However, none of 

these studies investigated the effect of spatial scale on drought characteristics. Only recently, 

some studies have been reported on this aspect. Russo et al. (2015) studied the effect of 

Circulation Weather Types (CWT) on variability of drought at different spatial scales in the 

Iberian Peninsula. Mishra and Singh (2011) summarized some of the studies on spatiotemporal 

drought analysis. Wang et al. (2014) listed selected drought studies on global, continental, and 

regional scales. They also studied the area and frequency of severe droughts on a global and 

continental scale using Standardized Precipitation Evaporation Index (SPEI). Panu and Sharma 

(2002) emphasized the need to study spatial behaviour of droughts at different spatial scales. It is 

possible that drought characteristics and mechanics of propagation may be different not only 

across different spatial scales in one region, but also across multiple scales in different 

geographic regions.  

Focus of this part of the study was the pattern and frequency of occurrences of droughts, 

their spatiotemporal characteristics, and their variation over different spatial scales in the 

contiguous U.S. The USDM data form years 2000 to 2014 was used. The occurrences of 

droughts of different intensity categories, spatiotemporal propagation of drought at different 

spatial scales, and the characteristics of droughts under different spatial scales were analysed. 

The results could help identify the areas in contiguous U.S. that have been exposed to frequent 

and intense droughts in recent years, and potentially in the future; and also, identify the 

characteristics of different intensity categories from different spatial scales perspective.  

2.2. Study Area and Data 

USDM data on droughts is available to the public from the NDMC since the year 2000. 

This part of the study used USDM weekly percentage area coverage of different drought 

intensity categories (D0, D1, D2, D3, and D4) for the years 2000 to 2014. This study does not 

involve time series analyses in the strict sense except for comparison of yearly values in one of 

the components of the study. Spatial scales chosen for the study were national, regional, state, 

climatic division, and county. Contiguous U.S., High Plains Region (HPR), North Dakota (ND) 

State, South Central Climate Division (SCCD) in ND, and Grant County in ND were the areas 

 

1
This chapter was adopted from a published article in Geosciences (Leelaruban. N., and G. Padmanabhan., 2017. 

Drought Occurrences and Their Characteristics across Selected Spatial Scales in the Contiguous United States. 

Geosciences, Vol 7(3), No. 59, doi:10.3390/geosciences7030059). 
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selected to gauge drought characteristics variation under the selected spatial scales (Figure 2.1). 

Percentage area coverage values for different USDM drought intensity categories were derived 

for years 2000 – 2014 (15 years) from the USDM web portal for the areas representing the 

selected spatial scales.  

 
Figure 2.1: Spatial scales considered in this study. 

2.3. Methods 

2.3.1. Occurrences of drought in the contiguous U.S. 

The contiguous U.S. has experienced several drought episodes during the study period 

(2000 – 2014). In this part of the study, the goal was to analyse the occurrences of different 

drought intensity categories. The weekly USDM GIS shapefiles were obtained from USDM web 

portal for years 2000 to 2014 and were used in ArcGIS10.3
®
. A series of batch commands were 

executed to clip the shapefiles into contiguous U.S., and extract areal extents pertinent to 

different USDM drought intensity categories (i.e., D0, D1, D2, D3, and D4).  

The number of weeks that an area has been hit by D1, D2, D3, and D4 drought intensity 

category during years 2000 to 2014 was extracted first. It was decided not to include D0 because 

of two reasons: (i) due to the difficulty in processing a large number of multiple intersections (as 

subsequently described), and (ii) also D0 is an “abnormally dry” condition not significant enough 

in terms of its intensity to qualify for a “drought” condition. The following steps were 

implemented in ArcGIS 10.3
®
 to count the number of weeks that an area has been hit by D1, D2, 

D3, and D4: (a) The “Union” tool was used to combine all 783 weekly shapefiles of selected 

intensity drought. (b) Weekly USDM shapefiles had several attributes including drought 

intensity category (DM). The final shapefile, after combining all 783 weekly data, contained all 
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the attributes from 783 weekly files in different columns. Except for the attributes that indicated 

the drought category (DM) all the other fields were deleted. (c) The attribute table was exported 

to Microsoft EXCEL sheet and the “countif” function was used to count the number of drought 

occurrences within each feature. Each weekly shapefile for particular intensity had several 

polygonal features. The union of 783 weekly shapefile inputs created numerous features in the 

output as a result of multiple intersections (output of union for 783 weeks of D4, D3, D2, and D1 

category droughts had 63453, 683381, 2115430, 38994466 polygon features respectively). Each 

feature had attributes from 783 input shapefiles which included the occurrences of drought 

categories. The attribute from output of union were exported to Microsoft Excel and number of 

occurrences were counted.  

The drought coverage areas were also extracted for all intensity categories (D0, D1, D2, 

D3, and D4) on a yearly basis for the period 2000 to 2014. The D0 was included for this and 

following part of the analysis because an understanding of variation in areal coverages of D0 will 

help to understand the drought, and can be related to other intensity categories. The extracted 

drought intensity categories from the weekly data for each year were grouped, and spatially 

combined to get the yearly intensity coverage. The intensity coverages were mapped for each 

year from 2000 to 2014. The total area coverage queried was one that experienced a particular 

intensity of drought at least once/year in the contiguous U.S. 

2.3.2. Drought characteristics across spatial scales in the U.S 

The study also investigated how droughts evolve at five different spatial scales: 

contiguous U.S., HPR, ND State, SCCD in ND, and Grant County in ND. The areal coverage of 

weekly drought intensity categories was plotted with time for the study period (2000 – 2014). 

USDM also provides similar graphical plots based on their traditional statistics, which is a 

percent of an area that is in or worse than a certain drought category. However, the purpose of 

this part of the study was to analyse how areal extent of different intensity categories evolved 

with different spatial scales. Spatiotemporal behaviour of the drought during the period 

December 20, 2005 to October 23, 2006 (44 weeks) was further investigated. This was one of the 

periods in which all intensity categories occur at least in some part of the contiguous U.S., and 

for all spatial scales considered. 

Based on years 2000 - 2014 (783 weeks) of USDM weekly data, the drought 

characteristics for different spatial scales: contiguous U.S., HPR, ND State, SCCD in ND, and 

Grant County in ND were derived. The following drought characteristics were extracted: 

2.3.2.1. Number of events 

A drought event was defined as the occurrence of “greater than zero” drought intensity 

coverage anywhere in the considered area in any week during the study period. However, 

occurrences in consecutive weeks were considered as one event. Total number of drought events 

for the different intensity categories (D0, D1, D2, D3 and D4) were determined. 

2.3.2.2. Total duration  

The total number of weeks (not necessarily consecutive) in the study period in which the 

area covered by different intensity categories (D0, D1, D2, D3 and D4) were greater than zero.  

2.3.2.3. Maximum duration 

This was the maximum number of consecutive weeks that were subject to a drought event 

as defined previously. This was extracted for each drought intensity category (D0, D1, D2, D3 

and D4). 
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2.3.2.4. Minimum, maximum, and average percentage area coverage 

Minimum and maximum weekly percentage area coverage of different drought intensity 

categories (D0, D1, D2, D3 and D4) were identified over the study period. The average of 

weekly percentage area coverage was also calculated for different intensity categories over the 

study period, that is, 2000 to 2014.  

2.4. Results and Discussion 

2.4.1. Drought occurrences in the contiguous U.S. 

Drought occurrence (in number of weeks) in the contiguous U.S. is shown in Figure 2.2. 

Fig. 2.2 shows the distribution of drought occurrences for intensity categories D4, D3, D2, and 

D1 during years 2000 to 2014 (783 weeks). Mapping the occurrences of drought using USDM 

data helps identify the areas that are vulnerable to droughts. In the contiguous U.S., during years 

2000 to 2014 about half of the (51.7%) area had experienced D4, and almost the entire area 

(99.8%) had D1 at least once (Figure 2.2). D2 and D3 drought occurred at least once in 86.4% 

and 97.4% of the area respectively. The southern part of the contiguous U.S. has experienced all 

intensity droughts in the study period, and some areas including areas in north-eastern part have 

been free of high intensity droughts (D4 and D3). Each drought occurrence had different spatial 

pattern. Parts of several counties Wilbarger, Wichita, and Baylor in Texas; and Tillman in 

Oklahoma experienced with a range of 168-156 weeks (out of 783 weeks) D4 intensity drought 

(Figure 2.2). Other areas affected by D4 at least 96 weeks during years 2000 to 2014 can be 

found in Colorado, Idaho, Montana, New Mexico, Oklahoma, Texas, and Utah states (Figure 

2.2). Frequent occurrences of D3 are mostly in western U.S. Parts of counties: Pershing and 

Humboldt in Nevada; and Apache in Arizona experienced D3 drought between 223 to 231weeks 

out of 783 weeks. The areas that had been hit by D3 more than 130 weeks during years 2000 to 

2014 can be found in Alabama, Arizona, Colorado, Georgia, Idaho, Kansas, Montana, Nebraska, 

Nevada, New Mexico, Oklahoma, Oregon, South Carolina, South Dakota, Texas, Utah, 

Wyoming states (Figure 2.2). 

D2 occurred mostly in the western part of the U.S similar to D3. Parts of Arizona, 

California, Nevada, and Oregon states have been in D2 condition at least 312 weeks out of 783 

weeks (Figure 2.2). Figure 2.2 also shows that most of the eastern states were in D2 less 

frequently. Some areas in Ohio, New York, Pennsylvania, Vermont, and West Virginia have 

never been under a D2 drought. Occurrences of D1 can be seen almost in the entire contiguous 

U.S. Some parts of Nevada, and Oregon were in D0 at least 335 weeks out of 783 weeks (Figure 

2.2). 

Overall, the western part of the US experienced droughts frequently compared to the east 

(Figure 2.2), however, spatial patterns of occurrences varied significantly. For example, Alabama 

was the only state that was in D4 entirely at least once during years 2000 to 2014 but with 

relatively less frequency, whereas parts of Oklahoma and Texas were in D4 category very 

frequently. Some parts of Colorado were in D4 category frequently whereas some parts have 

never experienced D4. The characteristics of drought can be understood and/or interpreted 

differently observing from different spatial scales perspective. For example, southeast part of 

Colorado is exposed to higher intense drought frequently compared to the north central part of 

the state. Considering the value of drought index reported for the state, it is possible that the 

reported value may reflect the drought condition differently for each state. One may get a 

completely different picture of the drought conditions from the state level compared to a county 
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or climate division. The drought information of a smaller area such as at the county extents could 

be masked when the drought is reported at the state level. 

 

Figure 2.2: Drought occurrences (in weeks) of intensity categories D4, D3, D2, and D1 during 

the years 2000 through 2014 (783 weeks).  

The variation of areal coverage of droughts in the contiguous U.S. on an annual basis was 

also analysed. The percentage area covered by different drought intensity categories for each 

drought during specific years are tabulated in Table 2.1. In the contiguous U.S., 16.9 % of the 

area experienced exceptional drought (D4) at least once in the year 2012 whereas none of the 

areas had D4 in 2010. In 2012, the extreme drought (D3) occurred in 42.6 % of the area at least 

once, and only 4.4 % area had D3 in 2010. The percentage areal coverage ranges for severe 

drought (D2) from 67.5 in 2012 to 20.1 in 2009, moderate drought (D1) 81.6 in 2012 to 42.8 in 

2014, abnormally dry condition (D0) 91.2 in 2001 to 62.6 in 2014. Figure 2.3 shows the highest 

intensity drought that an area has experienced for each year from 2000 to 2014 in the U.S. 

Although the total areal coverage may be the same in different years, it may be distributed 

differently in those years (Figure 2.3). For example, in the year 2011 and 2012, the total 

percentage area coverage of D4 intensity is 16.1 and 16.9 respectively (Table 2.1). It is spread 

out in 2012 whereas in 2011 it is concentrated in one region (Figure 2.3). This type of spatial 

characteristics of drought significantly influences drought management and resource allocation, 

and emphasizes the need of addressing drought at different spatial scales. Also from these yearly 

maps, the progression and onset of intensifying drought in the state of California can be seen in 

the years 2011 and 2014. In Texas D4 intensity drought occurred in the years 2009 and 2011, but 

not in 2010.The maps in Figure 2.3 are helpful in extracting information of this type of areal 

extent and pattern of droughts over the years in a region. In general, the contiguous U.S. was 
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covered by higher intensity droughts in 2012 whereas in 2010 had less coverage by higher 

intensity droughts. Over the study period, occurrence of drought in the contiguous U.S. varied 

spatially, and a state like Texas had repeatedly experienced higher intensity drought.  

 

Table 2.1: The percentage areal coverage of different drought intensity categories in the 

contiguous U.S. 

Year 
Drought intensity categories 

D4 D3 D2 D1 D0 

2000 6.2 17.8 43.7 70.8 90.1 

2001 0.8 16.6 41.0 63.2 91.2 

2002 12.3 38.3 58.7 77.5 90.1 

2003 7.4 34.5 53.5 58.4 63.0 

2004 5.4 23.0 36.4 46.1 63.0 

2005 2.4 14.5 37.6 64.0 90.3 

2006 5.6 27.7 49.0 68.4 82.8 

2007 6.2 24.1 50.8 70.5 89.0 

2008 4.2 12.5 36.5 60.4 80.9 

2009 2.2 5.7 20.1 47.5 78.1 

2010 0.0 4.4 22.5 54.1 86.6 

2011 16.1 24.3 33.9 47.6 70.3 

2012 16.9 42.6 67.5 81.6 83.9 

2013 11.7 33.5 58.5 66.6 72.0 

2014 7.3 19.0 31.8 42.8 62.6 

 

2.4.2. Spatial propagation of drought intensity categories across spatial scales in the U.S. 

Figure 2.4 (a-e) shows how the areal extent of different intensity categories evolved at 

different spatial scales. In HPR and contiguous U.S. scales, several long episodes of drought can 

be seen at different intensity levels (Figure 2.4d-e). The onset, progress and termination of 

drought were gradual for larger scales such as HPR and contiguous U.S. However, it can be seen 

from Figure 2.4 a-c that for the smaller scales, the duration of certain intensity drought was short 

and had sudden onset and termination. At the greater spatial scales, it was observed that the 

dynamics were smoother than those observed for the smaller spatial scales. This may be because 

at the greater spatial scale, i.e. at the contiguous U.S. scale, when a given sub-area changes its 

intensity category (e.g. from D3 to D2), another sub-area could assume D3 category, leading to a 

diminished D3 areal coverage. This occurrence becomes more and more unlikely as the spatial 

scale decreases due to more homogenous hydrological conditions allowing sudden variations of 

the area coverage of certain drought intensity. Recognition of this feature is important from a 

drought management perspective across scales because the small scales are subject to sudden 

drought and can be unnoticed at larger spatial scales. 
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Figure 2.3: Areal coverage of the highest intensity of drought that an area experienced for years 

2000 – 2014. 
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Figure 2.4: Propagation of areal coverage (AC) of different intensity category droughts over (a) 

Grant county, ND (b) SCCD, ND, (c) ND State (d) HPR, and (e) Contiguous U.S. 

From the Figure 2.4 it can be seen that the Dec 20, 2005 to Oct 23, 2006 shown in box, 

was the only period where all the categories were present in all spatial scales considered. D4 

occurred at least in some part of the contiguous U.S throughout the 44 week period, and D4 

existed 8 weeks in HPR, 5 weeks in ND, 5 weeks in SCCD in ND, and 2 weeks in Grant County 

in ND. 
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Figure 2.5 (a-e) shows the area that had experienced drought at least once during Dec 20, 

2005 to Oct 23, 2006 period (44 weeks) at different intensity levels. Figure 2.5(f) shows the 

highest intensity drought that an area has experienced within the same time frame. The areal 

coverage maps show that more intense droughts (D4 and D3) occur as spatially disjointed areas, 

and less intense droughts were spatially connected. It should be noted that the coverage was for 

the whole 44 weeks drought period considered, and might not be spatially connected at any given 

week. The spatiotemporal features of drought propagation significantly change with spatial scale. 

A same drought may appear to have different characteristics when viewed at different spatial 

scales, and that need to be considered in drought management.  

2.4.3. Characteristics of droughts across spatial scales in the U.S. 

Figure 2.6 shows the characteristics of drought occurrences of different USDM intensity 

categories and at different spatial scales in the U.S.: number of drought events, total and 

maximum duration, and maximum, average, and minimum areal coverages. From the number of 

events and total duration it can be concluded that at any given time in the time frame (2000 – 

2014), at least some part of contiguous U.S. experienced; no drought (None), D0, D1, and D2 

conditions (Figure 2.6a-b). Extreme drought (D3) and exceptional drought (D4) drought 

persisted continuously 269 and 196 weeks respectively in the contiguous U.S. to their maximum 

duration (Figure 2.6c). Contiguous U.S. experienced D3 drought for 751 weeks out of 783 

weeks, as three separate events, D4 drought 590 weeks out of 783 weeks as nine different events 

(Figure 2.6a-b).  

The High Plains Region experienced the D0 condition throughout the study period. The 

“None” condition occurred 771 weeks in the region while D4 condition existed 332 weeks with 

the maximum duration of 154 weeks (Figure 2.6b-c). The North Dakota state experienced the 

absence of all drought conditions at least once in the past (Figure 2.6b,f). The state had its 100 % 

of area covered by “None” and D0 conditions at their maximum coverages (Figure 2.6d). The 

state has experienced the D4 category only once for a duration of 5 weeks with a maximum areal 

coverage of 2.4 % (Figure 2.6a-d). The South Central climate division in ND experienced the 

“None” condition for 539 weeks, and has experienced the D4 condition only for about 5 weeks 

as a single event with a maximum coverage of 21.32 % (Figure 2.6a-d). The Grant County in ND 

is covered 100% by None, D0, D1, D2, and D3 conditions at their maximum coverages (Figure 

2.6d). The county experienced the D4 condition only once for a 2 weeks period with the 

maximum coverage of 16.36% (Figure 2.6c-d). 

The number of events for D0 condition appears as increasing from a larger spatial scale 

to smaller spatial scale. However, for all other drought conditions numbers of events do not show 

any relation with spatial scales (Figure 2.6a). The total and maximum duration for all conditions 

are decreasing from larger to smaller spatial scales (Figure 2.6b-c). It was an expected 

observation since smaller spatial scales are subset of larger spatial scales. The average areal 

coverage of drought conditions did not show any trend with spatial scales (Figure 2.6e). The 

maximum percentage area coverages were increasing from the larger spatial scales to smaller 

spatial scales for “None”, D0, and D1 conditions (Figure 2.6d). All the spatial scales had been 

free of D4 and D3 at least once as seen in the minimum area percentage coverage. All the spatial 

scales except contiguous U.S had been totally covered by D0 or higher intense drought at least 

once (i.e., zero percentage covered by “None”) whereas contiguous U.S 80.75% covered by D0 

or higher intense drought at least once (i.e., 19.25% covered by “None”). The minimum 

percentage area coverages of D0 for the contiguous U.S and HPR were 5.42% and 0.38% 

respectively. The other spatial scales were devoid of D0 category at least once. A section of 
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contiguous U.S. was covered by D1 and D2 categories, at 4.80% and 1.08% areal extents 

respectively, and all the other spatial scales were free of D1 and D2 at least once. In general, the 

minimum areal percentage coverages are decreasing towards the smaller spatial scales (Figure 

2.6f). 

 
Figure 2.5: Areal coverage of drought during Dec 20, 2005 - Oct 23, 2006. (a) exceptional 

drought (D4), (b) extreme drought (D3), (c) severe drought (D2), (d) moderate drought (D1), (e) 

abnormally dry (D0), and (f) all categories. 
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Figure 2.6: Comparing spatial scales with: (a) number of events, (b) total duration (weeks) (c) 

maximum duration (weeks) (d) maximum areal coverage, (e) average areal coverage, and (f) 

minimum areal coverage for each intensity category and “none” condition. 

2.5. Conclusion 

This study shows that southern and western parts of contiguous U.S. experienced higher 

intense drought frequently whereas northeast part less frequently. A combination of hydro-

climatology and management practices of those areas could be the driver for the obtained spatial 

distribution and frequency of droughts. The spatial distribution of areal coverage of droughts of 

different intensities also varied significantly from year to year. The propagation of different 

intensity drought shows dissimilar patterns across different spatial scales. Depending on the size 
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of the governing unit such as a county or state, an understanding of this scale-dependency is 

important for drought management and resource allocation.  

The spatiotemporal characteristics of drought under different spatial scales show that the 

total duration, average percentage area, and maximum percentage areas are decreasing with 

increasing intensity for all spatial scales; and in the smaller spatial scale, the drought persists for 

a smaller duration compared to larger spatial scale. There have been discussions about 

appropriate temporal scale for reporting drought. It may be useful to consider a finer temporal 

scale for smaller spatial scales and larger temporal scaling for larger spatial scales. This study 

demonstrates that there is clear variation in the drought characteristics such as intensity coverage, 

duration, and occurrence at different spatial scales. The findings emphasize that drought 

management and resource allocation policies need to be developed for different spatial scales, 

even for smaller administrative units such as a county. In order to manage drought impact in any 

administrative areal unit in any geographic location better, the dependence of drought 

characteristics on spatial scales need to be studied at that location to derive drought 

characteristics appropriate for that scale.   
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CHAPTER 3. EXAMINING THE RELATIONSHIP BETWEEN DROUGHT INDICES 

AND GROUNDWATER LEVELS
1
  

3.1. Introduction 

Establishing a parametric linkage between groundwater level fluctuations and drought is 

vital for water monitoring and management. In most areas, groundwater is used as an alternative 

water source during drought events. Groundwater and drought have inherent complexities, yet 

are relatively concomitant. Although drought is contextual without a universally accepted 

definition (Wilhite and Glantz, 1985) its central theme is related to a period of water deficiency 

in relation to demand. Since it is inherently difficult to identify or predict drought’s onset and 

offset, indices are predominantly used (Dracup et al., 1980; Tallaksen et al., 1997). These indices 

are utilized categorically to identify and monitor drought (Steinemann et al., 2005). The four 

types of drought generally recognized include (i) meteorological, (ii) agricultural, (iii) 

hydrological, and (iv) socio-economic drought (AMS, 2013; Wilhite and Glantz, 1985). The first 

two types, that is, meteorological and agricultural droughts, are defined on the basis of 

precipitation and soil moisture deficits respectively (AMS, 2013; Wilhite and Glantz, 1985). On 

the other hand, hydrological drought is applicable to shortfalls on surface/subsurface water 

supply whereas socioeconomic drought is associated with the supply and demand of some 

economic good (AMS, 2013; Wilhite and Glantz, 1985). Mishra and Singh (2010) suggested that 

groundwater deficit should be classified as a type of drought in addition to the aforementioned 

four types. Groundwater drought can be defined only in terms of groundwater level decline due 

to difficulties of quantifying groundwater storage, recharge, aquifer type and areal extents 

(Chang and Teoh, 1995; Eltahir and Yeh, 1999).  

Various authors emphasize the need for evaluating the relationship of stream flow and 

groundwater with meteorological variables based drought indices (Chen et al., 2002; Chen et al., 

2004; Haslinger et al., 2014; Jan et al., 2007; Lorenzo-Lacruz et al., 2010; Mall et al., 2006; 

Panda et al., 2007; Tirogo et al., 2016; Vasiliades and Loukas, 2009; Vicente-Serrano et al., 

2012). The relationship of stream flow with drought indices has been studied by several authors. 

For example, Haslinger et al. (2014) established a methodology for directly relating various 

meteorological drought indices and stream flow data for northern Austria gauging stations. These 

indices included: (i) Standardized Precipitation Index (SPI), (ii) Standardized Precipitation 

Evapotranspiration Index (SPEI), (iii) Palmer’s Z-Index, and (iv) self-calibrating Palmer Drought 

Severity Index (scPDSI). Vasiliades and Loukas (2009) used Palmer drought indices to ascertain 

hydrological drought using simulated river discharges and soil moisture for riverine systems in 

Thessaly, Greece. Vicente-Serrano et al. (2012) extensively studied the correlation between 

select drought indices and stream flow data from 151 basins worldwide. Lorenzo-Lacruz et al. 

(2010) evaluated the performance of SPI and SPEI drought indices to correlate river discharge, 

investigate reservoir storage, and determine reservoir release.  

The knowledge base of studies linking drought and groundwater levels is limited, 

although Mall et al. (2006) emphasized the need to study the impact of climate change and 

drought on groundwater resources in depth. Most studies have used precipitation and 

temperature to study drought relationship with groundwater levels. For example, Panda et al. 

 

1
This chapter was adopted from a published article in Water (Leelaruban. N., and G. Padmanabhan, P. Oduor., 2017. 

Examining the Relationship between Drought Indices and Groundwater Levels. Water, Vol.9, No. 82, 

doi:10.3390/w9020082). 
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(2007) reported the relationship between monsoon rainfall and groundwater fluctuation. Tirogo 

et al. (2016) reported the groundwater response to rainfall for a study area in Burkina Faso, West 

Africa. The relationship between groundwater level fluctuation and rainfall was also studied for a 

selected well in Central Taiwan by Jan et al. (2007). Chen et al. (2004) found that groundwater 

levels greatly depended on precipitation and annual mean temperature, with a delayed response 

time. An empirical model developed by Chen et al. (2002) linked annual precipitation and 

average temperature to groundwater levels based on water budget and groundwater flow. The 

relationship between drought indices and groundwater level fluctuation has not been explored 

much in the past. 

This study differs from the aforementioned studies because this study focused on 

groundwater response to drought by deriving a parametric relationship between drought indices 

and groundwater data. Bloomfield and Marchant (2013) developed a Standardized Groundwater 

Level Index (SGI) incorporating an approach similar to the computation of SPI using 

groundwater level data from select wells in United Kingdom. Mendicino et al. (2008) proposed a 

Groundwater Resource Index (GRI) for drought monitoring and forecasting. This was based on a 

simple water balance model approach. Li and Rodell (2014) empirically derived a groundwater 

drought index (GWI) based on Catchment Land Surface Model (CLSM) output. Li and Rodell 

(2014) found strong regional correlation between CLSM (Koster et al., 2000) based GWI and in 

situ data based GWI, and both GWIs displayed a higher correlation with SPI-12 and SPI-24. 

However, CLSM requires substantial modeling effort. Other studies have used remote sensing 

techniques to quantify the groundwater storage decline (Castle et al., 2014; Famiglietti et al., 

2011; Rodell et al., 2009; Voss et al., 2013). Most of these studies used precipitation and 

temperature as indicators of drought. Groundwater systems are influenced by many factors 

including hydrological properties of recharge area, hydraulic properties of aquifer, and climate 

variables. Therefore, deterministic approaches to quantify groundwater level dynamics require 

aquifer properties, recharge rates, amongst other factors. Due to limitations of such data, 

deterministic approaches may be difficult to implement (Chen et al., 2002) which leaves 

statistical analyses as a viable alternative.  

In this study, groundwater level data from the U.S. Geological Survey Ground-Water 

Climate Response Network (USGS CRN) wells was used. Wells in this network have the least 

anthropogenic-induced disturbances (Cunningham et al., 2007). A total of 8 indices were tested 

and a correlation matrix was developed between groundwater levels and drought indices to 

evaluate the capability of indices to elucidate dynamics of groundwater level fluctuations. The 

seasonal variability of groundwater level, and its relationship with drought was also studied for 

selected wells. An event by event analysis was also conducted to capture the specific behaviour 

of groundwater level fluctuation during individual drought episodes. Duration of drought events 

and lag times of groundwater responses with respect to onset and termination of drought events 

were also studied. 

3.2. Study Area and Methods 

3.2.1. Study area and groundwater levels data 

The study area and the selected well locations are shown in Figure 3.1. Criteria for the 

selection of CRN wells included: (a) located in unconfined aquifers or near-surface confined 

aquifers, (b) had minimum artificial influences (e.g. pumping, irrigation, canals, and artificial 

recharge), and (c) have never gone dry (Cunningham et al., 2007). Thirty-two USGS CRN wells 

from the Great Plains States of the U.S. were analysed. One well located in Colorado (CO), two 
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wells from Kansas (KS), five wells in Montana (MT), six wells in Nebraska (NE), five wells in 

North Dakota (ND), two wells in Oklahoma (OK), six wells in South Dakota (SD), and five 

wells located in Texas (TX)) (Figure 3.1). The beginning of time span of groundwater level data 

was chosen based on the beginning of available consistent groundwater level records. December 

2013 was chosen as the end of time span. 

 
Figure 3.1: Study area showing selected wells’ locations. 

3.2.2. Drought indices 

Palmer Drought Severity Index (PDSI) (Palmer, 1965), Palmer Hydrological Drought 

Index (PHDI) (Karl, 1986), Standardized Precipitation Index (SPI) (McKee et al., 1993; McKee 

et al., 1995); and meteorological parameters such as Precipitation (PCP) and Average 

Temperature (TMP) were used in this study. The Monthly values of PDSI, PHDI, SPI, TMP, and 

PCP were derived from National Oceanic and Atmospheric Administration (NOAA) National 

Climatic Data Center (NCDC) [Currently part of NOAA's National Centers for Environmental 

Information (NCEI)]. The NCDC maintains historic data from 1895 to present in climatic 

division scale. NOAA's Gridded Climate Divisional Dataset (nCLIMDIV formerly known as 

Traditional Climate Division Dataset (TCDD) data) from NOAA NCDC were also used in this 

study. nCLIMDIV replaced the previous Traditional Climate Division Dataset (TCDD) in March 

2014. The detailed description and major impacts of this transition can be found in Fenimore et 

al. (Fenimore et al., 2011). Vose et al. (2014) discussed the improvement in the nCLIMDIV data 

and suggested that this can be used in applied research and climate monitoring. 
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3.2.3. Groundwater level - drought indices correlation 

The linear relationship between monthly median depth to water level from land surface, 

b, and corresponding monthly values of PCP, TMP, PDSI, PHDI, SPI-06, SPI-09, SPI-12, and 

SPI-24 indices was analysed using Pearson correlation coefficient. SPI can be calculated for 

multiple timescales which indicate the impact on different water sectors. In this study, SPI with 

timescales of at least six months was used since it was suitable for analyzing hydrological 

drought impact such as groundwater decline (Svoboda et al., 2012). Drought indices used for 

each well were for the respective climate division where the well was located.  

3.2.4. Monthly groundwater variation and its correlation with SPI-24 

The monthly variations of groundwater levels, and correlations between SPI-24 with b 

were studied for select wells. The rationale for focusing on SPI-24 is its inherent concomitancy 

with groundwater levels. A subset of wells which had at least 25 years records of monthly 

groundwater level data was demarcated from the rest of the dataset. This was done to identify the 

seasonal variability of groundwater level and its relation to drought. 

3.2.5. Groundwater level fluctuation for specific drought events 

For each well, the duration in number of months under moderate or more severe drought 

conditions were derived based on SPI-24. Drought is reported moderate or more severe when 

SPI-24 ≤ -0.8 by NOAA's NCEI. Therefore, the drought events for each well were delineated 

based on SPI-24 ≤ -0.8 for at least 30 consecutive months. Corresponding groundwater b values 

were also noted. From this data, groundwater level decline and, lag and recovery time of 

groundwater level in relation to the selected drought events were determined.  

3.3. Results and Discussions 

The Pearson correlation coefficients between b and climate indices such as PCP, TMP, 

PDSI, PHDI, and SPI for 6, 9, 12, and 24 monthly scales are shown in Figure 3.2. The results 

show that precipitation and temperature have relatively low correlation with groundwater level. 

Twenty-nine out of 32 wells show r for b and precipitation in the range -0.3 to 0.21. The highest 

correlation of b and precipitation (-0.51) is observed for well OK2. The r values of b and 

temperature vary between -0.23 and 0.19. Precipitation, by and large, correlates negatively as 

expected. Temperature, on the other hand, shows a positive and negative correlation with b. 

Since b correlates negatively with drought indices; the more negative the index value, the 

more severe the drought. The more negative the indices, the greater the depth to groundwater. 

The PHDI and SPI-24 displayed better correlations with groundwater levels, albeit inconsistently 

(Figure 3.2). 12/32 wells show r value of -0.6 or better with SPI-24; nine wells show r of -0.6 or 

better with PHDI. Detailed description of r with indices follows: NE4 and NE5 displayed r of -

0.9 and -0.8, for SPI-24. For (i) wells KS2 and MT5 with respect to SPI-24; (ii) OK1 with 

respect to PHDI; (iii) OK2 with respect PDSI; and (iv) TX2 with respect to SPI-9 r was -0.8≤ r ≤ 

-0.7. For wells KS1, MT2, ND5, NE2, SD3, & SD4 with SPI-24, r was -0.7≤ r ≤ -0.6 similar to 

wells ND1 and ND3 with respect to PHDI. The correlation values for wells MT1 and SD6 

considering SPI-24; and CO1 with respect to SPI-9 r can be expressed as -0.6≤ r ≤ -0.5. Four 

wells (ND4, SD5 & TX4 with SPI-24; and MT3 with SPI-12) correlation values ranged between 

-0.5 and -0.4; one well (ND2 with SPI-24) with a correlation value of -0.32; 4 wells (TX3 with 

SPI-24; NE3 & SD2 with PHDI; and TX1 with SPI-12) correlation values between -0.3 and -0.2; 

and one well (NE6 with SPI-24) with a correlation value of -0.05. Wells MT4, NE1, SD1, and 
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TX5 displayed positive correlation values with respect to drought indices. Some factors that can 

possibly be attributed to the inconsistent correlation may be due to each wells’ heterogeneity 

owing to various geophysical and hydrological conditions. We can still unequivocally state that 

the results show that drought indices can be used as a proxy indicator of groundwater levels.  

 

Figure 3.2: The Pearson correlation coefficient, r, between groundwater level (b) and drought 

indices. 

Based on the results of overall correlation between b values and drought indices, SPI-24 

index is a viable candidate in monitoring groundwater level fluctuations during a discernible 

drought. SPI is a simple index based on solely precipitation records. A study of groundwater 

level responses to SPI will be advantageous in groundwater management and monitoring during 

discernible drought episodes owing to the fact that precipitation records are widely available. 

Thus, SPI-24 may be regarded as a proxy and/or a direct measure of groundwater levels. The 

variation of b and SPI-24 for four wells that displayed positive correlation as opposed to the 

expected negative r is shown in Figure 3.3. From Figure 3.3, we can see that the b values are not 

reflecting any drought conditions. The inclusion of these wells in the CRN network may need 

further reconsideration beyond the scope of this study. 

The variation of groundwater level and its correlation with SPI-24 were further analysed 

in a monthly time basis for a select set of wells. The selected wells were KS2, ND1, ND2, ND3, 

ND4, ND5, NE6, OK1, and TX2. These wells had at least 25 years of reported monthly records. 

TX5 had more than 25 years of monthly records for each month but was not used for this part of 

study because its water level variation was declining irrespective of any established drought 

episodes (Figure 3.3). The tabulated results in Table 3.1 include correlation coefficient values 

between SPI-24 and, b, for each month, r’, and average values of depth to water level from land 

surface (b), μ.  

Figure 3.4 shows variation between r’, and μ. The μ values for well KS2 vary between 

6.03 m in June and 6.39 m in February. The r’ values for KS2 vary between -0.84 in January and 

-0.75 in September. The μ and r’ values for KS2 well are relatively stable, and groundwater level 

had a strong linear correlation with SPI-24. The highest differential value for r’ is observed for 

ND1 where r’ values range between -0.75 for the month of January and -0.57 for May and June 

months. On the other hand, μ value varies between 1.97 m in February and 1.18 m in May. 
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Figure 3.3: The variation of 24-month Standardized Precipitation Index (SPI-24) and depth to 

water level, b, for wells MT4, NE1, SD1, and TX5. 

The highest differential μ value was observed for OK1 well where the highest μ was 

34.49 m for October and lowest μ value was 32.14 m for June months. μ values for ND4 vary 

between 7.14 m for September and 7 m for June which was the lowest differential μ value. The r’ 
values for NE6 are very low for all the months over the entire period. Overall for all the wells, μ 
values were low during summer months, that is, from May to August. This study did not explore 

any general specific patterns for seasonal variability of r’. The r’ values are relatively the same 

throughout the year for the studied wells. It implies that drought influence the groundwater 

regardless of the season of the year for the studied wells. Knowing the variation of groundwater 

level and its correlation with drought in monthly basis will be helpful in identification of 

seasonal groundwater availability and its susceptibility to drought, and to better planning and 

utility of groundwater resources.  
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Figure 3.4: Monthly variation of r’ and μ. 

To study the effects of drought duration on groundwater decline, seven different events 

were identified that could satisfy the criteria of SPI-24 ≤ -0.8 in the area surrounding the well for 

at least 30 consecutive months. This was also complementary with complete well data spanning 

a similar time frame of 30 months. Table 3.2 shows the timeline of drought events (year and 

month of starting and ending), duration of drought events (number of months under moderate or 

more severe drought), and available monthly median records of groundwater level records within 

established drought events. 

The monthly SPI-24 values variation with temporal groundwater levels is shown in 

Figure 3.5(a-1 to g-1). The x-axis shows the year and month. The time frame commences two 

years before the beginning of drought, and ends two years after the drought event. As such, we 

can extract information on lag and recovery times of groundwater levels to drought. From Figure 

3.5 (a-2 to g-2), we can see the relationship between b and duration, d, of a moderate or more 

severe drought, that is, SPI-24 ≤ -0.8 condition. Wells MT1, MT4, ND3, ND4, and ND5 display 

a prominent linear relationship with respect to the duration of drought events (r > 0.9) compared 

to wells KS2 and NE2 (Figure 3.5: a-2 to g-2). Table 3.3 shows the results of: (i) total 

groundwater decline values during each drought event, (ii) correlation coefficient between depth 

to water level and duration, r, (iii) fitted linear regression model equations for depth to water 

level with duration, and (iv) coefficient of determination, R2
. The total groundwater decline was 

determined from the difference in groundwater levels at the beginning and end of each drought 

event. The highest R2 value was obtained for well ND5 which indicated that 97.41% of variation 

in groundwater level may be attributed to duration of moderate or more severe drought, that is, 

SPI-24 ≤ -0.8 conditions. Well NE2 displayed the lowest R2 value of 39%. The water levels for  



 

 

Table 3.1: Correlation coefficients between SPI-24 and b (r’), sample size (n), and average of monthly median values (μ). 

 ID  

(time frame)  
Pr Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

KS2  

(1953 – 2013) 

r’ -0.84 -0.82 -0.82 -0.78 -0.81 -0.79 -0.77 -0.76 -0.75 -0.80 -0.81 -0.82 

n 61 60 61 61 61 61 61 61 61 61 61 60 

μ 6.38 6.39 6.34 6.24 6.14 6.03 6.12 6.31 6.38 6.32 6.32 6.35 

ND1 

(1964 – 2013) 

r’ -0.75 -0.72 -0.73 -0.60 -0.57 -0.57 -0.60 -0.65 -0.67 -0.68 -0.69 -0.69 

n 49 44 48 49 46 47 47 47 47 48 48 49 

μ 1.92 1.97 1.83 1.21 1.18 1.31 1.48 1.79 1.87 1.77 1.67 1.77 

ND2 

(1979 – 2013) 

r’ -0.42 -0.38 -0.31 -0.36 -0.30 -0.33 -0.32 -0.31 -0.29 -0.29 -0.24 -0.28 

n 29 28 33 33 35 35 35 35 34 35 35 32 

μ 6.52 6.52 6.48 6.41 6.36 6.36 6.47 6.65 6.69 6.58 6.50 6.51 

ND3 

(1969 – 2013) 

r’ -0.68 -0.68 -0.67 -0.60 -0.73 -0.64 -0.55 -0.58 -0.65 -0.66 -0.67 -0.72 

n 36 37 39 36 32 42 39 41 36 44 40 36 

μ 5.77 5.76 5.64 5.45 5.45 5.40 5.47 5.58 5.68 5.66 5.67 5.73 

ND4 

(1966 – 2013) 

r’ -0.43 -0.34 -0.34 -0.38 -0.36 -0.48 -0.43 -0.35 -0.36 -0.38 -0.37 -0.41 

n 45 45 47 46 46 46 45 46 47 46 47 47 

μ 7.07 7.08 7.11 7.06 7.03 7.00 7.03 7.11 7.14 7.09 7.08 7.07 

ND5 

(1981 – 2013) 

r’ -0.68 -0.68 -0.67 -0.64 -0.68 -0.73 -0.58 -0.64 -0.63 -0.61 -0.62 -0.65 

n 31 29 29 31 33 33 30 31 30 33 32 31 

μ 2.96 3.01 3.04 3.03 3.03 2.95 2.90 2.85 2.93 2.93 2.93 2.93 

NE6 

(1967 – 2013) 

r’ -0.04 -0.06 -0.06 -0.07 -0.08 -0.02 -0.04 -0.02 -0.02 -0.01 -0.04 -0.05 

n 46 46 47 47 47 47 46 46 47 47 47 47 

μ 14.18 14.17 14.11 14.06 14.01 13.98 14.02 14.24 14.35 14.37 14.35 14.33 

OK1 

(1960 – 2013) 

r’ -0.75 -0.71 -0.73 -0.62 -0.73 -0.76 -0.71 -0.69 -0.75 -0.75 -0.71 -0.70 

n 52 52 52 54 52 53 54 52 53 54 53 54 

μ 33.71 33.75 33.42 32.66 32.27 32.14 32.79 33.80 34.44 34.49 34.20 34.02 

TX2 

(1981 – 2013) 

r’ -0.52 -0.54 -0.50 -0.48 -0.59 -0.62 -0.53 -0.52 -0.55 -0.62 -0.59 -0.55 

n 28 25 30 28 27 27 29 27 28 28 27 26 

μ 7.44 7.44 7.56 7.56 7.59 7.37 7.40 7.59 7.69 7.74 7.59 7.48 

Pr- Parameters; r’-correlation coefficient; n-number of monthly records; μ-average values of monthly median records in meters.

2
4
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wells KS2 and NE2 started to recover a few months ahead of the end to the associated drought 

event thus displaying a relatively low linear correlation value (Figure 3.5). 

 

Table 3.2: Pertinent data showing selected drought events and number of groundwater level 

records. 

ID 

Drought Events 

Start End Duration # Records 

KS2 195307 195710 52 52 

MT1 200006 200304 35 35 

MT4 200006 200302 33 32 

ND3 198905 199207 39 39 

ND4 198807 199106 36 36 

ND5 198807 199106 36 35 

NE2 193508 193808 37 30 

 

Table 3.3: The relationship between b and duration (d) of drought events. 

ID 
Time Frame Total 

Drop (m) 
r Regression model R2 

(%) 
Start End 

KS2 195307 195710 0.90 0.831 b = 0.021d + 6.734 69.08 

MT1 200006 200304 3.05 0.976 b = 0.074d + 48.478 95.34 

MT4 200006 200302 0.25 0.933 b = 0.009d + 41.779 87.11 

ND3 198905 199207 1.02 0.962 b = 0.025d + 5.825 92.51 

ND4 198807 199106 0.84 0.986 b = 0.022d + 6.653 97.30 

ND5 198807 199106 0.85 0.987 b = 0.026d + 3.318 97.41                                   

NE2 193508 193808 0.19 0.625 b = 0.013d + 1.143 39.00 

The depth to water level increased or continued to remain high even after the end of a 

drought event for wells MT1 and MT4. The consequent drought pattern after the defined drought 

event may be the reason for this type of anomaly. Wells MT4 and ND3 show a lag in response to 

a drought event. In general, we can surmise that the groundwater decline was linear during 

established drought events defined as moderate more severe, that is, SPI-24 ≤ -0.8. However, 

there was variation in groundwater responses before the onset and offset of drought events. 

Drought impacts all water dependent sectors, and causes vast economic losses and 

environmental issues. Hays et al. (2011) emphasizes that an impact assessment is vitally 

important for decision making, responding, and understanding vulnerabilities of drought. Above 

ground hydrological responses to drought using stream flow data is a vastly studied area 

compared to studies of influences of drought on groundwater resources. This study investigated 

the possibility of utilizing drought indices in exploring groundwater level responses to drought. It 

should also be recognized that inherent challenges also face establishing an uncontested 

parametric relationship between drought indices and groundwater dynamics due to complex 
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nature of aquifers such as varying depth, properties of aquifer and recharge area, and possible 

anthropogenic influences.  

 

 
Figure 3.5: The variation of b with SPI-24 and duration (d) of selected drought events for (a) 

KS2, (b) MT1, (c) MT4, (d) ND3, (e) ND4, (f) ND5, and (g) NE2. 
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3.4. Summary and Conclusion 

This study explored the relationship between groundwater levels and drought indices for 

wells located in the Great Plains States of the U.S. The groundwater level data from USGS CRN 

wells with minimum anthropogenic disturbances were used. Thirty-two wells were selected for 

the study. The correlation matrix of the drought indices and depth to groundwater levels 

(monthly median values) was calculated and used to identify which reliable drought indices were 

necessary in monitoring groundwater responses to drought. It should be noted that drought 

indices used in this study were derived from NOAA NCDC for each climate division where a 

well was located. It would be more appropriate to consider indices with areal coverage of 

recharge area of each well although this would be impractical. Regardless, this study found that 

drought indices fairly reflected groundwater responses to drought. The PHDI and SPI-24 indices 

superseded other indices used in this study and displayed a higher correlation with groundwater 

level. Li and Rodell (2014) also reported that SPI-24 is a promising drought index in studying 

groundwater responses to drought.  

The seasonal variability of groundwater levels, and correlation of groundwater levels 

with SPI-24 were also studied for selected wells especially those that had adequate data. The 

correlation between average values of monthly median depths to water level remained relatively 

the same throughout the year. The fluctuations of groundwater levels for specific drought events 

were also examined. Drought events, for this purpose, were defined by a SPI-24 threshold of less 

than or equal to -0.8, a category used for moderate or more severe drought. There were seven 

drought episodes identified using at least 30 months of groundwater level records. During each 

defined drought event, the duration of drought events was found to have significant influence on 

groundwater levels response to drought, displaying a prominent linear relationship to 

groundwater decline. A set of regression equations were developed to establish the relationship 

between drought duration and depth to water level from land surface for the selected seven 

drought events. Based on R2
 values, for four wells (MT1, ND3, ND4, and ND5) more than 92% 

of the variation in groundwater can be explained by the drought duration. Decline and recovery 

times were also discernible for groundwater levels for the defined drought episodes with respect 

to each well location. For example, wells MT4 and ND3 had a lag time from the start of a 

drought event to when the groundwater level decline was perceptible, whereas wells KS2 and 

NE4 began to recover prior to end of the drought event.  

Observation of groundwater level fluctuation is essential for groundwater monitoring and 

management. However, there is a deficiency of in situ observation due to practical limitations of 

establishment and maintenance of observatory well networks. Alternatively, establishing a 

relationship between groundwater and meteorological drought indicators as accomplished in this 

study will be useful in groundwater monitoring and management. Such a study could enable 

managers to have an estimated groundwater level during drought based on well-established and 

readily available drought indices from the widely used source, NOAA NCDC. In addition, the 

current understanding of interaction between drought and groundwater is limited. A study like 

this can be helpful to understand the response of groundwater levels to various characteristics of 

drought such as intensity and duration. However, the relationship between drought and 

groundwater levels may be region- specific and thus needs to be studied for each region of 

interest. 
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CHAPTER 4. QUANTIFYING IMPACT OF DROUGHTS ON BARLEY YIELD IN 

NORTH DAKOTA, USA USING MULTIPLE LINEAR REGRESSION AND 

ARTIFICIAL NEURAL NETWORK
1
 

4.1. Introduction 

Impact of drought on various sectors has long been recognized. Agriculture is one of the 

major sectors that experiences significant loss during drought events. Agriculture also is the first 

sector to be affected at the onset of drought because crops at various stages of their growth 

depend on water and soil moisture (Narasimhan and Srinivasan, 2005). Impact of drought on 

agriculture has been studied by several investigators (Lott and Ross, 2006; Li et al., 2009; Mishra 

and Cherkauer, 2010). Li et al. (2009) studied the drought risk for global crop production under 

current and future climatic conditions by using historical crop yield and meteorological drought. 

It is anticipated significant losses in yields of major crops in the future due to drought events. 

There was $145 billion loss in crop production across the U.S. during the last three decades (Lott 

and Ross, 2006). A better understanding of the historical drought damages and drought-yield 

relationship could help reduce any future losses. According to Thomson et al. (2005) crop yield 

variability is mainly influenced by local weather and climate rather than by large scale climatic 

patterns. The State of North Dakota, U.S, is a leading producer of many crops. Particularly, it is a 

leading producer of barley in the nation accounting for 24% of nation’s barley production. Since 

North Dakota is also a drought prone state, it is important to study the drought-barley yield 

relationship in particular (Karetinkov et al., 2008; Leelaruban et al., 2012). 

Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are 

both widely used in many areas for prediction and classification purposes. MLR is a traditional 

statistical technique, and it has an established methodology. However, ANN is relatively a recent 

computational modeling tool that is used to solve many complex real world problems due to its 

remarkable learning and generalization capabilities (Basheer, 2000; Paliwal and Kumar, 2009). 

ANN has been used in water quality and water resources area to estimate evaporation, 

evapotranspiration, rainfall, runoff, and nutrient transportation (Tokar and Johnson, 1999; Tayfur 

and Guldal, 2006), accounting and finance (Lenard et al., 1995), health and medicine (Reggia, 

1993; Ottenbacher et al., 2001), engineering and manufacturing (Feng and Wang, 2002; 

Yesilnacar and Topal, 2005), marketing (Fish et al., 1995; Ainscough and Aronson, 1999), 

agriculture (Ayoubi and Sahrawat, 2011, Kaul et al., 2005), and forestry science (Aertsen et al., 

2010; Ostendorf et al., 2001). ANN has also been used in several drought forecasting studies 

(Rezaeianzadeh et al., 2016; Belayneh et al., 2014; Barua et al., 2012). 

There are ample information in the literature about the application and capabilities of 

ANN and MLR (Ainscough and Aronson, 1999; Ayoubi and Sahrawat; 2011, Mekanik et al., 

2013; Paliwal and Kumar, 2009; Pao, 2008, Yilmaz and Kaynar, 2011). A detailed review of 

neural networks and statistical techniques can be found in Paliwal and Kumar (2009). A 

comprehensive list of comparative studies of applications of neural networks and other statistical 

techniques from various fields can be found in their study. They also discuss the capabilities of 

each method. Mekanik et al (2013) investigated the capabilities of ANN and MLR to forecast 

long-term seasonal spring rainfall in Victoria, Australia using lagged El Nino Southern 

 
1
This chapter was adopted from a published article in Neural Network World (Odabas. M., Leelaruban. N., Halis 

Simsek, and G. Padmanabhan., 2014. Quantifying Impact of Droughts on Barley Yield in North Dakota, USA Using 

Multiple Linear Regression and Artificial Neural Network. Neural Network World, Vol. 24, No.4, pp. 343-356. doi: 

10.14311/NNW.2014.24.020). 
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Oscillation (ENSO) and Indian Ocean Dipole (IOD). They found that ANN is a better model to 

find the pattern and trend of observations, and generally had lower error compared to MLR. 

Kaul et al. (2005) conducted a study to predict the corn and soybean yield using field-

specific rainfall, and Soil Rating for Plant Growth (SRPG), and concluded that ANN has a better 

prediction capability compared to MLR. Ayoubi and Sahrawat (2011) used ANN and MLR to 

predict the biomass and grain yield of barley in relation to soil properties. They found that ANN 

outperformed MLR. There are numerous studies on quantifying barley yield using different input 

characteristics and methodologies (Ayoubi and Sahrawat, 2011; Mkhabela et al., 2011; 

Ogunkunle and Beckett, 1988; Ostergard et al., 2008). For example, Mkhabela et al (2011) 

developed statistical models to predict the yield of different crops including barley using MODIS 

NDVI data for Canadian Prairies. However, the relationship between different drought 

conditions and barley yield has not been studied using ANN to the best of authors’ knowledge. 

Though MLR models have been used, the complex nature of drought-yield relationship need 

better methods of prediction and interpretation (Leelaruban et al., 2012).  

ANN methodology is a non-linear data driven self-adaptive approach. ANN can identify 

and learn correlation patterns between variables (independent) and corresponding target variables 

(dependent) when the underlying relationship is unknown and consequently can predict the 

dependent variables based on new independent variable data sets (Suo et al., 2010). Basically, 

ANN performs the function of nonlinear mapping or pattern recognition. If a set of input data 

corresponds to a definite signal pattern, the network can be trained to give correspondingly a 

desired pattern at the output. The network has the capability to learn and estimate the output 

(Bose, 1994). 

The objective of this study is to quantify and compare the impact of different drought 

conditions on barley (Hordeum vulgare L.) yield using the MLR and ANN models. Though there 

are few studies relating yield with climate variables using ANN and MLR, the method has not 

been used to quantify the drought impact on barley yields to the best of our knowledge. In 

addition, this study uses the U.S. Drought Monitor data which account for areal coverage and 

severity of drought. This drought data is relatively new (2000- present), and has not been used 

for similar past studies. North Dakota State is one of the leading producers of barley in U.S. 

Therefore, it is only appropriate to use data from North Dakota. However, the methodology used 

in this study can be used for other areas. 

4.2. Data and Methods 

4.2.1. Drought Data 

This study uses United States Drought Monitor (USDM) data. The USDM is a major 

source of drought data in the U.S available to the public from the National Drought Mitigation 

Center (NDMC) at the University of Nebraska, Lincoln (Svoboda et al., 2002). NDMC provides 

various climate and drought information to the public which includes easy to use U.S. Drought 

Monitor. The purpose of the USDM is not forecasting drought rather it was developed as a 

comprehensive tool to capture and depict the drought conditions as they exist across the U.S. 

(Hayes et al., 2005). 

The USDM data products (map/table) can be accessed at NDMC's web site 

(http://www.drought.unl.edu/dm/monitor.html). Several federal agencies including U.S. 

Department of Agriculture (USDA), and National Oceanic and Atmospheric Administration 

(NOAA) also contribute to produce USDM data products. USDM data on areal coverage under 

different drought intensity categories: D0 (abnormally dry), D1 (moderate drought), D2 (severe 

drought), D3 (extreme drought), and D4 (exceptional drought) (Svoboda et al., 2002) were 
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utilized in this study. USDM employs key drought indicators such as Palmer Drought Index, 

CPC Soil Moisture Model (Percentiles), USGS Weekly Stream flow (Percentiles), Standardized 

Precipitation Index (SPI), and Objective Short and Long-term Drought Indicator Blends 

(Percentiles) and numerous supplementary indicators to define the intensity categories. For 

example, drought category will be designated as D0, if Palmer Drought Index is in the range -1.0 

to 1.9, CPC Soil Moisture Model Percentile 21 to 30, U.S. Geological Survey (USGS) weekly 

Stream Flow Percentile 21 to 30, Standardized Precipitation Index -0.5 to -0.7, and Objective 

Short and Long-term Drought Indicator Blends Percentiles 21 to 30. The ranges of the indicators 

used in the USDM classification scheme often may not point to the same USDM classification. 

Therefore, the final USDM category will be defined based on majority of the indicators. In 

addition, USDM will weigh the indices based on their performances over the time and space and 

incorporate information from many local experts around the country, and use additional 

indicators if necessary. 

4.2.2. Crop Data 

Barley is one of the major agricultural crops grown in North Dakota. County-by-county 

yield data of barley is derived from USDA National Agricultural Statistics Service (NASS) web 

portal for the study period (2000 – 2012) (http://www.nass.usda.gov/). Generally, Barley 

planting will start in later part of April, and harvesting end in early part of September in North 

Dakota. Figure 4.1 shows the North Dakota counties and barley yield in 2010. North Dakota is 

one of the north-central states of the U.S and has 53 counties. 

 

 

Figure 4.1: The North Dakota counties and barley yield in bushel/acres (1 bushel = 0.03524 m
3
; 

1 acre = 4046.86 m
2
) for year 2010 (barley yield data is derived from USDA NASS web portal). 
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Table 4.1 shows the barley yield details in ND, U.S. for years 2000 to 2012. For each 

year, number of counties reported yield (out of 53 counties in ND), average yield, maximum and 

minimum yield, and corresponding counties are listed. Figure 4.2 shows the average yield 

variation of barley yield for year 2000 to 2012. The maximum average yield is reported in 2009 

(69.22 bu/acres), and minimum average yield is reported in 2002 (40.02 bu/acres) in ND.  

Table 4.1: Barley yield (in Bushel/acres) details in ND, U.S. for year 2000 – 2012. 

Year Number of county 

reported 

Average 

yield 

Maximum yield 

(County) 

Minimum yield 

(County) 

2000 53 54.91 71.4 (Pembina) 42.3 (Divide) 

2001 53 55.68 66.0 (Slope) 46.0 (Burke/Mckenzie) 

2002 51 40.02 55.7 (Traill) 12.6 (Grant) 

2003 53 57.60 77.8 (Steele) 29.9 (Grant) 

2004 51 59.02 81.6 (Dickey) 27.3 (Grant) 

2005 51 53.50 73.3 (Emmons) 40.0 (Divide) 

2006 48 46.15 68.6 (Traill) 21.8 (Emmons) 

2007 51 53.17 63.3 (Emmons) 37.5 (Richland) 

2008 40 54.75 81.1 (Traill) 23.9 (Mckenzie) 

2009 41 69.22 91.0 (Emmons) 51.0 (Bowman) 

2010 41 64.92 84.2 (Dickey) 42.0 (Golden Valley) 

2011 27 43.47 67.1 (Ramsey) 23.3 (Morton) 

2012 31 59.01 79.8 (Traill) 31.0 (Slope) 

 

 

Figure 4.2: Annual average barley yield in ND, U.S. for year 2000 – 2012. 
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4.2.3. Multiple Linear Regression (MLR) 

MLR is a statistical method used to investigate the relationship between several 

independent variables and a dependent variable. A linear regression model assumes that the 

relationship between the dependent variable and the p-vector of regressors is linear, where p is 

the number of independent variables. Thus the model takes the form  

yi = 1i1 + … + pip  +  i  = i ′ + i i = 1, …, n (4.1) 

where ′ denotes the transpose, so that xi′β is the inner product between vectors xi and β. The yi is 

called the regressand or dependent variable. The decision as to which variable in a data set is 

modeled as the dependent variable and which are modeled as the independent variables may be 

based on a presumption that the value of one of the variables is caused by, or directly influenced 

by the other variables. The i is called regressor or independent variable (Weisberg, 2005). To 

ascertain the dependency of barley yield on drought categories, Eq. (4.1) was utilized. Average 

values of AD0, AD1, AD2, AD3, and AD4 were calculated between planting and harvesting period 

from collected data for different drought intensity categories of areal coverage values, where AD0, 

AD1, AD2, AD3, and AD4 are percentage area coverage values for D0, D1, D2, D3, and D4 

respectively. Then panel data set was constructed using barley yield, Avg(AD0), Avg(AD1), 

Avg(AD2), Avg(AD3) and Avg(AD4). For i=1, 2, … 53 counties and t=1, 2, … 13 years (2000-

2012) of observation. 

Yieldit=0 + 1  Avg(AD0)it + 2  Avg(AD1)it + 3  Avg(AD2)it + 4  Avg(AD3)it + 5  

Avg(AD4)it  +  

 

(4.2) 

where α1, α2, α3, α4, α5 coefficients were tested for statistical significance at the 5% level fitted 

models of equation 4.2. Though drought is a continuous phenomenon in terms of space and 

intensity, the drought monitor data account for areal coverage of drought for defined drought 

intensity categories. Therefore, it is appropriate to use the drought monitor data to quantify the 

impact of different drought intensity categories on barley yield. 

4.2.4. Artificial Neural Network (ANN) 

ANN has been widely used to model complex and non-linear processes and systems (Suo 

et al., 2010). ANNs are non-linear data driven self-adaptive systems that can identify and learn 

correlated patterns between input data sets and corresponding output values, even when the 

underlying data relationship is unknown. ANN resembles human brain in two respects; the 

network acquires knowledge through a learning process, and the interconnection strengths 

known as synaptic weights are used to store the knowledge (Bekat et al., 2012; Yilmaz and 

Kaynar, 2011). The ANN can be explicitly programmed to perform a task by manually creating 

the topology and then setting the weights and thresholds of each link. The process of determining 

weights and biases is called training. The observed data set used to train the ANN is called the 

training data set. The training data set consists of input signals assigned with corresponding 

target (desired) output. The network training is an iterative process. In each iteration weights 

coefficients of nodes are modified using new data from training data set. The weight coefficients 

and biases are adjusted in each iteration so as to minimize the error of prediction of target value. 

In this study, Levenberg-Marquardt (LM) algorithm was used to train the network. 

The Levenberg-Marquardt (LM) algorithm is an intermediate optimization algorithm 

between the Gauss–Newton (GN) method and Gradient Descent (GD) algorithm (Arfken, 1985). 

It combines the speed of the Newton algorithm with the stability of the GD method.  
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4.3. Results and Discussion 

In this study, the ANN and MLR models were compared for their performance in 

explaining the influence of drought conditions on the variability of barley yield in North Dakota. 

In the MLR analysis, the yield of barley was used as the dependent variable and drought 

conditions were used as the independent variables.  

The following tables list parameters derived from MLR model (Eq. 4.2) for barley using 

MINITAB
®
 statistical software (Table 4.2, 4.3 and 4.4).  

The regression equation can be written as; 

Yield= (58.6) – 0.0688  Avg(AD0) – 0.0959  Avg(AD1) – 0.191  Avg(AD2) – 0.239  

Avg(AD3) – 5.16  Avg(AD4) 
 

(4.3) 

Negative values for coefficients suggest that yield reduces with increasing drought severity as 

expected. 

 

Table 4.2: Results of analysis of variance. 

Source DF SS MS F P 

Regression 5 12656.2   2531.2   18.88   0.000 

Residual Error 585 78439.6    134.1   

Total 590 91095.8    

Table 4.3: Results of regression analysis. 

Predictor Coefficient SE coefficient T P VIF 

Constant 58.6 0.7584  77.24 0.000  

AvgD0 -0.0688 0.0265 -2.60 0.010 1.176 

AvgD1 -0.0959 0.0380 -2.52 0.012 1.494 

AvgD2 -0.191 0.0483 -3.95 0.000 1.579 

AvgD3 -0.239 0.0657 -3.64 0.000 1.171 

AvgD4 -5.16 2.4930 -2.07 0.039 1.009 

S = 11.5795   R2 = 13.9%,   R2 (adj) = 13.2% 

Table 4.4: Pearson correlation matrix. 

 AvgD0 AvgD1 AvgD2 AvgD3 

AvgD1 0.264    

AvgD2 -0.119 0.472   

AvgD3 -0.128 0.091 0.361  

AvgD4 0.016 0.046 0.054 0.084 

 

Table 4.2 shows the Analysis of Variance (ANOVA) results for the regression model 

(Eq. 4.2). The ANOVA table lists the Degree of Freedom (DF), Sum of Square (SS), and Mean 

Square (MS) for regression model and residual error. The Mean Square for Error (MSE) for the 

regression model is 134.1. It is high for barley yield value prediction. Overall average barley 

yield in North Dakota for the study period is only 54.67 bu/acre (1 US Bushel = 0.03524 m
3
 and 

1 acre = 4046.86 m
2
). Thus, prediction results will be unreliable (Table 4.2). However, global F-

test indicates that MLR is useful. The observed significance level for F statistic (p = 0.000) 

implies there is strong evidence that at least one of the model coefficient is nonzero, and overall 

model is useful to predict yield (Table 4.2). 



 

34 

Table 4.3 shows the estimated coefficients for the regression model (Eq. 4.3), estimated 

standard error (SE) of coefficients, t-test statistic values, P-values, and Variance Inflation Factor 

(VIF) for coefficients. Results of regression analysis show that all the drought categories 

coverage has a significant influence in barley yield (Table 4.3). The observed significant values 

(p-values) in t-tests for all individual coefficients show that all the drought severity coverage 

categories are significant (at α = 0.05) in barley yield prediction (Table 4.3). Negative values 

suggest that yield reduces with increasing drought severity as expected. Multiple coefficient of 

determination (R
2
) for this model implies that only 13.9 % variation in yield can be explained by 

drought severity coverage (Table 4.3). It should be noted that the study area experienced only 

few D4 drought conditions during growing period of barley within the selected time frame for 

this study.  

Low values of Variance Inflation Factor (VIF) for coefficient (<10), and Pearson 

correlation values between the drought severity coverage categories (Table 4.4) suggest no 

serious multicollinearity in the model.  

The ANN scheme for the problem at hand is shown in Figure 4.3. ANNs can detect the 

important features of the input-output relationships with the help of nodes in the hidden layer. 

The hidden layer and nodes are very important for ANN. The nodes in the hidden layer capture 

the pattern in the data used (Mishra and Desai, 2006). Best fitting results were obtained for the 

five inputs AvgD0, AvgD1, AvgD2, AvgD3, and AvgD4, and the one output (yield of barley) 

using one hidden layer and ten neurons with logsig transfer function, y=1/(1+e
-x

).  

 

 
Figure 4.3: ANN Scheme for the study problem. 
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For many practical problems where we need to approximate any function that contains a 

continuous mapping from one finite space to another, there is no reason to use any more than one 

hidden layer. The number of neurons used was determined by trial and error. Transfer functions 

calculate a layer's output from its net input. The function logsig generates outputs between 0 and 

1 as the neuron's net input goes from negative to positive infinity. Logsig function is generally 

used when the network is used for pattern recognition problems such as this. 

Predetermined values for the output error (MSE) and maximum iteration number were set 

to 0.001 and 1000 epoch, respectively. MATLAB
®
 software was used for this analysis. Since the 

accuracy of estimation is highly dependent on covering all level of data, the randomization 

process was repeated until a satisfactory level of data distribution was reached. The training 

process will be completed when all weighing indices are fixed and the ANN model can 

accurately estimate the output data as a function of input values (Kawashima and Nakatani, 

1998). Randomly chosen 70% of the data set (414 data) was selected as training data for ANN 

model. The rest 30% of data set (177 data) was used for testing and validation. An output error of 

0.007 mse was determined for generated outputs by logsig transfer function with a maximum 

iteration number of 300 epochs. The R
2
 of ANN was found 0.61 for training, 0.59 for testing, 

0.61 for validation and 0.60 for all (Figure 4.4). The MSE value of ANN model for the barley 

prediction is 4.523 for all data.  

 

 
Figure 4.4: The relationship between actual and predicted yield of barley using ANN. 
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Zaefizadeh et al. (2011) conducted a research to predict yield in barley using MLR and 

ANN methods. They determine the relationship between genotypes and genotype interaction in 

the environment and its impact on barley yield. They stated that ANN is more effective than 

MLR for the estimating barley yield since the error for the estimation of barley yield was higher 

in MLR compared to the error in ANN method. Many researchers agree that ANN is superior to 

MLR with regard to prediction accuracy since the accuracy in ANN increases as the 

dimensionality and nonlinearity of the problem increases (Basheer, 2000; Paliwal and Kumar, 

2009). Overall, many researchers agree that ANN is an intelligence technique and it is superior 

to MLR in some aspects.  

The precision of the approximation is based on the number of iterations of the simulation 

done. But the relationship between iterations and precision depends on the relationship between 

the input and output variables. According to R² results, ANN model has been found to quantify 

better the impact of the different drought conditions on barley yield.  

4.4. Conclusion 

This study quantified the impact of drought on barley yield in North Dakota, U.S., using 

MLR and ANN models and compared the results. The developed ANN model is trained using 

different drought conditions. The ANN model coefficient of determination (R
2
) indicates that 60 

percent of the variation in yield can be explained by drought whereas only 13 percent by multiple 

regression. It should be noted that barley yield also depends on other variables such as soil 

characteristics, and management practices. A perfect prediction model should account for all the 

variables that influence the yield. However, quantification of drought impact on yield is vital in 

order to develop more powerful predictive models. Massive parallelism, distributed 

representation, learning ability, generalization ability, and fault tolerance are some of the 

attractive features of ANN. When the input and output of the system are complicated (multiple 

input and output, nonlinearity, etc.), ANN can perform better with the help of its inherent 

structural advantages. Overall, the information processing capabilities and the ability to 

recognize and learn from input and output regardless of the problem’s dimensionality and 

nonlinearity makes ANN a more efficient method compared to MLR for estimation of impact of 

different drought conditions on barley yield. While finding of this study emphasis the need of 

similar studies in different part of the world in order to proper mitigation strategies to address the 

drought, this study demonstrates how recent computational tools such as ANN can be effectively 

used to address this kind of problems. The issues associated with and caused by drought have 

started to be very real even in world regions where these problems have not been viewed, as yet, 

important. As drought becomes one of the foremost problems of modern agriculture, the 

application of ANN or in combination with MLR to investigate the impact of droughts on crop 

yields would be a promising subject for further research.  
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CHAPTER 5. OVERALL CONCLUSIONS  

An understanding of drought occurrences and their characteristics such as intensity, 

duration, frequency, and areal coverage, and their variations on different spatial scales is crucial 

to plan for droughts in different regions and in different sized areas. Therefore, the above-

mentioned characteristics of droughts in the contiguous U.S were studied using USDM data 

(2000-2014) across different spatial scales. The findings emphasized the need for studying 

drought characteristics from the perspectives of different spatial scales. The study also 

investigated how the weekly percentage area under different intensity categories propagates with 

time, and extracted the spatiotemporal characteristics of different drought intensity categories at 

different spatial scales. There is a clear variation in the drought characteristics such as intensity 

coverage, duration, and occurrence at different spatial scales. The results emphasize that drought 

management and resource allocation policies need to consider drought analysis across different 

spatial scales around the region of interest. 

The impact of drought on groundwater resources was modeled using linear regression. Of 

the several drought indices, SPI-24 was found to correlate the best with groundwater levels. The 

correlation of average monthly groundwater levels with SPI-24 remained relatively the same for 

all the studied wells. The duration of drought also had significant correlation with groundwater 

level declines. It is important to monitor groundwater levels during drought for groundwater 

management. However, there is a deficiency of in situ observation wells. Therefore, establishing 

a relationship between groundwater levels and well-established meteorological drought 

indicators as accomplished in this study will be useful in groundwater monitoring and 

management. 

This study also investigated the effect of different drought conditions on Barley yield 

using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. 

Though MLR method is widely used, the ANN method has not been used in the past to 

investigate the effect of droughts on barley yields. This study shows that the ANN model 

performs better than MLR in estimating barley yield. ANN is proposed as a viable alternative 

method or in combination with MLR to investigate the impact of droughts on crop yields. The 

results from ANN model indicate that 60 percent of the variation in yield can be explained by 

drought whereas only 13 percent by multiple regression.  

Drought is a continuing threat all over the world to all the water dependent sectors. It is 

one of the least understood natural hazards which continue to attract attention of researchers. 

This study is one among them to further the knowledge base in drought research.  
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	Figure 2.6: Comparing spatial scales with: (a) number of events, (b) total duration (weeks) (c) maximum duration (weeks) (d) maximum areal coverage, (e) average areal coverage, and (f) minimum areal coverage for each intensity category and “none” condition.
	Figure 2.6: Comparing spatial scales with: (a) number of events, (b) total duration (weeks) (c) maximum duration (weeks) (d) maximum areal coverage, (e) average areal coverage, and (f) minimum areal coverage for each intensity category and “none” condition.
	Figure 2.6: Comparing spatial scales with: (a) number of events, (b) total duration (weeks) (c) maximum duration (weeks) (d) maximum areal coverage, (e) average areal coverage, and (f) minimum areal coverage for each intensity category and “none” condition.
	 
	...............................
	 
	15

	 

	Figure 
	Figure 
	Figure 
	3.1: 
	Study area showing selected wells’ locations.
	 
	................................
	...........................
	 
	19

	 

	Figure 3.2: The Pearson correlation coefficient, r, between groundwater level (b) and         drought indices.
	Figure 3.2: The Pearson correlation coefficient, r, between groundwater level (b) and         drought indices.
	Figure 3.2: The Pearson correlation coefficient, r, between groundwater level (b) and         drought indices.
	 
	................................
	................................
	................................
	.............................
	 
	21

	 

	Figure 3.3: The variation of 24-month Standardized Precipitation Index (SPI-24) and             depth to water level, b, for wells MT4, NE1, SD1, and TX5.
	Figure 3.3: The variation of 24-month Standardized Precipitation Index (SPI-24) and             depth to water level, b, for wells MT4, NE1, SD1, and TX5.
	Figure 3.3: The variation of 24-month Standardized Precipitation Index (SPI-24) and             depth to water level, b, for wells MT4, NE1, SD1, and TX5.
	 
	................................
	......................
	 
	22

	 

	Figure 3.4: 
	Figure 3.4: 
	Figure 3.4: 
	Monthly variation of r’ and μ
	.
	 
	................................
	................................
	....................
	 
	2
	3

	 

	Figure 3.5: The variation of b with SPI-24 and duration (d) of selected drought events                for (a) KS2, (b) MT1, (c) MT4, (d) ND3, (e) ND4, (f) ND5, and (g) NE2.
	Figure 3.5: The variation of b with SPI-24 and duration (d) of selected drought events                for (a) KS2, (b) MT1, (c) MT4, (d) ND3, (e) ND4, (f) ND5, and (g) NE2.
	Figure 3.5: The variation of b with SPI-24 and duration (d) of selected drought events                for (a) KS2, (b) MT1, (c) MT4, (d) ND3, (e) ND4, (f) ND5, and (g) NE2.
	 
	................................
	.
	 
	26

	 

	Figure 4.1: The North Dakota counties and barley yield in bushel/acres for year 2010. ............. 30
	Figure 4.1: The North Dakota counties and barley yield in bushel/acres for year 2010. ............. 30
	Figure 4.1: The North Dakota counties and barley yield in bushel/acres for year 2010. ............. 30

	 

	Figure 4.2: Annual average barley yield in ND, U.S. for year 2000 – 2012. ............................... 31
	Figure 4.2: Annual average barley yield in ND, U.S. for year 2000 – 2012. ............................... 31
	Figure 4.2: Annual average barley yield in ND, U.S. for year 2000 – 2012. ............................... 31

	 

	Figure 4.3: ANN Scheme for the study problem. ......................................................................... 34
	Figure 4.3: ANN Scheme for the study problem. ......................................................................... 34
	Figure 4.3: ANN Scheme for the study problem. ......................................................................... 34

	 

	Figure 4.4: The relationship between actual and predicted yield of barley using ANN. .............. 35
	Figure 4.4: The relationship between actual and predicted yield of barley using ANN. .............. 35
	Figure 4.4: The relationship between actual and predicted yield of barley using ANN. .............. 35

	 

	 

	CHAPTER 1. INTRODUCTION 
	Drought is water related natural hazard and is generally associated with scarcity of freshwater. The main reasons for drought are shortage in precipitation compared to demand for water and poor water management. Unlike other natural hazards such as flood, earthquake, and hurricanes the occurrence and impact of drought are not realized immediately. However, the socio economic impact due to drought is huge. Drought essentially impacts all the water dependent sectors directly including agriculture, water suppl
	1.1. Background 
	Drought is a complex natural phenomenon difficult to accurately describe because of its spatially and temporally varying nature and context-dependency (Quiring, 2009). Drought stands apart from other natural hazards in many ways, particularly in that it is difficult to identify and predict its onset and termination (Dracup et al., 1980a; Hisdal and Tallaksen, 2000; McKee et al., 1993; Tallaksen et al., 1997). It is characterized by diffused spatial and temporal bounds. Creeping behavior of droughts makes it
	Drought indices are used to identify and monitor drought conditions, and to decide the timing and level of mitigating actions that need to be taken in response to droughts (Steinemann et al., 2005). Historically, losses from droughts across the world have significantly increased due to an increase in number of droughts; and/or drought severity (Wilhite, 2000). In the past, U.S. had experienced many severe droughts including droughts during 1930-1936 and 1970. Cook et al., (2015) predicted that there is a hi
	it may lead to a “mega drought.” Impact of drought on agriculture, water resources, and social sectors has been long-recognized. 
	1.2. Literature Review  
	1.2.1. Drought Definition 
	There are more than 150 published definitions of drought (Wilhite and Glantz, 1985). Mishra and Singh (2010) lists several organizations/researchers who use different definitions of drought, for example, the World Meteorological Organization (WMO), the United Nations (UN) Convention to Combat Drought and Desertification, the Food and Agriculture Organization (FAO) of the UN, the Encyclopedia of Climate and Weather, Gumbel, 1963, and Palmer, 1965. Although many definitions of drought exist, the central theme
	1.2.2. Drought Indices 
	Drought index is typically a single number representing the drought condition. The drought indices are derived from meteorological variables (e.g. precipitation, temperature) and/or hydrological variables (e.g. stream flows, reservoir storage, soil moisture, groundwater levels) (Steinemann et al., 2005). The indices are used for drought monitoring and decision making purposes. These indices are used also for categorizing drought based on their threshold values. Numerous drought indices have been developed. 
	(DAI), and PDSI for representing the meteorological drought; total water deficit is better than cumulative stream flow anomaly, SWSI, and PHDI for representing the hydrological drought; and computed soil moisture better represents the agricultural drought compared to soil moisture anomaly index, Palmer’s Z-index, and CMI. Narasimhan and Srinivasan (2005) discussed the PDSI, CMI, SPI, and SWSI. They also have developed and evaluated Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETD
	Kallis (2008) discussed the drought in detail from an interdisciplinary perspective, and emphasized the usage of multiple indices and qualitative judgments in drought monitoring. Drought monitoring products using multiple indices include USDM data (Svoboda et al., 2002), Joint Deficit Index (JDI) (Kao et al., 2009), and Multivariate Standardized Drought Index (MSDI) (Hao and AghaKouchak, 2013). JDI and MSDI were developed using multiple drought indices based on probabilistic concepts. USDM drought indicator
	There are several other notable sources also available for drought indices data. For example, (i) NOAA’s National Centers for Environmental Information (NCEI) has in its database monthly climate indices including the suite of PDSI and SPI on a climate division scale. (ii) the University of Washington Surface Water Monitor (SWM) publishes hydrologic and drought condition data (soil moisture (SM), snow water equivalent (SWE), runoff, SPI, Standardized Runoff Index (SRI)) for contiguous U.S. and Mexico at half
	1.2.3. Impact of Drought 
	Drought has been one of the costliest natural disasters to strike the U.S. (Cook et al., 2007; Lott and Ross, 2006; Smith and Katz, 2013). Mishra and Singh (2010) discussed the recent droughts around the world and their impact. It is estimated that drought costs the U.S. $6–8 billion annually (FEMA, 1995). Drought creates stress on water resources (i.e., surface water, groundwater), and on soil moisture which in turn impact water-dependent industries including agriculture, water supply, energy, and recreati
	numerous studies on impact of droughts (Elagib, 2014; Leelaruban et al., 2012; Li et al., 2009; Lott and Ross, 2006; Mendicino et al., 2008; Mishra and Cherkauer, 2010; Peters et al., 2005). Drought impact quantification is not an easy task because of the difficulty of precisely defining droughts and the complex dynamics of impact sectors.  
	1.3. Objectives  
	This study will contribute to understanding the characteristics of droughts better especially the spatial aspects of droughts across spatial scales, and the impact of drought on agriculture and groundwater. Main objectives of this study were to: 
	1. Discern drought occurrences and their characteristics across of county, climate division, state, region and contiguous U.S. scales. 
	1. Discern drought occurrences and their characteristics across of county, climate division, state, region and contiguous U.S. scales. 
	1. Discern drought occurrences and their characteristics across of county, climate division, state, region and contiguous U.S. scales. 

	2. Evaluate groundwater level responses to drought, and; 
	2. Evaluate groundwater level responses to drought, and; 

	3. Study the impact of drought on crop yield. 
	3. Study the impact of drought on crop yield. 


	 
	Though the major portion of this study mainly focuses on the state of North Dakota (ND), U.S., the methodologies used in this study are not specific to ND and can be adapted to other study sites. 
	CHAPTER 2. DROUGHT OCCURRENCES AND THEIR CHARACTERISTICS ACROSS SELECTED SPATIAL SCALES IN THE CONTIGUOUS UNITED STATES1 
	2.1. Introduction 
	A study of variation in severity, duration, frequency, areal coverage, and impact of drought events at different spatial scales will be helpful in understanding the mechanism of drought propagation and to plan for future drought events. There are many studies in the literature that address drought characteristics from different study areas. For example, spatiotemporal characteristics of drought for the U.S. using PDSI (Karl, 1983); spatiotemporal properties of droughts and their impacts in North Dakota, U.S
	Focus of this part of the study was the pattern and frequency of occurrences of droughts, their spatiotemporal characteristics, and their variation over different spatial scales in the contiguous U.S. The USDM data form years 2000 to 2014 was used. The occurrences of droughts of different intensity categories, spatiotemporal propagation of drought at different spatial scales, and the characteristics of droughts under different spatial scales were analysed. The results could help identify the areas in contig
	2.2. Study Area and Data 
	USDM data on droughts is available to the public from the NDMC since the year 2000. This part of the study used USDM weekly percentage area coverage of different drought intensity categories (D0, D1, D2, D3, and D4) for the years 2000 to 2014. This study does not involve time series analyses in the strict sense except for comparison of yearly values in one of the components of the study. Spatial scales chosen for the study were national, regional, state, climatic division, and county. Contiguous U.S., High 
	 
	Artifact
	1This chapter was adopted from a published article in Geosciences (Leelaruban. N., and G. Padmanabhan., 2017. Drought Occurrences and Their Characteristics across Selected Spatial Scales in the Contiguous United States. Geosciences, Vol 7(3), No. 59, doi:10.3390/geosciences7030059). 
	selected to gauge drought characteristics variation under the selected spatial scales (Figure 2.1). Percentage area coverage values for different USDM drought intensity categories were derived for years 2000 – 2014 (15 years) from the USDM web portal for the areas representing the selected spatial scales.  
	 
	Figure 2.1: Spatial scales considered in this study. 
	2.3. Methods 
	2.3.1. Occurrences of drought in the contiguous U.S. 
	The contiguous U.S. has experienced several drought episodes during the study period (2000 – 2014). In this part of the study, the goal was to analyse the occurrences of different drought intensity categories. The weekly USDM GIS shapefiles were obtained from USDM web portal for years 2000 to 2014 and were used in ArcGIS10.3®. A series of batch commands were executed to clip the shapefiles into contiguous U.S., and extract areal extents pertinent to different USDM drought intensity categories (i.e., D0, D1,
	The number of weeks that an area has been hit by D1, D2, D3, and D4 drought intensity category during years 2000 to 2014 was extracted first. It was decided not to include D0 because of two reasons: (i) due to the difficulty in processing a large number of multiple intersections (as subsequently described), and (ii) also D0 is an “abnormally dry” condition not significant enough in terms of its intensity to qualify for a “drought” condition. The following steps were implemented in ArcGIS 10.3® to count the 
	the attributes from 783 weekly files in different columns. Except for the attributes that indicated the drought category (DM) all the other fields were deleted. (c) The attribute table was exported to Microsoft EXCEL sheet and the “countif” function was used to count the number of drought occurrences within each feature. Each weekly shapefile for particular intensity had several polygonal features. The union of 783 weekly shapefile inputs created numerous features in the output as a result of multiple inter
	The drought coverage areas were also extracted for all intensity categories (D0, D1, D2, D3, and D4) on a yearly basis for the period 2000 to 2014. The D0 was included for this and following part of the analysis because an understanding of variation in areal coverages of D0 will help to understand the drought, and can be related to other intensity categories. The extracted drought intensity categories from the weekly data for each year were grouped, and spatially combined to get the yearly intensity coverag
	2.3.2. Drought characteristics across spatial scales in the U.S 
	The study also investigated how droughts evolve at five different spatial scales: contiguous U.S., HPR, ND State, SCCD in ND, and Grant County in ND. The areal coverage of weekly drought intensity categories was plotted with time for the study period (2000 – 2014). USDM also provides similar graphical plots based on their traditional statistics, which is a percent of an area that is in or worse than a certain drought category. However, the purpose of this part of the study was to analyse how areal extent of
	Based on years 2000 - 2014 (783 weeks) of USDM weekly data, the drought characteristics for different spatial scales: contiguous U.S., HPR, ND State, SCCD in ND, and Grant County in ND were derived. The following drought characteristics were extracted: 
	2.3.2.1. Number of events 
	A drought event was defined as the occurrence of “greater than zero” drought intensity coverage anywhere in the considered area in any week during the study period. However, occurrences in consecutive weeks were considered as one event. Total number of drought events for the different intensity categories (D0, D1, D2, D3 and D4) were determined. 
	2.3.2.2. Total duration  
	The total number of weeks (not necessarily consecutive) in the study period in which the area covered by different intensity categories (D0, D1, D2, D3 and D4) were greater than zero.  
	2.3.2.3. Maximum duration 
	This was the maximum number of consecutive weeks that were subject to a drought event as defined previously. This was extracted for each drought intensity category (D0, D1, D2, D3 and D4). 
	2.3.2.4. Minimum, maximum, and average percentage area coverage 
	Minimum and maximum weekly percentage area coverage of different drought intensity categories (D0, D1, D2, D3 and D4) were identified over the study period. The average of weekly percentage area coverage was also calculated for different intensity categories over the study period, that is, 2000 to 2014.  
	2.4. Results and Discussion 
	2.4.1. Drought occurrences in the contiguous U.S. 
	Drought occurrence (in number of weeks) in the contiguous U.S. is shown in Figure 2.2. Fig. 2.2 shows the distribution of drought occurrences for intensity categories D4, D3, D2, and D1 during years 2000 to 2014 (783 weeks). Mapping the occurrences of drought using USDM data helps identify the areas that are vulnerable to droughts. In the contiguous U.S., during years 2000 to 2014 about half of the (51.7%) area had experienced D4, and almost the entire area (99.8%) had D1 at least once (Figure 2.2). D2 and 
	D2 occurred mostly in the western part of the U.S similar to D3. Parts of Arizona, California, Nevada, and Oregon states have been in D2 condition at least 312 weeks out of 783 weeks (Figure 2.2). Figure 2.2 also shows that most of the eastern states were in D2 less frequently. Some areas in Ohio, New York, Pennsylvania, Vermont, and West Virginia have never been under a D2 drought. Occurrences of D1 can be seen almost in the entire contiguous U.S. Some parts of Nevada, and Oregon were in D0 at least 335 we
	Overall, the western part of the US experienced droughts frequently compared to the east (Figure 2.2), however, spatial patterns of occurrences varied significantly. For example, Alabama was the only state that was in D4 entirely at least once during years 2000 to 2014 but with relatively less frequency, whereas parts of Oklahoma and Texas were in D4 category very frequently. Some parts of Colorado were in D4 category frequently whereas some parts have never experienced D4. The characteristics of drought ca
	or climate division. The drought information of a smaller area such as at the county extents could be masked when the drought is reported at the state level. 
	 
	Figure 2.2: Drought occurrences (in weeks) of intensity categories D4, D3, D2, and D1 during the years 2000 through 2014 (783 weeks).  
	The variation of areal coverage of droughts in the contiguous U.S. on an annual basis was also analysed. The percentage area covered by different drought intensity categories for each drought during specific years are tabulated in Table 2.1. In the contiguous U.S., 16.9 % of the area experienced exceptional drought (D4) at least once in the year 2012 whereas none of the areas had D4 in 2010. In 2012, the extreme drought (D3) occurred in 42.6 % of the area at least once, and only 4.4 % area had D3 in 2010. T
	Although the total areal coverage may be the same in different years, it may be distributed differently in those years (Figure 2.3). For example, in the year 2011 and 2012, the total percentage area coverage of D4 intensity is 16.1 and 16.9 respectively (Table 2.1). It is spread out in 2012 whereas in 2011 it is concentrated in one region (Figure 2.3). This type of spatial characteristics of drought significantly influences drought management and resource allocation, and emphasizes the need of addressing dr
	covered by higher intensity droughts in 2012 whereas in 2010 had less coverage by higher intensity droughts. Over the study period, occurrence of drought in the contiguous U.S. varied spatially, and a state like Texas had repeatedly experienced higher intensity drought.  
	 
	Table 2.1: The percentage areal coverage of different drought intensity categories in the contiguous U.S. 
	Year 
	Year 
	Year 
	Year 

	Drought intensity categories 
	Drought intensity categories 

	Span

	TR
	D4 
	D4 

	D3 
	D3 

	D2 
	D2 

	D1 
	D1 

	D0 
	D0 

	Span

	2000 
	2000 
	2000 

	6.2 
	6.2 

	17.8 
	17.8 

	43.7 
	43.7 

	70.8 
	70.8 

	90.1 
	90.1 

	Span

	2001 
	2001 
	2001 

	0.8 
	0.8 

	16.6 
	16.6 

	41.0 
	41.0 

	63.2 
	63.2 

	91.2 
	91.2 


	2002 
	2002 
	2002 

	12.3 
	12.3 

	38.3 
	38.3 

	58.7 
	58.7 

	77.5 
	77.5 

	90.1 
	90.1 


	2003 
	2003 
	2003 

	7.4 
	7.4 

	34.5 
	34.5 

	53.5 
	53.5 

	58.4 
	58.4 

	63.0 
	63.0 


	2004 
	2004 
	2004 

	5.4 
	5.4 

	23.0 
	23.0 

	36.4 
	36.4 

	46.1 
	46.1 

	63.0 
	63.0 


	2005 
	2005 
	2005 

	2.4 
	2.4 

	14.5 
	14.5 

	37.6 
	37.6 

	64.0 
	64.0 

	90.3 
	90.3 


	2006 
	2006 
	2006 

	5.6 
	5.6 

	27.7 
	27.7 

	49.0 
	49.0 

	68.4 
	68.4 

	82.8 
	82.8 


	2007 
	2007 
	2007 

	6.2 
	6.2 

	24.1 
	24.1 

	50.8 
	50.8 

	70.5 
	70.5 

	89.0 
	89.0 


	2008 
	2008 
	2008 

	4.2 
	4.2 

	12.5 
	12.5 

	36.5 
	36.5 

	60.4 
	60.4 

	80.9 
	80.9 


	2009 
	2009 
	2009 

	2.2 
	2.2 

	5.7 
	5.7 

	20.1 
	20.1 

	47.5 
	47.5 

	78.1 
	78.1 


	2010 
	2010 
	2010 

	0.0 
	0.0 

	4.4 
	4.4 

	22.5 
	22.5 

	54.1 
	54.1 

	86.6 
	86.6 


	2011 
	2011 
	2011 

	16.1 
	16.1 

	24.3 
	24.3 

	33.9 
	33.9 

	47.6 
	47.6 

	70.3 
	70.3 


	2012 
	2012 
	2012 

	16.9 
	16.9 

	42.6 
	42.6 

	67.5 
	67.5 

	81.6 
	81.6 

	83.9 
	83.9 


	2013 
	2013 
	2013 

	11.7 
	11.7 

	33.5 
	33.5 

	58.5 
	58.5 

	66.6 
	66.6 

	72.0 
	72.0 


	2014 
	2014 
	2014 

	7.3 
	7.3 

	19.0 
	19.0 

	31.8 
	31.8 

	42.8 
	42.8 

	62.6 
	62.6 

	Span


	 
	2.4.2. Spatial propagation of drought intensity categories across spatial scales in the U.S. 
	Figure 2.4 (a-e) shows how the areal extent of different intensity categories evolved at different spatial scales. In HPR and contiguous U.S. scales, several long episodes of drought can be seen at different intensity levels (Figure 2.4d-e). The onset, progress and termination of drought were gradual for larger scales such as HPR and contiguous U.S. However, it can be seen from Figure 2.4 a-c that for the smaller scales, the duration of certain intensity drought was short and had sudden onset and terminatio
	 
	Figure 2.3: Areal coverage of the highest intensity of drought that an area experienced for years 2000 – 2014. 
	 
	Figure 2.4: Propagation of areal coverage (AC) of different intensity category droughts over (a) Grant county, ND (b) SCCD, ND, (c) ND State (d) HPR, and (e) Contiguous U.S. 
	From the Figure 2.4 it can be seen that the Dec 20, 2005 to Oct 23, 2006 shown in box, was the only period where all the categories were present in all spatial scales considered. D4 occurred at least in some part of the contiguous U.S throughout the 44 week period, and D4 existed 8 weeks in HPR, 5 weeks in ND, 5 weeks in SCCD in ND, and 2 weeks in Grant County in ND. 
	Figure 2.5 (a-e) shows the area that had experienced drought at least once during Dec 20, 2005 to Oct 23, 2006 period (44 weeks) at different intensity levels. Figure 2.5(f) shows the highest intensity drought that an area has experienced within the same time frame. The areal coverage maps show that more intense droughts (D4 and D3) occur as spatially disjointed areas, and less intense droughts were spatially connected. It should be noted that the coverage was for the whole 44 weeks drought period considere
	2.4.3. Characteristics of droughts across spatial scales in the U.S. 
	Figure 2.6 shows the characteristics of drought occurrences of different USDM intensity categories and at different spatial scales in the U.S.: number of drought events, total and maximum duration, and maximum, average, and minimum areal coverages. From the number of events and total duration it can be concluded that at any given time in the time frame (2000 – 2014), at least some part of contiguous U.S. experienced; no drought (None), D0, D1, and D2 conditions (Figure 2.6a-b). Extreme drought (D3) and exce
	The High Plains Region experienced the D0 condition throughout the study period. The “None” condition occurred 771 weeks in the region while D4 condition existed 332 weeks with the maximum duration of 154 weeks (Figure 2.6b-c). The North Dakota state experienced the absence of all drought conditions at least once in the past (Figure 2.6b,f). The state had its 100 % of area covered by “None” and D0 conditions at their maximum coverages (Figure 2.6d). The state has experienced the D4 category only once for a 
	The number of events for D0 condition appears as increasing from a larger spatial scale to smaller spatial scale. However, for all other drought conditions numbers of events do not show any relation with spatial scales (Figure 2.6a). The total and maximum duration for all conditions are decreasing from larger to smaller spatial scales (Figure 2.6b-c). It was an expected observation since smaller spatial scales are subset of larger spatial scales. The average areal coverage of drought conditions did not show
	contiguous U.S. was covered by D1 and D2 categories, at 4.80% and 1.08% areal extents respectively, and all the other spatial scales were free of D1 and D2 at least once. In general, the minimum areal percentage coverages are decreasing towards the smaller spatial scales (Figure 2.6f). 
	 
	Figure 2.5: Areal coverage of drought during Dec 20, 2005 - Oct 23, 2006. (a) exceptional drought (D4), (b) extreme drought (D3), (c) severe drought (D2), (d) moderate drought (D1), (e) abnormally dry (D0), and (f) all categories. 
	 
	Figure 2.6: Comparing spatial scales with: (a) number of events, (b) total duration (weeks) (c) maximum duration (weeks) (d) maximum areal coverage, (e) average areal coverage, and (f) minimum areal coverage for each intensity category and “none” condition. 
	2.5. Conclusion 
	This study shows that southern and western parts of contiguous U.S. experienced higher intense drought frequently whereas northeast part less frequently. A combination of hydro-climatology and management practices of those areas could be the driver for the obtained spatial distribution and frequency of droughts. The spatial distribution of areal coverage of droughts of different intensities also varied significantly from year to year. The propagation of different intensity drought shows dissimilar patterns 
	of the governing unit such as a county or state, an understanding of this scale-dependency is important for drought management and resource allocation.  
	The spatiotemporal characteristics of drought under different spatial scales show that the total duration, average percentage area, and maximum percentage areas are decreasing with increasing intensity for all spatial scales; and in the smaller spatial scale, the drought persists for a smaller duration compared to larger spatial scale. There have been discussions about appropriate temporal scale for reporting drought. It may be useful to consider a finer temporal scale for smaller spatial scales and larger 
	CHAPTER 3. EXAMINING THE RELATIONSHIP BETWEEN DROUGHT INDICES AND GROUNDWATER LEVELS1  
	3.1. Introduction 
	Establishing a parametric linkage between groundwater level fluctuations and drought is vital for water monitoring and management. In most areas, groundwater is used as an alternative water source during drought events. Groundwater and drought have inherent complexities, yet are relatively concomitant. Although drought is contextual without a universally accepted definition (Wilhite and Glantz, 1985) its central theme is related to a period of water deficiency in relation to demand. Since it is inherently d
	Various authors emphasize the need for evaluating the relationship of stream flow and groundwater with meteorological variables based drought indices (Chen et al., 2002; Chen et al., 2004; Haslinger et al., 2014; Jan et al., 2007; Lorenzo-Lacruz et al., 2010; Mall et al., 2006; Panda et al., 2007; Tirogo et al., 2016; Vasiliades and Loukas, 2009; Vicente-Serrano et al., 2012). The relationship of stream flow with drought indices has been studied by several authors. For example, Haslinger et al. (2014) estab
	The knowledge base of studies linking drought and groundwater levels is limited, although Mall et al. (2006) emphasized the need to study the impact of climate change and drought on groundwater resources in depth. Most studies have used precipitation and temperature to study drought relationship with groundwater levels. For example, Panda et al. 
	 
	Artifact
	1This chapter was adopted from a published article in Water (Leelaruban. N., and G. Padmanabhan, P. Oduor., 2017. Examining the Relationship between Drought Indices and Groundwater Levels. Water, Vol.9, No. 82, doi:10.3390/w9020082). 
	(2007) reported the relationship between monsoon rainfall and groundwater fluctuation. Tirogo et al. (2016) reported the groundwater response to rainfall for a study area in Burkina Faso, West Africa. The relationship between groundwater level fluctuation and rainfall was also studied for a selected well in Central Taiwan by Jan et al. (2007). Chen et al. (2004) found that groundwater levels greatly depended on precipitation and annual mean temperature, with a delayed response time. An empirical model devel
	This study differs from the aforementioned studies because this study focused on groundwater response to drought by deriving a parametric relationship between drought indices and groundwater data. Bloomfield and Marchant (2013) developed a Standardized Groundwater Level Index (SGI) incorporating an approach similar to the computation of SPI using groundwater level data from select wells in United Kingdom. Mendicino et al. (2008) proposed a Groundwater Resource Index (GRI) for drought monitoring and forecast
	In this study, groundwater level data from the U.S. Geological Survey Ground-Water Climate Response Network (USGS CRN) wells was used. Wells in this network have the least anthropogenic-induced disturbances (Cunningham et al., 2007). A total of 8 indices were tested and a correlation matrix was developed between groundwater levels and drought indices to evaluate the capability of indices to elucidate dynamics of groundwater level fluctuations. The seasonal variability of groundwater level, and its relations
	3.2. Study Area and Methods 
	3.2.1. Study area and groundwater levels data 
	The study area and the selected well locations are shown in Figure 3.1. Criteria for the selection of CRN wells included: (a) located in unconfined aquifers or near-surface confined aquifers, (b) had minimum artificial influences (e.g. pumping, irrigation, canals, and artificial recharge), and (c) have never gone dry (Cunningham et al., 2007). Thirty-two USGS CRN wells from the Great Plains States of the U.S. were analysed. One well located in Colorado (CO), two 
	wells from Kansas (KS), five wells in Montana (MT), six wells in Nebraska (NE), five wells in North Dakota (ND), two wells in Oklahoma (OK), six wells in South Dakota (SD), and five wells located in Texas (TX)) (Figure 3.1). The beginning of time span of groundwater level data was chosen based on the beginning of available consistent groundwater level records. December 2013 was chosen as the end of time span. 
	 
	Figure 3.1: Study area showing selected wells’ locations. 
	3.2.2. Drought indices 
	Palmer Drought Severity Index (PDSI) (Palmer, 1965), Palmer Hydrological Drought Index (PHDI) (Karl, 1986), Standardized Precipitation Index (SPI) (McKee et al., 1993; McKee et al., 1995); and meteorological parameters such as Precipitation (PCP) and Average Temperature (TMP) were used in this study. The Monthly values of PDSI, PHDI, SPI, TMP, and PCP were derived from National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) [Currently part of NOAA's National Centers for E
	3.2.3. Groundwater level - drought indices correlation 
	The linear relationship between monthly median depth to water level from land surface, b, and corresponding monthly values of PCP, TMP, PDSI, PHDI, SPI-06, SPI-09, SPI-12, and SPI-24 indices was analysed using Pearson correlation coefficient. SPI can be calculated for multiple timescales which indicate the impact on different water sectors. In this study, SPI with timescales of at least six months was used since it was suitable for analyzing hydrological drought impact such as groundwater decline (Svoboda e
	3.2.4. Monthly groundwater variation and its correlation with SPI-24 
	The monthly variations of groundwater levels, and correlations between SPI-24 with b were studied for select wells. The rationale for focusing on SPI-24 is its inherent concomitancy with groundwater levels. A subset of wells which had at least 25 years records of monthly groundwater level data was demarcated from the rest of the dataset. This was done to identify the seasonal variability of groundwater level and its relation to drought. 
	3.2.5. Groundwater level fluctuation for specific drought events 
	For each well, the duration in number of months under moderate or more severe drought conditions were derived based on SPI-24. Drought is reported moderate or more severe when SPI-24 ≤ -0.8 by NOAA's NCEI. Therefore, the drought events for each well were delineated based on SPI-24 ≤ -0.8 for at least 30 consecutive months. Corresponding groundwater b values were also noted. From this data, groundwater level decline and, lag and recovery time of groundwater level in relation to the selected drought events we
	3.3. Results and Discussions 
	The Pearson correlation coefficients between b and climate indices such as PCP, TMP, PDSI, PHDI, and SPI for 6, 9, 12, and 24 monthly scales are shown in Figure 3.2. The results show that precipitation and temperature have relatively low correlation with groundwater level. Twenty-nine out of 32 wells show r for b and precipitation in the range -0.3 to 0.21. The highest correlation of b and precipitation (-0.51) is observed for well OK2. The r values of b and temperature vary between -0.23 and 0.19. Precipit
	Since b correlates negatively with drought indices; the more negative the index value, the more severe the drought. The more negative the indices, the greater the depth to groundwater. The PHDI and SPI-24 displayed better correlations with groundwater levels, albeit inconsistently (Figure 3.2). 12/32 wells show r value of -0.6 or better with SPI-24; nine wells show r of -0.6 or better with PHDI. Detailed description of r with indices follows: NE4 and NE5 displayed r of -0.9 and -0.8, for SPI-24. For (i) wel
	TX5 displayed positive correlation values with respect to drought indices. Some factors that can possibly be attributed to the inconsistent correlation may be due to each wells’ heterogeneity owing to various geophysical and hydrological conditions. We can still unequivocally state that the results show that drought indices can be used as a proxy indicator of groundwater levels.  
	 
	Figure 3.2: The Pearson correlation coefficient, r, between groundwater level (b) and drought indices. 
	Based on the results of overall correlation between b values and drought indices, SPI-24 index is a viable candidate in monitoring groundwater level fluctuations during a discernible drought. SPI is a simple index based on solely precipitation records. A study of groundwater level responses to SPI will be advantageous in groundwater management and monitoring during discernible drought episodes owing to the fact that precipitation records are widely available. Thus, SPI-24 may be regarded as a proxy and/or a
	The variation of groundwater level and its correlation with SPI-24 were further analysed in a monthly time basis for a select set of wells. The selected wells were KS2, ND1, ND2, ND3, ND4, ND5, NE6, OK1, and TX2. These wells had at least 25 years of reported monthly records. TX5 had more than 25 years of monthly records for each month but was not used for this part of study because its water level variation was declining irrespective of any established drought episodes (Figure 3.3). The tabulated results in
	Figure 3.4 shows variation between r’, and μ. The μ values for well KS2 vary between 6.03 m in June and 6.39 m in February. The r’ values for KS2 vary between -0.84 in January and -0.75 in September. The μ and r’ values for KS2 well are relatively stable, and groundwater level had a strong linear correlation with SPI-24. The highest differential value for r’ is observed for ND1 where r’ values range between -0.75 for the month of January and -0.57 for May and June months. On the other hand, μ value varies b
	 
	Figure 3.3: The variation of 24-month Standardized Precipitation Index (SPI-24) and depth to water level, b, for wells MT4, NE1, SD1, and TX5. 
	The highest differential μ value was observed for OK1 well where the highest μ was 34.49 m for October and lowest μ value was 32.14 m for June months. μ values for ND4 vary between 7.14 m for September and 7 m for June which was the lowest differential μ value. The r’ values for NE6 are very low for all the months over the entire period. Overall for all the wells, μ values were low during summer months, that is, from May to August. This study did not explore any general specific patterns for seasonal variab
	 
	Figure 3.4: Monthly variation of r’ and μ. 
	To study the effects of drought duration on groundwater decline, seven different events were identified that could satisfy the criteria of SPI-24 ≤ -0.8 in the area surrounding the well for at least 30 consecutive months. This was also complementary with complete well data spanning a similar time frame of 30 months. Table 3.2 shows the timeline of drought events (year and month of starting and ending), duration of drought events (number of months under moderate or more severe drought), and available monthly
	The monthly SPI-24 values variation with temporal groundwater levels is shown in Figure 3.5(a-1 to g-1). The x-axis shows the year and month. The time frame commences two years before the beginning of drought, and ends two years after the drought event. As such, we can extract information on lag and recovery times of groundwater levels to drought. From Figure 3.5 (a-2 to g-2), we can see the relationship between b and duration, d, of a moderate or more severe drought, that is, SPI-24 ≤ -0.8 condition. Wells
	Table 3.1: Correlation coefficients between SPI-24 and b (r’), sample size (n), and average of monthly median values (μ). 
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	Pr- Parameters; r’-correlation coefficient; n-number of monthly records; μ-average values of monthly median records in meters.
	wells KS2 and NE2 started to recover a few months ahead of the end to the associated drought event thus displaying a relatively low linear correlation value (Figure 3.5). 
	 
	Table 3.2: Pertinent data showing selected drought events and number of groundwater level records. 
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	Table 3.3: The relationship between b and duration (d) of drought events. 
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	The depth to water level increased or continued to remain high even after the end of a drought event for wells MT1 and MT4. The consequent drought pattern after the defined drought event may be the reason for this type of anomaly. Wells MT4 and ND3 show a lag in response to a drought event. In general, we can surmise that the groundwater decline was linear during established drought events defined as moderate more severe, that is, SPI-24 ≤ -0.8. However, there was variation in groundwater responses before t
	Drought impacts all water dependent sectors, and causes vast economic losses and environmental issues. Hays et al. (2011) emphasizes that an impact assessment is vitally important for decision making, responding, and understanding vulnerabilities of drought. Above ground hydrological responses to drought using stream flow data is a vastly studied area compared to studies of influences of drought on groundwater resources. This study investigated the possibility of utilizing drought indices in exploring groun
	nature of aquifers such as varying depth, properties of aquifer and recharge area, and possible anthropogenic influences.  
	 
	 
	Figure 3.5: The variation of b with SPI-24 and duration (d) of selected drought events for (a) KS2, (b) MT1, (c) MT4, (d) ND3, (e) ND4, (f) ND5, and (g) NE2. 
	3.4. Summary and Conclusion 
	This study explored the relationship between groundwater levels and drought indices for wells located in the Great Plains States of the U.S. The groundwater level data from USGS CRN wells with minimum anthropogenic disturbances were used. Thirty-two wells were selected for the study. The correlation matrix of the drought indices and depth to groundwater levels (monthly median values) was calculated and used to identify which reliable drought indices were necessary in monitoring groundwater responses to drou
	The seasonal variability of groundwater levels, and correlation of groundwater levels with SPI-24 were also studied for selected wells especially those that had adequate data. The correlation between average values of monthly median depths to water level remained relatively the same throughout the year. The fluctuations of groundwater levels for specific drought events were also examined. Drought events, for this purpose, were defined by a SPI-24 threshold of less than or equal to -0.8, a category used for 
	Observation of groundwater level fluctuation is essential for groundwater monitoring and management. However, there is a deficiency of in situ observation due to practical limitations of establishment and maintenance of observatory well networks. Alternatively, establishing a relationship between groundwater and meteorological drought indicators as accomplished in this study will be useful in groundwater monitoring and management. Such a study could enable managers to have an estimated groundwater level dur
	  
	CHAPTER 4. QUANTIFYING IMPACT OF DROUGHTS ON BARLEY YIELD IN NORTH DAKOTA, USA USING MULTIPLE LINEAR REGRESSION AND ARTIFICIAL NEURAL NETWORK1 
	4.1. Introduction 
	Impact of drought on various sectors has long been recognized. Agriculture is one of the major sectors that experiences significant loss during drought events. Agriculture also is the first sector to be affected at the onset of drought because crops at various stages of their growth depend on water and soil moisture (Narasimhan and Srinivasan, 2005). Impact of drought on agriculture has been studied by several investigators (Lott and Ross, 2006; Li et al., 2009; Mishra and Cherkauer, 2010). Li et al. (2009)
	Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models are both widely used in many areas for prediction and classification purposes. MLR is a traditional statistical technique, and it has an established methodology. However, ANN is relatively a recent computational modeling tool that is used to solve many complex real world problems due to its remarkable learning and generalization capabilities (Basheer, 2000; Paliwal and Kumar, 2009). ANN has been used in water quality and water resou
	There are ample information in the literature about the application and capabilities of ANN and MLR (Ainscough and Aronson, 1999; Ayoubi and Sahrawat; 2011, Mekanik et al., 2013; Paliwal and Kumar, 2009; Pao, 2008, Yilmaz and Kaynar, 2011). A detailed review of neural networks and statistical techniques can be found in Paliwal and Kumar (2009). A comprehensive list of comparative studies of applications of neural networks and other statistical techniques from various fields can be found in their study. They
	 
	Artifact
	1This chapter was adopted from a published article in Neural Network World (Odabas. M., Leelaruban. N., Halis Simsek, and G. Padmanabhan., 2014. Quantifying Impact of Droughts on Barley Yield in North Dakota, USA Using Multiple Linear Regression and Artificial Neural Network. Neural Network World, Vol. 24, No.4, pp. 343-356. doi: 10.14311/NNW.2014.24.020). 
	Oscillation (ENSO) and Indian Ocean Dipole (IOD). They found that ANN is a better model to find the pattern and trend of observations, and generally had lower error compared to MLR. 
	Kaul et al. (2005) conducted a study to predict the corn and soybean yield using field-specific rainfall, and Soil Rating for Plant Growth (SRPG), and concluded that ANN has a better prediction capability compared to MLR. Ayoubi and Sahrawat (2011) used ANN and MLR to predict the biomass and grain yield of barley in relation to soil properties. They found that ANN outperformed MLR. There are numerous studies on quantifying barley yield using different input characteristics and methodologies (Ayoubi and Sahr
	ANN methodology is a non-linear data driven self-adaptive approach. ANN can identify and learn correlation patterns between variables (independent) and corresponding target variables (dependent) when the underlying relationship is unknown and consequently can predict the dependent variables based on new independent variable data sets (Suo et al., 2010). Basically, ANN performs the function of nonlinear mapping or pattern recognition. If a set of input data corresponds to a definite signal pattern, the netwo
	The objective of this study is to quantify and compare the impact of different drought conditions on barley (Hordeum vulgare L.) yield using the MLR and ANN models. Though there are few studies relating yield with climate variables using ANN and MLR, the method has not been used to quantify the drought impact on barley yields to the best of our knowledge. In addition, this study uses the U.S. Drought Monitor data which account for areal coverage and severity of drought. This drought data is relatively new (
	4.2. Data and Methods 
	4.2.1. Drought Data 
	This study uses United States Drought Monitor (USDM) data. The USDM is a major source of drought data in the U.S available to the public from the National Drought Mitigation Center (NDMC) at the University of Nebraska, Lincoln (Svoboda et al., 2002). NDMC provides various climate and drought information to the public which includes easy to use U.S. Drought Monitor. The purpose of the USDM is not forecasting drought rather it was developed as a comprehensive tool to capture and depict the drought conditions 
	The USDM data products (map/table) can be accessed at NDMC's web site (http://www.drought.unl.edu/dm/monitor.html). Several federal agencies including U.S. Department of Agriculture (USDA), and National Oceanic and Atmospheric Administration (NOAA) also contribute to produce USDM data products. USDM data on areal coverage under different drought intensity categories: D0 (abnormally dry), D1 (moderate drought), D2 (severe drought), D3 (extreme drought), and D4 (exceptional drought) (Svoboda et al., 2002) wer
	utilized in this study. USDM employs key drought indicators such as Palmer Drought Index, CPC Soil Moisture Model (Percentiles), USGS Weekly Stream flow (Percentiles), Standardized Precipitation Index (SPI), and Objective Short and Long-term Drought Indicator Blends (Percentiles) and numerous supplementary indicators to define the intensity categories. For example, drought category will be designated as D0, if Palmer Drought Index is in the range -1.0 to 1.9, CPC Soil Moisture Model Percentile 21 to 30, U.S
	4.2.2. Crop Data 
	Barley is one of the major agricultural crops grown in North Dakota. County-by-county yield data of barley is derived from USDA National Agricultural Statistics Service (NASS) web portal for the study period (2000 – 2012) (http://www.nass.usda.gov/). Generally, Barley planting will start in later part of April, and harvesting end in early part of September in North Dakota. Figure 4.1 shows the North Dakota counties and barley yield in 2010. North Dakota is one of the north-central states of the U.S and has 
	 
	 
	Figure 4.1: The North Dakota counties and barley yield in bushel/acres (1 bushel = 0.03524 m3; 1 acre = 4046.86 m2) for year 2010 (barley yield data is derived from USDA NASS web portal). 
	Table 4.1 shows the barley yield details in ND, U.S. for years 2000 to 2012. For each year, number of counties reported yield (out of 53 counties in ND), average yield, maximum and minimum yield, and corresponding counties are listed. Figure 4.2 shows the average yield variation of barley yield for year 2000 to 2012. The maximum average yield is reported in 2009 (69.22 bu/acres), and minimum average yield is reported in 2002 (40.02 bu/acres) in ND.  
	Table 4.1: Barley yield (in Bushel/acres) details in ND, U.S. for year 2000 – 2012. 
	Year 
	Year 
	Year 
	Year 

	Number of county reported 
	Number of county reported 

	Average yield 
	Average yield 

	Maximum yield (County) 
	Maximum yield (County) 

	Minimum yield (County) 
	Minimum yield (County) 

	Span

	2000 
	2000 
	2000 

	53 
	53 

	54.91 
	54.91 

	71.4 (Pembina) 
	71.4 (Pembina) 

	42.3 (Divide) 
	42.3 (Divide) 

	Span

	2001 
	2001 
	2001 

	53 
	53 

	55.68 
	55.68 

	66.0 (Slope) 
	66.0 (Slope) 

	46.0 (Burke/Mckenzie) 
	46.0 (Burke/Mckenzie) 


	2002 
	2002 
	2002 

	51 
	51 

	40.02 
	40.02 

	55.7 (Traill) 
	55.7 (Traill) 

	12.6 (Grant) 
	12.6 (Grant) 


	2003 
	2003 
	2003 

	53 
	53 

	57.60 
	57.60 

	77.8 (Steele) 
	77.8 (Steele) 

	29.9 (Grant) 
	29.9 (Grant) 


	2004 
	2004 
	2004 

	51 
	51 

	59.02 
	59.02 

	81.6 (Dickey) 
	81.6 (Dickey) 

	27.3 (Grant) 
	27.3 (Grant) 


	2005 
	2005 
	2005 

	51 
	51 

	53.50 
	53.50 

	73.3 (Emmons) 
	73.3 (Emmons) 

	40.0 (Divide) 
	40.0 (Divide) 


	2006 
	2006 
	2006 

	48 
	48 

	46.15 
	46.15 

	68.6 (Traill) 
	68.6 (Traill) 

	21.8 (Emmons) 
	21.8 (Emmons) 


	2007 
	2007 
	2007 

	51 
	51 

	53.17 
	53.17 

	63.3 (Emmons) 
	63.3 (Emmons) 

	37.5 (Richland) 
	37.5 (Richland) 


	2008 
	2008 
	2008 

	40 
	40 

	54.75 
	54.75 

	81.1 (Traill) 
	81.1 (Traill) 

	23.9 (Mckenzie) 
	23.9 (Mckenzie) 


	2009 
	2009 
	2009 

	41 
	41 

	69.22 
	69.22 

	91.0 (Emmons) 
	91.0 (Emmons) 

	51.0 (Bowman) 
	51.0 (Bowman) 


	2010 
	2010 
	2010 

	41 
	41 

	64.92 
	64.92 

	84.2 (Dickey) 
	84.2 (Dickey) 

	42.0 (Golden Valley) 
	42.0 (Golden Valley) 


	2011 
	2011 
	2011 

	27 
	27 

	43.47 
	43.47 

	67.1 (Ramsey) 
	67.1 (Ramsey) 

	23.3 (Morton) 
	23.3 (Morton) 


	2012 
	2012 
	2012 

	31 
	31 

	59.01 
	59.01 

	79.8 (Traill) 
	79.8 (Traill) 

	31.0 (Slope) 
	31.0 (Slope) 

	Span


	 
	 
	Figure 4.2: Annual average barley yield in ND, U.S. for year 2000 – 2012. 
	 
	4.2.3. Multiple Linear Regression (MLR) 
	MLR is a statistical method used to investigate the relationship between several independent variables and a dependent variable. A linear regression model assumes that the relationship between the dependent variable and the p-vector of regressors is linear, where p is the number of independent variables. Thus the model takes the form  
	yi = 1i1 + … + pip  +  i  = i ′ + i i = 1, …, n 
	yi = 1i1 + … + pip  +  i  = i ′ + i i = 1, …, n 
	yi = 1i1 + … + pip  +  i  = i ′ + i i = 1, …, n 
	yi = 1i1 + … + pip  +  i  = i ′ + i i = 1, …, n 

	(4.1) 
	(4.1) 



	where ′ denotes the transpose, so that xi′β is the inner product between vectors xi and β. The yi is called the regressand or dependent variable. The decision as to which variable in a data set is modeled as the dependent variable and which are modeled as the independent variables may be based on a presumption that the value of one of the variables is caused by, or directly influenced by the other variables. The i is called regressor or independent variable (Weisberg, 2005). To ascertain the dependency of 
	Yieldit=0 + 1  Avg(AD0)it + 2  Avg(AD1)it + 3  Avg(AD2)it + 4  Avg(AD3)it + 5  Avg(AD4)it  +  
	Yieldit=0 + 1  Avg(AD0)it + 2  Avg(AD1)it + 3  Avg(AD2)it + 4  Avg(AD3)it + 5  Avg(AD4)it  +  
	Yieldit=0 + 1  Avg(AD0)it + 2  Avg(AD1)it + 3  Avg(AD2)it + 4  Avg(AD3)it + 5  Avg(AD4)it  +  
	Yieldit=0 + 1  Avg(AD0)it + 2  Avg(AD1)it + 3  Avg(AD2)it + 4  Avg(AD3)it + 5  Avg(AD4)it  +  

	 
	 
	(4.2) 



	where α1, α2, α3, α4, α5 coefficients were tested for statistical significance at the 5% level fitted models of equation 4.2. Though drought is a continuous phenomenon in terms of space and intensity, the drought monitor data account for areal coverage of drought for defined drought intensity categories. Therefore, it is appropriate to use the drought monitor data to quantify the impact of different drought intensity categories on barley yield. 
	4.2.4. Artificial Neural Network (ANN) 
	ANN has been widely used to model complex and non-linear processes and systems (Suo et al., 2010). ANNs are non-linear data driven self-adaptive systems that can identify and learn correlated patterns between input data sets and corresponding output values, even when the underlying data relationship is unknown. ANN resembles human brain in two respects; the network acquires knowledge through a learning process, and the interconnection strengths known as synaptic weights are used to store the knowledge (Beka
	The Levenberg-Marquardt (LM) algorithm is an intermediate optimization algorithm between the Gauss–Newton (GN) method and Gradient Descent (GD) algorithm (Arfken, 1985). It combines the speed of the Newton algorithm with the stability of the GD method.  
	4.3. Results and Discussion 
	In this study, the ANN and MLR models were compared for their performance in explaining the influence of drought conditions on the variability of barley yield in North Dakota. In the MLR analysis, the yield of barley was used as the dependent variable and drought conditions were used as the independent variables.  
	The following tables list parameters derived from MLR model (Eq. 4.2) for barley using MINITAB® statistical software (Table 4.2, 4.3 and 4.4).  
	The regression equation can be written as; 
	Yield= (58.6) – 0.0688  Avg(AD0) – 0.0959  Avg(AD1) – 0.191  Avg(AD2) – 0.239  Avg(AD3) – 5.16  Avg(AD4) 
	Yield= (58.6) – 0.0688  Avg(AD0) – 0.0959  Avg(AD1) – 0.191  Avg(AD2) – 0.239  Avg(AD3) – 5.16  Avg(AD4) 
	Yield= (58.6) – 0.0688  Avg(AD0) – 0.0959  Avg(AD1) – 0.191  Avg(AD2) – 0.239  Avg(AD3) – 5.16  Avg(AD4) 
	Yield= (58.6) – 0.0688  Avg(AD0) – 0.0959  Avg(AD1) – 0.191  Avg(AD2) – 0.239  Avg(AD3) – 5.16  Avg(AD4) 

	 
	 
	(4.3) 



	Negative values for coefficients suggest that yield reduces with increasing drought severity as expected. 
	 
	Table 4.2: Results of analysis of variance. 
	Source 
	Source 
	Source 
	Source 

	DF 
	DF 

	SS 
	SS 

	MS 
	MS 

	F 
	F 

	P 
	P 

	Span

	Regression 
	Regression 
	Regression 

	5 
	5 

	12656.2   
	12656.2   

	2531.2   
	2531.2   

	18.88   
	18.88   

	0.000 
	0.000 

	Span

	Residual Error 
	Residual Error 
	Residual Error 

	585 
	585 

	78439.6    
	78439.6    

	134.1 
	134.1 

	 
	 

	 
	 


	Total 
	Total 
	Total 

	590 
	590 

	91095.8 
	91095.8 

	 
	 

	 
	 

	 
	 

	Span


	Table 4.3: Results of regression analysis. 
	Predictor 
	Predictor 
	Predictor 
	Predictor 

	Coefficient 
	Coefficient 

	SE coefficient 
	SE coefficient 

	T 
	T 

	P 
	P 

	VIF 
	VIF 

	Span

	Constant 
	Constant 
	Constant 

	58.6 
	58.6 

	0.7584 
	0.7584 

	 77.24 
	 77.24 

	0.000 
	0.000 

	 
	 

	Span

	AvgD0 
	AvgD0 
	AvgD0 

	-0.0688 
	-0.0688 

	0.0265 
	0.0265 

	-2.60 
	-2.60 

	0.010 
	0.010 

	1.176 
	1.176 


	AvgD1 
	AvgD1 
	AvgD1 

	-0.0959 
	-0.0959 

	0.0380 
	0.0380 

	-2.52 
	-2.52 

	0.012 
	0.012 

	1.494 
	1.494 


	AvgD2 
	AvgD2 
	AvgD2 

	-0.191 
	-0.191 

	0.0483 
	0.0483 

	-3.95 
	-3.95 

	0.000 
	0.000 

	1.579 
	1.579 


	AvgD3 
	AvgD3 
	AvgD3 

	-0.239 
	-0.239 

	0.0657 
	0.0657 

	-3.64 
	-3.64 

	0.000 
	0.000 

	1.171 
	1.171 


	AvgD4 
	AvgD4 
	AvgD4 

	-5.16 
	-5.16 

	2.4930 
	2.4930 

	-2.07 
	-2.07 

	0.039 
	0.039 

	1.009 
	1.009 


	S = 11.5795   R2 = 13.9%,   R2 (adj) = 13.2% 
	S = 11.5795   R2 = 13.9%,   R2 (adj) = 13.2% 
	S = 11.5795   R2 = 13.9%,   R2 (adj) = 13.2% 

	Span


	Table 4.4: Pearson correlation matrix. 
	 
	 
	 
	 

	AvgD0 
	AvgD0 

	AvgD1 
	AvgD1 

	AvgD2 
	AvgD2 

	AvgD3 
	AvgD3 

	Span

	AvgD1 
	AvgD1 
	AvgD1 

	0.264 
	0.264 

	 
	 

	 
	 

	 
	 

	Span

	AvgD2 
	AvgD2 
	AvgD2 

	-0.119 
	-0.119 

	0.472 
	0.472 

	 
	 

	 
	 


	AvgD3 
	AvgD3 
	AvgD3 

	-0.128 
	-0.128 

	0.091 
	0.091 

	0.361 
	0.361 

	 
	 


	AvgD4 
	AvgD4 
	AvgD4 

	0.016 
	0.016 

	0.046 
	0.046 

	0.054 
	0.054 

	0.084 
	0.084 

	Span


	 
	Table 4.2 shows the Analysis of Variance (ANOVA) results for the regression model (Eq. 4.2). The ANOVA table lists the Degree of Freedom (DF), Sum of Square (SS), and Mean Square (MS) for regression model and residual error. The Mean Square for Error (MSE) for the regression model is 134.1. It is high for barley yield value prediction. Overall average barley yield in North Dakota for the study period is only 54.67 bu/acre (1 US Bushel = 0.03524 m3 and 1 acre = 4046.86 m2). Thus, prediction results will be u
	Table 4.3 shows the estimated coefficients for the regression model (Eq. 4.3), estimated standard error (SE) of coefficients, t-test statistic values, P-values, and Variance Inflation Factor (VIF) for coefficients. Results of regression analysis show that all the drought categories coverage has a significant influence in barley yield (Table 4.3). The observed significant values (p-values) in t-tests for all individual coefficients show that all the drought severity coverage categories are significant (at α 
	Low values of Variance Inflation Factor (VIF) for coefficient (<10), and Pearson correlation values between the drought severity coverage categories (Table 4.4) suggest no serious multicollinearity in the model.  
	The ANN scheme for the problem at hand is shown in Figure 4.3. ANNs can detect the important features of the input-output relationships with the help of nodes in the hidden layer. The hidden layer and nodes are very important for ANN. The nodes in the hidden layer capture the pattern in the data used (Mishra and Desai, 2006). Best fitting results were obtained for the five inputs AvgD0, AvgD1, AvgD2, AvgD3, and AvgD4, and the one output (yield of barley) using one hidden layer and ten neurons with logsig tr
	 
	 
	Figure 4.3: ANN Scheme for the study problem. 
	For many practical problems where we need to approximate any function that contains a continuous mapping from one finite space to another, there is no reason to use any more than one hidden layer. The number of neurons used was determined by trial and error. Transfer functions calculate a layer's output from its net input. The function logsig generates outputs between 0 and 1 as the neuron's net input goes from negative to positive infinity. Logsig function is generally used when the network is used for pat
	Predetermined values for the output error (MSE) and maximum iteration number were set to 0.001 and 1000 epoch, respectively. MATLAB® software was used for this analysis. Since the accuracy of estimation is highly dependent on covering all level of data, the randomization process was repeated until a satisfactory level of data distribution was reached. The training process will be completed when all weighing indices are fixed and the ANN model can accurately estimate the output data as a function of input va
	 
	 
	Figure 4.4: The relationship between actual and predicted yield of barley using ANN. 
	Zaefizadeh et al. (2011) conducted a research to predict yield in barley using MLR and ANN methods. They determine the relationship between genotypes and genotype interaction in the environment and its impact on barley yield. They stated that ANN is more effective than MLR for the estimating barley yield since the error for the estimation of barley yield was higher in MLR compared to the error in ANN method. Many researchers agree that ANN is superior to MLR with regard to prediction accuracy since the accu
	The precision of the approximation is based on the number of iterations of the simulation done. But the relationship between iterations and precision depends on the relationship between the input and output variables. According to R² results, ANN model has been found to quantify better the impact of the different drought conditions on barley yield.  
	4.4. Conclusion 
	This study quantified the impact of drought on barley yield in North Dakota, U.S., using MLR and ANN models and compared the results. The developed ANN model is trained using different drought conditions. The ANN model coefficient of determination (R2) indicates that 60 percent of the variation in yield can be explained by drought whereas only 13 percent by multiple regression. It should be noted that barley yield also depends on other variables such as soil characteristics, and management practices. A perf
	CHAPTER 5. OVERALL CONCLUSIONS  
	An understanding of drought occurrences and their characteristics such as intensity, duration, frequency, and areal coverage, and their variations on different spatial scales is crucial to plan for droughts in different regions and in different sized areas. Therefore, the above-mentioned characteristics of droughts in the contiguous U.S were studied using USDM data (2000-2014) across different spatial scales. The findings emphasized the need for studying drought characteristics from the perspectives of diff
	The impact of drought on groundwater resources was modeled using linear regression. Of the several drought indices, SPI-24 was found to correlate the best with groundwater levels. The correlation of average monthly groundwater levels with SPI-24 remained relatively the same for all the studied wells. The duration of drought also had significant correlation with groundwater level declines. It is important to monitor groundwater levels during drought for groundwater management. However, there is a deficiency 
	This study also investigated the effect of different drought conditions on Barley yield using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. Though MLR method is widely used, the ANN method has not been used in the past to investigate the effect of droughts on barley yields. This study shows that the ANN model performs better than MLR in estimating barley yield. ANN is proposed as a viable alternative method or in combination with MLR to investigate the impact of droughts on c
	Drought is a continuing threat all over the world to all the water dependent sectors. It is one of the least understood natural hazards which continue to attract attention of researchers. This study is one among them to further the knowledge base in drought research.  
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